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Abstract— This paper proposes a super twisting sliding mode
control technique for linear induction motors (LIMs) with
unknown load torque, taking into consideration the dynamic
end effects. First, LIM’s dynamic end effects are presented by
Ducan’s T-model, then following this model is controlled by
a designed super twisting controller (STC) for flux tracking
and speed tracking purpose. Simultaneously, an open loop
flux observer and a reduced order load torque observer are
designed based on Lyapunov’s analysis. Finally, simulation
results show that the designed observer-based super twisting
controller has great tracking performance and the system is
robust with disturbances and uncertainties, and flux observer
and reduced torque observer show good estimate performance
with nominal system and input-to-state stability (ISS) property
with uncertainty system.

I. INTRODUCTION

Linear induction motors (LIMs) are widely applied in
the industrial applications, such as elevators, maglev trains,
electric vehicles and medical equipments, etc [1]. Comparing
with rotary induction motor (RIM), the most obvious advan-
tage of LIM is a simple structure which has no gears and does
not need mechanical rotary-to-linear converters. Different
with RIM, the whole structure of LIM is asymmetric and its
secondary part consists of a sheet of aluminum with a back
core of iron. When the primary part moves, new continuous
eddy currents appear at the entry of the primary part and
disappear at the exit part [2]. This case causes the varies of
equivalent inductances and resistances, which is the so-called
dynamic end effects [3-4].

To describe this case above, Ducan [5] introduced an end
effect factor Q to describe the phenomena when airgap flux
grows and decays gradually varies, showing the per phase
equivalent circuit by adjusting the magnetising branch of the
equivalent circuit of the RIM. The equivalent state space
equations were given to describe the equivalent mathematical
model of LIM.

Because of the complexity of LIM’s model, the control
methods strongly challenge the classical control strategies
from RIMs to LIMs. It is well known that the control objec-
tive of LIM is to achieve speed tracking and flux tracking.
Considering end effects, several researchers made efforts to
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apply apposite control methods into LIM in the past several
years. Kang [2] applied the classical field oriented control
(FOC) method into it. However, he simplified the model
by neglecting the eddy-current loss, this control scheme
can not accurate reflect the LIM’s dynamic response. After
that Pucci introduced state space equation of the model [6]
and controlled this model with FOC [7]. Other control
methods are proposed to apply into LIM, such as input-
output feedback linearization control [8], neutral network
control [9], combined vector and direct thrust control [10].
However in practical, those control methods are not robust to
parameter uncertainties and disturbances, such as resistance
variations, load torque disturbance, etc. These controllers’
properties will become worse when disturbances occur.

To guarantee the LIM’s performance even in worse case,
different nonlinear robust control methods are proposed to
settle this problem. Traditional sliding mode control (SMC)
[11] is a type of nonlinear control and robust to system
uncertainties and parameter variations, it is widely used in
aircrafts and robotics etc [17]. However, this method may
appear chattering phenomenon, due to the discontinuous
control action in digital equipment generating a finite sam-
pling frequency. A solution to deal with this problem is
super twisting algorithm [12]. The STA with the advantage
of reducing the chattering problem robustness, is generally
applied into induction motors (IMs) [13-16].

Another considering factor of LIM is flux estimation
because it is well known that the rotor flux can not be
measured in the practical system. When without considering
end effects, a lot of flux observer methods are given to
estimate flux [16], when considering the influence of end
effects, this situation will become more complex. Similarly,
load torque estimation is also a research problem. As a result
of the mechanical dynamic of the LIM is slower than electric
one in practical system, so we can assume the derivative of
unknown load torque is zero.

In this paper, we proposes a super twisting sliding mode
control (STC) technique for linear induction motors (LIMs)
with unknown load torque, taking into consideration the
dynamic end effects. To estimate the rotor flux, an open
rotor flux observer is designed in this paper based on
Lyapunov’s theory. For the estimation of load torque, based
on assumption of the derivative of load torque is zero, a
reduced order load torque observer is designed based on
Lyapunov’s method.

The remaining of this paper is organized as follows: in
Section II, the mathematical model of LIM with end effects
is presented. In Section III, a super twisting controller is
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designed for the linear induction motor considering end ef-
fects for the tracking of desired speed and flux modulus, then
following an open rotor flux observer and a reduced torque
observer are presented. Simulation results are presented in
Section IV. Finally, some comments conclude the work in
Section V.

II. LINEAR INDUCTION MOTOR MODEL WITH
DYNAMIC END EFFECTS

The space-vector dynamic model of the LIM, taking into
consideration its dynamic end effects, in the inductor part
flux reference frame (α,β) is given as follows [6]:

i̇sα = −γisα + βαψrα + β
npπ

h
vψrβ +

usα
δ

(1)

i̇sβ = −γisβ + βαψrβ − β
npπ

h
vψrα +

usβ
δ

(2)

ψ̇rα = −ηψrα + ςisα −
npπ

h
vψrβ (3)

ψ̇rβ = −ηψrβ + ςisβ +
npπ

h
vψrα (4)

and the mechanical equation of the motion of LIM is:

v̇ = Fe − (D/M)v − TL/M (5)

where Fe is the electromagnetic thrust, is defined as [10]:

Fe = µ(isβψrα − isαψrβ) (6)

where v is the motor speed, usα and usβ are the stator
voltages, isα and isβ are the stator currents, ψrα and ψrβ are
the rotor fluxes, TL is the load torque, np is the number of
pole pairs, and M is the motor mass. Moreover, the variables
γ, α, β, ς, η, δ, µ, T̂r are defined as follows:

γ =
1

σ̂L̂s

[
Rs + R̂r(1−

L̂m

L̂r
) +

L̂m

L̂r
(
L̂m

T̂r
− R̂r)

]

α = (
1

T̂r
− R̂r

L̂m
), β =

L̂m

σ̂L̂sL̂r
, ς = (

L̂m

T̂r
− R̂r)

η =
Rr + R̂r

L̂r
, δ = L̂s

(
1− L̂2

m

L̂rL̂s

)
, µ =

3npπL̂m

2MhL̂r

and Q, f(Q), R̂r, L̂m, L̂s, L̂r, T̂r are given:

Q =
τmRr

(Lm + Lσr)v
, f(Q) =

1− e−Q

Q

R̂r = Rrf(Q), L̂m = Lm[1− f(Q)]

L̂s = Lσs + L̂m, L̂r = Lσr + L̂m

T̂r =
L̂r

Rr + R̂r
=
Lσr + Lm(1− f(Q))

Rr +Rrf(Q)

III. CONTROLLER AND OBSERVER
The control objective is to force the linear induction motor

speed v and the squares of the rotor flux modulus ψm =
ψ2
rα + ψ2

rβ to track the desired references vref and ψm,ref ,
even in the case of load torque disturbance and parameter
uncertainties. We first solve the control problem, then solve
the problem of flux observer and torque observer.

A. Super Twisting Controller

In order to solve the control problem, we derive the
expressions of the tracking error dynamics z1 = v − vref
and z2 = ψm − ψm,ref , the error dynamics can be written
as follows:

ż1 = µ(isβψrα − isαψrβ)− (D/M)v − TL/M − v̇ref (7)

ż2 = −2ηψm + 2ς(ψrαisα + ψrβisβ)− ψ̇m,ref (8)

Now, define the vector χ1 =
[
z1 z2

]T
and its dynam-

ics results
χ̇1 = f1 +GI + d (9)

where I =
[
isα isβ

]
, f1 =

[
f11 f21

]T
, d =[

−TL/M 0
]T

, and

G =

[
−µψrβ µψrα
2ςψrα 2ςψrβ

]
(10)

with
f11 = −(D/M)v − v̇ref (11)

f21 = −2ηψm − ψ̇m,ref (12)

To avoid chattering phenomena, we introduced sigmoidal
functions approximate the classical sign function, defined as:

Sεi(zi) = tanh(zi/εi), i = 1, 2 (13)

By choosing sufficiently small εi, we can guarantee this
function approximate classical sign function as follows:

lim
ε→0

Sε(z) = sign(z) (14)

The sigmoidal functions are robust to unknown unmatched
and bounded perturbations, these functions decompose the
control law into several sub-problems of lower order.

For the stabilization of equation one proposes a desired
dynamics as

χ̇1 = f1 +GI + d = −K1Sε(χ1) (15)

where K1 =
[
k1 k2

]
, k1 and k2 are postive values to be

designed. From equation (15) can calculate the current vector
as reference signal. Define Iref =

[
isα,ref isβ,ref

]T
,

while
Iref = G−1(−K1Sε(χ1)− f1 − d̂) (16)

The value of matrix G equals to

det(G) = −2µς(ψ2
rα + ψ2

rβ) = −3npπL̂m

MhL̂r
(
L̂m

T̂r
− R̂r)ψm

(17)
It is obvious that G−1 exits under the assumption that
ψm 6= 0. The reference currents guarantee that z1, z2 decay
asymptotically to zero. In order to force the stator currents to
be equal to the stator reference signals. Define the variable
χ2 =

[
z3 z4

]T
=
[
isα − isα,ref isβ − isβ,ref

]T
,

and their dynamics are:

χ̇1 = −K1Sε (χ1) +Gχ2 (18)

χ̇2 = f2 + U/δ − İref (19)
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where f2 =
[
f12 f22

]T
, U =

[
usα usβ

]T
and

f12 = −γisα + βαψrα + β
npπ

h
vψrβ (20)

f22 = −γisβ − β
npπ

h
vψrα + βαψrβ (21)

A super twisting sliding mode controller is designed for
perturbation and chattering elimination by choosing z3, z4 as
sliding functions. One proposes the following super twisting
controller:

usα = −ka|isα − isα,ref |
1
2 sign(isα − isα,ref ) + usα,1

u̇sα,1 = −ka,1sign(isα − isα,ref )

usβ = −kb|isβ − isβ,ref |
1
2 sign(isβ − isβ,ref ) + usα,1

u̇sβ,1 = −kb,1sign(isβ − isβ,ref ) (22)

Differentiate the sliding functions twice:

ż3 = f12 + usα/δ −
disα,ref
dt

ż4 = f22 + usβ/δ −
disβ,ref
dt

z̈3 = ḟ12 +
d

dt

(usα
δ

)
− d2isα,ref

dt

z̈4 = ḟ22 +
d

dt

(usβ
δ

)
− d2isβ,ref

dt
(23)

We assume that there are positive constants, such that
within the region the following inequalities hold ∀t, x ∈
X, usα, usβ ∈ Z :∣∣∣∣ḟ12 − d2isα,ref

dt

∣∣∣∣ ≤ Φsα,

∣∣∣∣ḟ22 − d2isβ,ref
dt

∣∣∣∣ ≤ Φsβ

0 < Γm ≤
1

δ
≤ ΓM (24)

∀t, x ∈ X, usα, usβ ∈ Z.
The corresponding sufficient conditions for the finite time

convergence to the sliding manifolds are

ka,1 >
Φsα
Γm

, k2a ≥
4Φsα
Γ2
m

ΓM (ka,1 + Φsα)

Γm(ka,1 − Φsα)

kb,1 >
Φsβ
Γm

, k2b ≥
4Φsβ
Γ2
m

ΓM (ka,1 + Φsβ)

Γm(ka,1 − Φsβ)
(25)

then the sliding functions can keep globally uniformly stable
by choosing suitable parameters.

B. Open Loop Rotor Flux Observer

In this part, ψ̂rα and ψ̂rβ are the rotor flux to be estimated,
we can design the following open-loop rotor flux observer

˙̂
ψrα = −ηψ̂rα + ςisα −

npπ

h
vψ̂rβ (26)

˙̂
ψrβ = −ηψ̂rβ + ςisβ +

npπ

h
vψ̂rα (27)

which is a copy of the rotor flux dynamic equations in
which the flux estimate replaces the true flux. It requires
the measurements of (v, isα,isβ). Define the flux estimation
errors as ψ̃rα = ψrα − ψ̂rα and ψ̃rβ = ψrβ − ψ̂rβ .

The resulting estimation error dynamics are given by

˙̃
ψrα = −ηψ̃rα −

npπ

h
vψ̃rβ (28)

˙̃
ψrβ = −ηψ̃rβ +

npπ

h
vψ̃rα (29)

Now, we consider the Lyapunov function

V =
1

2
ψ̃2
rα +

1

2
ψ̃2
rβ (30)

whose time derivative along the trajectories of equation (30)
is given by

V̇ = −η(ψ̃2
rα + ψ̃2

rβ) = −2ηV = −2(Rr + R̂r)

L̂r
V (31)

integrating with respect to time on the time interval [0,t], we
obtain

V (t) = V (0)e−2ηt (32)

Assume the maximum speed is Vmax, then the scope of
parameter η is

0 < ηmin < η =
Rr + R̂r

L̂r
< ηmax (33)

which implies that the norm of the rotor flux error vector
ψ̃r(t) =

[
ψ̃rα(t) ψ̃rβ(t)

]T
decays exponentially with

rate of convergence η, for any initial estimation error V (0) =
1
2 ψ̃

2
rα(0) + 1

2 ψ̃
2
rβ(0).

C. Reduced First Order Torque Observer

In this part, a reduced order observer is designed to
estimate load torque [17]. Due to the fact that mechanical
dynamic of the motor is much slower than electric one, we
assume the derivative of load torque is zero, then the motor
mechanical equations are given as follows:

v̇ = µ(isβψrα − isαψrβ)− (D/M)v − TL/M (34)

ṪL = 0 (35)

Let the change of variable as follows:

κ = TL + λv(λ > 0) (36)

Based on the above equation, we have

κ̇ = −(λ/M)κ+(λ2
/
M)v−(D/M)v+λµ(isβψ̂rα−isαψ̂rβ)

(37)
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Let κ̂ be an estimate of κ generated by

˙̂κ = −(λ/M)κ̂+(λ2
/
M)v−(D/M)v+λµ(isβψ̂rα−isαψ̂rβ)

(38)
The estimate torque is given by

T̂L = κ̂− λv, κ̂(0) = T̂L(0) + λv(0) (39)

Define κ̃ = κ − κ̂, T̃L = TL − T̂L, ψ̃ra = ψra − ψ̂ra,
ψ̃rb = ψrb − ψ̂rb, then the estimation error dynamics

˙̃κ = −(λ/M)κ̃+ λµ(isβψ̃rα − isαψ̃rβ) (40)

T̃L = κ̃ (41)

Consider the Lyapunov function

V =
1

2
κ̃2 (42)

From previous part we assume Vmax is maximum speed,
then the scope of parameter µ is

0 < µmin < µ =
3npπL̂m

2MhL̂r
< µmax (43)

The time derivative of V is

V̇ = −(λ/M)κ̃2 + λµ(isβψ̃rα − isαψ̃rβ)κ̃
≤ −(λ/2M)κ̃2 +

(
λµ2M/2

)
(|isα|+ |isβ |)(1 + |isα|+ |isβ |)(ψ̃2

rα + ψ̃2
rβ)

≤ −(λ/2M)κ̃2 +
(
λµ2

maxM/2
)

(|isα|+ |isβ |)(1 + |isα|+ |isβ |)(ψ̃2
rα + ψ̃2

rβ)

(44)

In practice, the currents isα(t), isβ(t) are bounded on
t ∈ [0,∞), from the previous section we know ψ̃ra(t), ψ̃rb(t)
exponentially converge to zero, which demonstrating that
T̃L(t) exponentially converge to zero for any initial condi-
tion. When the perturbation terms (ψ̃rα, ψ̃rβ) are nonzero
and bounded, its property ensures the input-to-state stability
(ISS) property, namely κ̃ remains bounded, that means T̃L is
bounded [18]. In fact the flux observer is based on the open
flux loop flux observer (27-28), which is ensured to remain
bounded.

IV. SIMULATION

In this section the performance of the proposed control
scheme is simulated with Matlab/Simulink software. The
nominal parameters of linear induction motor are given in
Tabel I.

The variables γ, α, β, ς, η, δ and µ have related physical
meanings, as explained in [7]. In Fig 1, the waveforms of
those parameters are showed for the motor under simulation
in a speed range varying between 0 and 5 m/s.

The gain parameters have been chosen for the controller
as ka = 2500, ka,1 = 50000, kb = 2500, kb,1 = 50000,
ε1 = 0.01, ε2 = 0.01, k1 = −100, k2 = −50, λ = 500.

TABLE I
PARAMETERS OF LINEAR INDUCTION MOTOR

Inductor resistance Rs [Ω] 11
Induced-part resistance Rr [Ω] 32.57
Inductor inductances Ls [H] 0.6376

3-phase magnetizing inductance Lm [H] 0.5175
Induced-part inductances Lr [H] 0.7578

Primary mass M [Kg] 20
Viscous friction D [m/s] 20

Pole-pairs np 3
Inductor length τm [m] 1.5

Pole pitch h [m] 0.1

0 1 2 3 4 5
91.6
91.8

92
92.2

.

0 1 2 3 4 5
42.5

43
43.5

44

,

0 1 2 3 4 5
2.36
2.38
2.4 -

0 1 2 3 4 5
20
21
22 &

0 1 2 3 4 5
40
45
50
55 2

0 1 2 3 4 5

0.28

0.285 /

speed (m/s) 
0 1 2 3 4 5

4.6
4.7
4.8 7

Fig. 1. Waveforms of γ, α, β, ς, η, δ and µ when speed v varies

A. Control Performance Analysis

In this part, a typical type of reference signal is given
to test the performance of the observer-based super twisting
controller, as shown in Fig 2.

To test the influence of external disturbance, an 100 Nm
load force is added at t = 1.5 s and removed at t = 2.5 s.
The simulation results for the reference and actual speed and
speed tracking error are shown in Fig 2 (a). The simulation
results for the reference and actual flux modulus and flux
modulus tracking error are shown in Fig 2 (b). The primary
voltage of u-phase Ua and current voltage of i-phase Ia are
shown in Fig 2 (c). case As shown in Fig 2 (a), the speed
tracking errors have a fast convergence rate, even in case of
external load torque disturbance and parametric uncertainties.
Satisfactory flux modulus tracking performances are shown
in Fig 2 (b). In Fig 2 (c), it’s easy to see that the phase and
amplitude vary with different speed signal and no burr, and
the primary voltage response and primary current evolve in
a reasonable region.
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Fig. 2. Tracking performance and control input with load disturbance
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Fig. 3. Observer performance without parameter uncertainities
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R̄r : rotor flux ψrβ and its estimate; rotor flux
ψrβ estimation error
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torque TL and its estimate

Fig. 4. Observer performance with parameter uncertainities
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Satisfactory performance has been illustrated even in sit-
uations of external load torque disturbance and parametric
uncertainties.

B. Observer Performance Analysis

In this part, the open flux observer and load torque ob-
server are simulated to verify the observer performance, and
the related parameters are given in Table I. The motor (with
initial conditions ψ̃rα(t) = ψ̃rβ(t) = 0.1Wb) is controlled
by the super twisting control (with control parameters, rotor
speed and flux modulus references, and applied load torque).
The observer initial conditions are set to zero. For the load
torque observer, the design parameter is chosen as (all values
are in SI units) λ = 500. All initial conditions for the load
torque estimator are set to zero while the rotor flux estimates
are generated by the reduced order flux observer. The rotor
flux vector (α,β) components along with the corresponding
estimation errors are reported in Fig 3 (a) and Fig 3 (b), they
show that exponentially converging estimation is achieved.
The estimate of the load torque TL is reported in Fig 3 (c):
exponentially converging load torque estimation is obtained.

Considering parametric uncertainties, we assume the ac-
tual R̄s and R̄r to be Rs + ∆Rs and Rr + ∆Rr, where
∆Rs = 0.2Rs, ∆Rr = 0.3Rr. The rotor flux vector (α,β)
components along with the corresponding estimation errors
are shown in Fig 4 (a) and Fig 4 (b), they show that estimated
error is bounded. Similarly, the estimated torque error is
bounded, as shown in Fig 4 (c).

In case of the nominal system we can find that the flux
estimate errors have a fast convergence rate and go to zero,
as shown in Fig 3 (a, b). Similarly, torque estimate has
the same case from Fig 3 (c). When considering parametric
uncertainties, both the flux estimate error and torque estimate
error have the bounded properties, as shown in Fig 4 (a, b)
and Fig 4 (c), which ensure the input-to-state stability (ISS)
property.

V. CONCLUSION

In this paper, an observer-based super twisting sliding
mode control technique has been designed for linear in-
duction motors, taking into consideration the dynamic end
effects. The proposed controller has a good tracking perfor-
mance without chattering phenomena. Moreover, it is robust
to external load torque disturbance and parametric variations.
The proposed open loop flux observer and reduced torque
observer show good estimate performance with nominal
system and input-to-state stability (ISS) [18] property with
perturbed system.
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