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Chapter 1

Fractional-order PI controller for
Permanent Magnet Synchronous
Motor:A design based compar-
ative study

ABSTRACT
Permanent Magnet Synchronous Motor (PMSM) is a special type of brush-
less motor widely used for high-performance drives such as industrial robots
and machine tools because of their advantages as high efficiency, high power
density, high torque/inertia ratio and less maintenance. It has a highly nonlin-
ear dynamics. Design of effective control strategy for a PMSM is a challenging
task. Implementation of vector controlled speed drive of PMSM requires design
of three proportional and integral (PI) controllers: two as current controllers
for direct-axis (d-axis) and quadrature-axis (q-axis) current control and one for
the speed control. All these three integer-order PI controllers can be replaced
with fractional-order PI (popularly known as FOPI) controllers. As compared
with conventional PI controller, FOPI controller provide more maneuverability
and robustness due to an additional degree of freedom integration order λ.
This chapter describes two different methods to design these FOPI controllers.
First method, popularly known as intersection method, is based on Bode plot
while, second method using robustness index, is based on Nyquist plot. Results
of these methods are compared for various parameter indices such as rise time,
percentage overshoot, settling time, control efforts.

KEYWORDS
Permanent Magnet Synchronous Motor, Non-linear model, Fractional-order
proportional-integral controller, Frequency domain design, Robustness, Tuning

1.1 INTRODUCTION

Permanent Magnet Synchronous Motor (PMSM), is a brushless motor,
gaining popularity in many industrial applications because of its advan-
tages like low maintenance and low power loss. However, designing a
controller for the same is a challenging task due to its non-linear dynamic
model. In this work, the non-linear model of the motor is linearized
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around one operating point using Jacobian linearization. Such a model
obtained, is commonly referred as small signal model. Speed of the motor
is controlled using Vector control technique. Vector control involves three
proportional-integral (PI) controllers. Two for the inner current control,
d-axis current control and q-axis current control. The third control is
the speed control which is the outer loop control over inner current loop
control (1).
Classical PI controllers show deteriorate performance because of having
less degree of freedom. In recent years fractional-order PID (FOPID) con-
trollers have gained many attention both in academia and industry (see
for example (2; 3; 4; 5; 6; 7) and the references therein for more informa-
tion). This is mainly due to the fact that fractional-order (FO) controllers
provide better control for a variety of systems (2). Moreover, it is evi-
dent from significant research that FO controllers have additional merits
of handling delicate and complicated process dynamics compared to con-
ventional PID. In fractional-order control design, conventional integrator
“1/s” and differentiator “s” are replaced by “1/sλ” and “sλ” respectively
where λ is the fractional-order parameter. Podlubny (2) demonstrated
the necessity of fractional-order PID (FOPID) controller for the more ef-
ficient control of fractional-order systems. In fact a FOPID is less sensitive
to changes of parameters of a controlled system. It gives more degrees of
freedom in the controller design with five parameters available for tuning.
Especially, due to the computational tool like FOMCON toolbox (8) avail-
able, design verification of fractional-order controllers has become feasi-
ble. In recent years, several design approaches have been suggested in the
literature to improve FOPI or FOPID tuning, for instance, tuning rules
using Ziegler-Nichols-type method (9), using gain-phase margin and iso-
damping specifications (3), using integrated absolute error and maximum
sensitivity (10), using a flat phase constraint and two other design spec-
ifications (11; 12; 13), using minimizing performance indices (6), using
a filter with maximum sensitivity specification (14). Some of the tuning
rules have successfully applied in many practical non-integer examples
such as control of hard disk drive servo systems (15), control of power
electronic converters (16), velocity control of a servo system (11; 17),
control of composite hydraulic cylinders (18) and control of head flow
(13). In (19; 20), FOPI controllers are designed for PMSM using the
simplified model of the motor.
In this chapter, FOPI controller is designed with two different approaches:
1.Intersection method based on Bode plots (21): It uses specifi-
cations on phase margin and amplitude. The method is based on the
well-known iso-damping property which makes the system more robust
to disturbance.
2.Design using robustness index based on Nyquist plots (22):
Using this method, various sets of controller gains (Kp, Ki and λ) are
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obtained. The optimal parameter setting is obtained based on the con-
straint that the Nyquist curve of the loop-transfer function is tangent to
a line parallel to the imaginary axis in the left-half of the complex plane.
Therefore, it satisfies both robustness and performance requirements.
Both of these methods for design are based on linearized model of PMSM.
Simulation results are obtained using non-linear model of PMSM and the
results are compared for different performance parameters.
Section (1.2) gives the details of dynamic model of PMSM and linearized
model using small signal equations. Fractional-order basics are introduced
in section (1.3). Section (1.4) explains the procedure of frequency domain
design of FOPI using intersection method. Section (1.5) explains another
method of designing FOPI using robustness index. Results of Oustaloup
filter used for both the controllers are reported in section (1.6). Com-
parative analysis is given in section (1.7). All the simulation results are
explained in section (1.8). Section (1.9) concludes the chapter.

1.2 DYNAMIC MODELING OF PMSM

1.2.1 Linearized Model

The vector control of PMSM is shown in Fig. 1.1.
In this Fig., three loops for q-axis, d-axis and the speed are clearly
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FIGURE 1.1 Vector control of PMSM drive (23).
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shown.
In order to develop the mathematical model of PMSM motor, variables
from three phase stator reference frame are transformed into two phase
rotor reference frame. The rotor flux linkages are on the d-axis of the
machine. Also, it is assumed that the inductances are independent of the
rotor position.

The generalized non-linear mathematical model of PMSM drive in
rotor reference frame is (1),

vd = (Rs + Ldp)id − ωrLqiq,
vq = (Rs + Lqp)iq + ωrLdid + ωrλaf ,

Te =
3

2
.
P

2
iq(λaf + (Ld − Lq)id), (1.1)

d

dt
ωr =

1

J
(Te − Tl −Bωr).

where

• p is the differential operator, d/dt.
• vq and vd are the voltages in the q- and d-axes windings, V.
• iq and id are the q- and d-axes currents, A.
• Rs is stator resistance per phase, Ohm.
• λaf is armature flux linkages due to rotor magnets, V-s.
• Lq and Ld are quadrature and direct axis stator self-inductances in

rotor reference frames, H.
• Te is the Electromagnetic Torque, Nm.
• Tl is the Load Torque, Nm.
• ωr is electrical rotor speed, rad/s.

For designing controller, we linearize the non-linear model described
in (1.1) using Jacobian linearisation around an operating point using per-
turbation techniques, which is popularly known as small signal model in
electrical drives. This model is obtained in rotor reference frame since
the currents iq and id are dc quantities. The small-signal equations are,

δvq = (Rs + Lqp)δiq + ωroLdδid + (LdIdo + λaf )δωr,

δvd = (Rs + Ldp)δid − ωroLqδiq − LqIqoδωr,

Jpδωr +Bδωr =
P

2
(δTe − δTl), (1.2)

δTe =
3

2

P

2
(λafδiq + (Ld − Lq)(Idoδiq + Iqoδid)).

Representing these equations in state-space equations we get,

pX = AX +BU,
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where

X = [δiq δid δωr]
T ,

U = [δvq δvd δTl]
T ,

A =


−RsLq −LdLq ωro −(λaf + LdIdo)

−LqLdωro −RsLd −LqLd Ido
k1(λaf + (Ld − Lq)Ido) k1(Ld − Lq)Iqo −BJ

 ,

B =


1
Lq

0 0

0 1
Ld

0

0 0 − P
2J

 ,

k1 =
3

2
(
P

2
)2

1

J
.

For the sake of compactness in the formulation, the load torque has been
absorbed as an input (1). For designing q-axis current controller, we
obtain transfer function between q-axis stator current and q-axis stator
voltage as shown in Fig. 1.2, we consider,

Y = CX +DU,

where

C = [1 0 0],

D = [0 0 0].

From the state-space model, the transfer function can be obtained as (24),

Gi(s) =
Y (s)

U(s)
= [C(sI −A)−1B +D]. (1.3)

The PMSM parameters are given in table 1.1.
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TABLE 1.1 PMSM drive system parameters (1).

Parameter Value

Stator Resistance (Rs) 1.4 Ω

d-axis Inductance (Ld) 0.0056 H
q-axis Inductance (Lq) 0.0056 H
Flux Linkages (λaf ) 0.1546 Wb-turn
Frictional Constant (B) 0.01 Nm/rad/s
Inertia (J) 0.006 kg m2

Poles (P) 6
Max control voltage (Vcm) 10 V
Gain of speed filter (Hw) 1 V/(rad/sec)
Gain of current transducer (Hc) 0.8 V/A
Time constant of speed filter (Tw) 0.002 sec

FIGURE 1.2 Current control loop of a motor Drive.

1.2.1.1 The torque or current control loop
This is the innermost loop as shown in Fig. 1.2. In this loop, the electrical
system is represented by Gi(s) derived from (1.3).

Gi(s) =
111.11(s+ 249.2)(s+ 2.461)

(s+ 13.85)(s2 + 393.4s+ 1.39e5)
.

This electrical system is represented between vq and iq. The inverter
model is implemented using average representation.The gain of the in-
verter can be obtained as Kpwm = Vdc/Vcm (25).

The integer-order (IO) PI controller is given by,

C(s) = Kp +
Ki

s
. (1.4)
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1.2.1.2 The speed loop
Once the innermost current control loop is designed, the outer speed loop
can be designed. It is shown in Fig. 1.3.

FIGURE 1.3 Speed control of a motor Drive.

The mechanical model is given as follows,

Gm(s) =
KmKt

(1 + sTm)
, (1.5)

where
Km is mechanical gain constant, Tm is mechanical time constant, Kt

is torque constant and Gw is the feedback due to speed filter.
The operating steady state values while designing PMSM model are

as follows,
ωro = 2× π×50 = 314.15 rad/sec which is the rated electrical speed;
Iqo = 4 A which is the phase current for 2 Nm torque;
Ido = 0 A for the maximum torque condition.

1.3 MATHEMATICAL PRELIMINARIES: A BRIEF DESCRIP-
TION OF FRACTIONAL-ORDER CONTROL

1.3.1 Birth of Fractional Calculus

In a letter dated 30th September 1695, L’Hôpital wrote to Leibniz asking
him a particular notation that he had used in his publication for the nth
derivative of a function

Dnf(x)

Dxn
(1.6)

i.e., what would the result be if n = 1/2. Leibniz responded as "an ap-
parent paradox from which one day useful consequences will be drawn."
In these words, fractional calculus was born.
Fractional calculus is the mathematics which deals with arbitrary non
integer-order derivatives and integrals. Fractional calculus has different
properties and features than integer calculus.
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1.3.2 The Popular Definitions of Fractional Derivatives/Integrals
in Fractional Calculus

Cauchy’s Definition of successive integration

0J
n
t f(t) =

1

(n− 1)!

∫
0

t

(t− τ)
n−1

f(τ)dτ (1.7)

where n ∈ N is the order of integration.
Riemann-Liouville’s definition of fractional-order integration

0J
α
t f(t) =

1

Γα

∫
0

t

(t− τ)
α−1

f(τ)dτ (1.8)

where α ∈ < is the order of integration.
Definition of Riemann-Liouville Fractional Derivative (RLFD)

RL
0 Dα

t f(t) =
dm

dtm
1

Γ(m− α)

∫
0

t

(t− τ)
m−α−1

f(τ)dτ (1.9)

where α ∈ < is the order of differentiation and
(m-1)< α <m where m ∈ N.
Caputo Fractional Derivative

C
0 D

α
t f(t) =0 J

(m−α)
t

dm

dtm
f(t) =

1

Γ(m− α)

∫
0

t

(t− τ)
m−α−1

f(τ)dτ

(1.10)
where α ∈ < is the order of differentiation and
(m-1)< α <m where m ∈ N.
Grunwald - Letnikov Fractional Derivative (GLFD)

GL
0 Dα

t f(t) = lim
h→0

1

hα

b th c∑
j=0

(−1)jΓ(α+ 1)

Γ(j + 1)Γ(α− j + 1)
f(t− jh) (1.11)

where α ∈ <, h is sample time and b thc is the floor function.
In above all definitions Γ is gamma function and it is defined as,

Γn =

∫
0

∞
e−xxn−1dx (1.12)

From above all FO derivative definitions, it is clear that FO derivative
operator not only evaluate the function by using local conditions but it
uses all history of function, it means that FO derivative is non-local op-
erator.
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1.3.3 Fractional Order Control

There has been increasing interest in the research related to fractional
calculus and its applications to control theory. The actual system was
usually mostly fractional, but the plant model may have already been ob-
tained as an integer order (IO) model in the classical sense. The fractional
order controller (FOC) is applied to enhance the control performance of
the integer order dynamic systems.Researchers have used FOC to control
IO plants and achieved good results.

1.3.4 Fractional Order PI Controller

FO control achieves better performance in comparison with conventional
integer-order control. In the conventional integer-order PI controller,
there are only two parameters, that is, proportional gain, integral gain
which are available to tune. The fractional-order PI (FOPI), controller
contains one extra parameter to tune and that parameter is nothing but
the order of integration.The fractional-order PI (FOPI) controller param-
eter tuning method uses iso-damping property which makes the system
more robust to disturbance.
Fractional-order controller with real order whose transfer function C(s)
is given by:

C(s) = Kp

(
1 +

1

Tisλ

)
=

(
Kp +

Ki

sλ

)
(1.13)

whereKp, Ti and λ are the positive real tuning parameters. The real num-
ber λ represents the fractional-order. The ratio Ki = Kp/Ti is known as
the integral gain. This PI type control structure is relatively simple and
widely implemented in practice (11). Due to the real number order, the
transfer function is called "fractional-order".

However applying the fractional differentiation operator practically is
always difficult. So far few methods have been developed in the Liter-
ature for fractional-order integrators and differentiators of the form sν ,
ν ∈ (−1, 1) for the simulation and realization. Among others, Oustaloup
recursive approximation (ORA) (26; 27; 28) is the most popular method
used for this purpose. In following sections, we will discuss two differ-
ent design methods for designing FOPI parameters. In general, it re-
quires three FOPI controllers for implementation complete speed control
of PMSM system. In our evaluation, we obtain two current controllers,
one for q-axis and another for d-axis current controller and one for the
speed control.
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1.4 DESIGN OF FOPI CONTROLLER USING INTERSEC-
TION METHOD

This method is referred as FOPI1 in this chapter.

1.4.1 Design philosophy

This section explains fractional-order PI controller design in frequency
domain using Intersection method (19).
In this method, first open-loop transfer function GOL(s) of the plant is
considered as per Eqn. (1.14).

GOL(s) = C(s)Gp(s). (1.14)

The design specifications for the controller are obtained from the open-
loop transfer function. Gain crossover frequency ωc is considered same as
that obtained from open-loop frequency response.
There are three loops in vector control of PMSM, as explained before.
Out of these loops, two current loops are inside the outer speed loop.
Hence, we have to design three controllers; two current controllers for
q-axis and d-axis currents which is forming the inner loop and one for
speed control in the outer loop.
Referring (1.3) and Fig. 1.2, the open loop transfer function for current
loop is,

GIOL(s) = C(s))×Kpwm ×Gi(s), (1.15)

Open-loop crossover frequency selected for the current controller is f =
1000 Hz which gives ωc = 2πf = 6283.18 rad/sec. The reasonable
phase margin selected is φm = 60 deg. The outer loop frequency is always
lesser as compared with the inner loop frequency, as the inner loop is
always faster and time constant of the inner loop is always lesser.
Open-loop plant transfer function for the speed loop is,

GWOL
(s) =

(
C(s)

)
Gp(s), (1.16)

where,
Gp(s) = GICL(s)Gm(s), (1.17)

and GICL(s) is closed-loop transfer function for the current loop.
For designing speed controller, gain crossover frequency, is considered
from open-loop transfer function. The time constant of the speed feed-
back filter is not negligible and hence the crossover frequency for the
speed controller, is selected from the combined frequency response of
(GICL(s) Gm(s) Gw(s)) which is 355 rad/sec and the phase margin se-
lected is 60 deg.
Once the design specifications are finalized, three equations are obtained.
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Two equations are from the basic definitions from gain margin and phase
margin specifications and the third one is formed to verify the robustness
of the plant. These equations are explained in detail in the following sec-
tions. These three equations are solved simultaneously in order to obtain
three parameters Kp, Ki and λ of FOPI controller. Out of these equa-
tions, phase margin equation and equation for robustness, are plotted and
the intersection of the two curves gives the values of Ki and λ. That is
why the name for this method is intersection method. From the third
equation, value for Kp is obtained.
This procedure is implemented three times in order to design the three
FOPI controllers. Appropriate transfer functions for the three loops are
considered for designing the FOPI controller. The detail design for speed
controller is presented as follows. For current controllers design, (35) can
be referred.

1.4.2 FOPI Controller for Speed Control Loop

The Fractional-order PI controller has the following form of transfer func-
tion,

C(s) = Kp(1 +
Ki

sλ
), (1.18)

where 0 < λ < 1.
Its frequency response is as follows,

C(jω) =Kp(1 +Ki(jω)−λ), (1.19)

C(jω) =Kp[(1 +Kiω
−λcos(

λπ

2
))

− jKiω
−λsin(

λπ

2
)]. (1.20)

The phase and amplitude are as follows,

Arg(C(jω)) = −tan−1
Kiω

−λsin(λπ2 )

1 +Kiω−λcos(
λπ
2 )

,

|C(jω)| =

Kp

√
(1 +Kiω−λcos

λπ

2
)2 + (Kiω−λsin

λπ

2
)2. (1.21)

Design Specifications:
To proceed for design of FOPI controller, we start with open-loop gain

crossover frequency ωc = 355 rad/sec and φm = 60 deg.
We get the following three specifications at crossover frequency (29).

1] Phase margin specification:

Arg[GWOL
(jωc)] = Arg[C(jωc)(Gp(jωc))] = −180 + φm. (1.22)
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2] Robustness to gain variations of the plant:

d

dω
Arg[GWOL

(jωc)] =
d

dω
Arg[C(jωc)(Gp(jωc))]|ω=ωc = 0. (1.23)

With the condition that the phase derivative w.r.t. frequency is zero,
implying the phase Bode plot is flat at the gain crossover frequency;
assures robust behavior of the system.

From these two equations, relation curve betweenKi and λ is obtained
which as shown in Fig. 1.4.

FIGURE 1.4 Relation curve between Ki and λ.

3] Amplitude specification:

|GWOL
(jωc)| = |C(jωc)Gp(jωc)| = 1. (1.24)

1.4.3 FOPI Controller for q-axis Current Control Loop

Since, transfer function is well defined for the q-axis current controller,
the same procedure is followed for designing fractional-order PI controller
for this q-axis current controller (35).

1.4.4 FOPI Controller for d-axis Current Control Loop

For d-axis current loop transfer function, input will be d-axis stator volt-
age, vd. The output is d-axis stator current, id which can set by consider-
ing output matrix as C = [0 1 0]. Referring the transfer function defined
for d-axis, the design of fractional-order PI controller for d-axis current
will be obtained by following the same procedure as with the speed con-
troller (35).
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This controller is designed for two different operating points, 2 Nm
and 4 Nm of load torque. Table 1.2 lists the controller parameters.

TABLE 1.2 FOPI1 controller settings

Torque Kp Ki λ FOPI
2 Nm 0.4702 22.7 0.3624 q-axis current control

0.0454 115.4 0.3256 speed control
0.4080 33.57 0.3605 d-axis current control

4 Nm 0.4702 22.7 0.3694 q-axis current control
0.0452 116.3 0.3261 speed control
0.4080 33.57 0.3684 d-axis current control

1.5 DESIGN OF FOPI CONTROLLER USING ROBUSTNESS
INDEX

1.5.1 Design philosophy

We refer the method with reference name FOPI2 and obtain all three con-
trollers for PMSM system. In following the detail derivations are given
to obtain new FOPI controller. The design rule (22) is derived for guar-
anteed robust performance with constraint that the Nyquist curve of the
loop transfer function is tangent to a line parallel to the imaginary axis
in the left-half of the complex plane.
The controller in a loop moves a given point on the Nyquist curve to an
arbitrary position in the complex plane, as shown in Fig. 1.5 (a). A point
can be moved radially from the origin by changing the gain Kp as well
as moved orthogonally by changing Ki or λ. Notice that with positive
FOPI parameters the range of movement lies in the quarter plane.
Consider the loop transfer function, Gl(s) = G(s)C(s). It is important
that C(s) parameters are chosen in such a way that the closed-loop sys-
tem is not too sensitive to variations in system dynamics. There are
many ways to specify the sensitivity. Excellent insight into the sensi-
tivity problem has been provided by the simple specification, see (30).
According to this theory it follows that the closed-loop system is robust
to perturbations if the robustness specification Mr

1

Mr
= max

0≤ω<∞
|Re[Gl(jω)]| . (1.25)

Fig.1.5 (b) shows the geometrical illustration of the above specification.
The quantity Mr is simply the inverse of the maximum of the absolute
real value of the loop transfer function Gl(jω). A range of Mr values
gives the constraint of the distance between the Nyquist curve of the loop
transfer function to the imaginary axis and 1/Mr is the distance between
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them in the left-half of the complex plane. Moreover, a specification in
(1.25) turns out to be sufficient condition for designing a controller.

(a) Process Nyquist curve

(b) Geometrical illustration of Eq. (1.25)

FIGURE 1.5 Nyquist curves of G(jω) and Gl(jω).

By analyzing the loop-transfer function in complex frequency domain
and substituting s = jω and jλ = ej

λπ
2 = (cos λπ2 + j sin λπ

2 ), Gl(jω) =
G(jω)C(jω) equation becomes

Gl(jω) =

(
Kp +

Ki

jλωλ

)
(A(ω) + jB(ω)) (1.26)

Gl(jω) =

(
Kp +Kiω

−λ cos
λπ

2
− jKiω

−λ sin
λπ

2

)
(A(ω) + jB(ω))

(1.27)
where A(ω) = Re[G(jω)] and B(ω) = Im[G(jω)]. Let’s define the func-
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tion

f(Kp,Ki, λ, ω) = Re[Gl(jω)]

= A(ω)(Kp +Kiω
−λ cos

λπ

2
) +B(ω)Kiω

−λ sin
λπ

2
(1.28)

Consider the point P on the Nyquist Curve. It can be observed, that the
tangent to the Nyquist curve at point P is parallel to the imaginary axis
yielding following three equations.

f(Kp,Ki, λ, ω) = − 1

Mr
, (1.29)

∂f

∂ω
(Kp,Ki, λ, ω) = 0 , (1.30)

∂f

∂λ
(Kp,Ki, λ, ω) = 0. (1.31)

By substituting (1.28) into above equations, respectively we get,

A(ω)(Kp +Kiω
−λ cos

λπ

2
) +B(ω)Kiω

−λ sin
λπ

2
= − 1

Mr
(1.32)

A′(ω)Kp +A′(ω)Kiω
−λ cos

λπ

2
+ ....

...A(ω)Ki(−λω−λ−1) cos
λπ

2
+B(ω)Ki(−λω−λ−1) sin

λπ

2
+B′(ω)Kiω

−λ sin
λπ

2
= 0

(1.33)

A(ω)Ki(−λω−λ−1 cos
λπ

2
− ω−λ sin

λπ

2

π

2
) + ....

...B(ω)Ki(−λω−λ−1 sin
λπ

2
+ ω−λ cos

λπ

2

π

2
) = 0

(1.34)

Hereinafter, ∂A
∂ω and ∂B

∂ω are denoted by A′(ω) and B′(ω) for simplicity.
For given ω, one set of values (Kp,Ki, λ) can be estimated from Eqs.(1.32-
1.34), which indicates a point in the (Kp,Ki, λ)-plane. Hence, the com-
plete region of the parameters can also be generated for 0 < ω < ∞.
Obviously, any arbitrary set will satisfy the condition in (1.29).

The problem of finding (Kp,Ki, λ), hence can be considered as trade
off between performance and robustness satisfying condition (1.25) on
Mr. For this, we need to know the optimal point of frequency ω. The
well known integral error cab be used to find an optimal set of (Kp,Ki, λ).

IE =

∞∫
0

e(t)dt. (1.35)
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Here, e(t) is the error caused by a unit step disturbance at the process
input. Åström and Hägglund (31) has discussed that the value of IE is
directly related to the controller parameters. Suppose the disturbance
is applied at the process input, then the change in the control signal is
equal to the change in the disturbance and the relation is established
as IE = 1/Ki. The problem hence can be redefined as to find a set of
(Kp,Ki, λ) such as to satisfy (1.29), (1.30) and (1.31) and to maximize
Ki. The expressions (1.32-1.34) define subtly Ki as a function of Kp

and λ. To calculate the maximum of this function we devise a derivative
function as

df =
∂f

∂Kp
dKp +

∂f

∂Ki
dKi +

∂f

∂λ
dλ+

∂f

∂ω
dω (1.36)

At a local extremum point where Ki is maximum, one can take dKi = 0.
Also, we get for arbitrary variations of dKp

∂f

∂Kp
(Kp,Ki, λ, ω) = 0. (1.37)

Use of (1.28) into (1.37), results into

A(ω) = 0 . (1.38)

It reveals that f is maximum at a particular frequency where the real
part of the system transfer function is zero. We define this frequency as
the local extremum point, ω = ω90. Substituting (1.38) into (1.32-1.34),
we obtain the following three expressions,

Kp =
1

MrA′(ω90)

[
B′(ω90)

B(ω90)
− λ

ω90
+
A′(ω90)

B(ω90)

cos λπ2
sin λπ

2

]
(1.39)

Ki = − ωλ90
MrB(ω90) sin λπ

2

(1.40)

ω90 = f(λ), where f(λ) =
2λ

π
tan

λπ

2
(1.41)

Two expressions (1.39) and (1.40) are explicit formulas. Additionally,
it is desirable to relate third controller parameter λ in terms of measured
system frequency ω90. In this context, different interpolating functions
have been considered (32), by taking into account the aim of providing
an explicit formula to tuning rule. By analyzing the equation (1.41) for
various values of λ, λ ∈ (0, 1), following interpolating equation fits the
data well

λ = xe−ω90 + y; where (1.42)
(x, y) =(−0.18, 1.10) if ω90 < 1

=(−0.28, 0.98) if ω90 ≥ 1.
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FIGURE 1.6 Measured ω90 of G(jω) from Nyquist plot.

The above expression calculates tuning parameter λ. Practically, ω90

is obtained from the Nyquist plot of the frequency response of G(jω), i.e.
G(jω)|ω=ω90

= −jB(ω90), as shown in Fig. 1.6.

1.5.2 Choice of Mr

The choice of Mr gives a closed-loop system with the desirable property
of being insensitive to system uncertainties. The controller parameters
will vary depending on the changes of Mr but the system will always
remain stable. To understand this point further, let us take any transfer
function system which has ω90 = 1.1624 from the frequency response of
G1(jω). Following the presented tuning method, Nyquist diagrams of
GL(jω) in the range of 1.4 < Mr < 3.2 are plotted in Fig. 1.7, and
the corresponding system responses for the different FOPI settings are
illustrated in Fig. 1.8. Responses obtained with Mr >= 2.0 show little
or no overshoot. Whereas response obtained with Mr = 1.5 gives faster
response, oscillatory with a larger overshoot. This indicates that the Mr

value is a suitable tuning parameter. Note that Mr value is also to be
decided based on the stability margin of the control system. Since Mr

is the inverse of maximum of absolute real part of loop transfer function
GL(jω), a large value indicates that the stability margin of the control
system is large. This is normally desirable in system control at the time
to design any controller values.

1.5.3 Tuning steps

Given the plant G(s) or G(jω), the FOPI parameters can be tuned to
meet the robustness specification Mr as summarized in Table 1.3.
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FIGURE 1.7 Nyquist curves of GL(jω) for various Mr.

(a)

(b)

FIGURE 1.8 Outputs and Inputs for G1 with different Mr and FOPI settings.

1.5.4 FOPI2 settings

Upon simulation on linearized model, we assumed the robustness speci-
fication Mr = 2 for all controllers design in this study. Following tuning
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TABLE 1.3 Summary of the tuning method

Step 1: Obtain the plant frequency ω90 from G(jω).
Step 2: Choose suitable value of Mr which gives

desirable property of the closed-loop system.
Step 3: Calculate λ from (1.42).
Step 4: Calculate Kp and Ki from (1.39) and (1.40).

method depicted in above we obtained FOPI controller values for two
various load torque, 2 Nm and 4 Nm, respectively. The final tuned values
are shown in Table 1.4.

TABLE 1.4 FOPI2 controller settings

Torque Kp Ki λ FOPI
2 Nm 49.2 6553.3 0.98 q-axis current control

1.7 60.3 0.98 speed control
1.9 65.7 0.98 d-axis current control

4 Nm 49.2 6553.1 0.98 q-axis current control
1.6 58.2 0.98 speed control
1.8 65.8 0.98 d-axis current control

1.6 DESIGN OF OUSTALOUP’S FILTER

Actually, the PIλ fractional-order controller itself is an infinite-dimensional
linear filter due to the fractional-order integrator λ. A band-limit imple-
mentation is important in practice. Finite dimensional approximation
method used here is the Oustaloup recursive algorithm (33). For FOPI1,
Bode plot frequency response is shown in Fig 1.9 and for the second con-
troller FOPI2 it is shown in Fig 1.10. The respective gain crossover fre-
quency and the phase margin is also mentioned along with the diagrams.
From Fig 1.9, we can see that the gain crossover frequency and the phase
margin specifications for design of FOPI1 are met. Also, from Fig 1.10,
it is clear that, the specification for Mr of FOPI2 design is achieved.

1.7 COMPARATIVE ANALYSIS OF DESIGN METHODS

The main objective of the chapter is to present a detailed design proce-
dure for fractional-order PI controller for PMSM motor. There are var-
ious ways reported in the literature for designing the controllers. FOPI
controller is designed using two different approaches based on frequency
domain method. First is FOPI1, which is intersection method and the
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FIGURE 1.9 Bode plot frequency response for FOPI1.(ωc=358 rad/s and
PM=60 deg).
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FIGURE 1.10 Bode plot frequency response for FOPI2.(ωc=766 rad/s and
PM=86 deg).

second is FOPI2, which is using robustness index. These controllers are
designed using linearised model of PMSM for the same operating point
and for the same specifications of the motor.

Each controller design includes three different FOPI controllers for
PMSM motor, as it is a vector controlled drive. For testing of these con-
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trollers, non-linear model of PMSM is simulated using MATLAB and
FOMCON. The design is repeated for another steady-state operating
point and tested with PMSM motor.

The comparative analysis of the results show that the performance
with the design using robustness index is improved than with the intersec-
tion method, but at the same time, control efforts required for intersection
method is lesser as compared with the previous method.

1.8 SIMULATION RESULTS AND DISCUSSION

The non-linear model of vector control of PMSM is simulated using MAT-
LAB simulink (34).
FOPI controller is designed using two different methods; FOPI1 and
FOPI2. These controllers are implemented and tested using non-linear
model of PMSM. Comparative results for speed FOPI1 and FOPI2 con-
trollers are shown below.

These two Controllers are designed for two different values for load
torque. As load torque changes, operating steady-state value for q-axis
current changes. Q-axis current Iqo is 4 Amp which is the phase current
for 2 Nm torque and the same will be changed to 7.5 Amp for 4 Nm load
torque. In both of these cases, speed ωro is 314.15 rad/sec will be same
as it is the rated electrical speed. D-axis current Ido will also be zero in
both the cases as it is selected for the maximum torque condition. Load
torque is applied at 0.2 sec. Comparative simulation results for Iqo, 4
Amp are shown in Fig 1.11.

The control efforts for both of these FOPI controllers are as shown in
Fig 1.12.

Comparative simulation results for Iqo, 7.5 Amp are shown in Fig 1.13.
The control efforts for both of these FOPI controllers are as shown in

Fig 1.14.
In order to compare the dynamic performances with the FOPI1 and

FOPI2 controllers clearly, Table 1.5 lists the main performance indicators:
rise time tr, overshoot Ov% and regulating time ts (steady-state value
within 2%). From the table, it is clear that, the performance of FOPI2
is better than FOPI1, but FOPI1 requires lesser control efforts. From
obtained values it is clear that the performance of FOPI2 is better than
FOPI1 with little expense of control input variation.

We test the performance of the system and tabulate the results which
are given in 1.5,
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FIGURE 1.11 Step Response of Speed Controller. Iqo = 4 A.
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FIGURE 1.12 Control signals for both speed controllers. Iqo = 4 A.

1.9 CONCLUSION

Designing a controller for a non-linear systems is very challenging task.
Fractional-order PI controller offer number of advantages and more degree
of freedom over integer-order PI controller. In this work, FOPI design is
presented using two different frequency domain methods which are based
on linearised model of PMSMmotor. First method FOPI1, using intersec-
tion method is based on Bode plot and the other FOPI2, using robustness
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FIGURE 1.13 Step Response of Speed Controller. Iqo = 7.5 A.
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FIGURE 1.14 Control signals for both speed controllers. Iqo = 7.5 A.

index which is based on Nyquist plots.

Both of these controllers are designed for three FOPI controllers for
vector controlled PMSM motor. They are tested on actual non-linear
simulated model of PMSM motor. The results show that the performance
is better with design using robustness index than compared with design
using intersection method with a little increase in control efforts.
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TABLE 1.5 Performance Indicators of PMSM drive

Iqo 4 A for 2 Nm 7.5 A for 4 Nm
Parameters FOPI1 FOPI2 FOPI1 FOPI2
Rise time (tr) in sec 0.0059 0.0058 0.0059 0.0058
Settling time (ts) in sec 0.1128 0.0275 0.1150 0.0275
Overshoot (Ov) in % 59.65 52.47 60.48 52.17
Control efforts (‖u‖) 3.28X104 4.86X104 3.34X104 4.58X104
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