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Environmental context. Pollution of the aquatic environment by drugs results not only during their manufac-
ture, but also from the excretion of drug residues and the discharge of expired drugs by households and hospitals.
The transformation of ciprofloxacin, one of the leading antibiotic drugs, in the presence of surfactants has been
investigated. The results provide a better understanding of how ciprofloxacin degrades in aquatic environments
by considering the effect of omnipresent surfactants.

Abstract. The kinetics of the oxidative transformation, i.e. oxidative degradation, of ciprofloxacin (CIP) by chloramine-
T (CAT) in cationic and anionicmicellemedia during thewater chlorination processwas studied spectrophotometrically at

275 nm and 298 K. The influence of added salts (1–10 � 10�4 mol dm�3) and solvent polarity of the medium on the
reaction was studied. The orders with respect to substrate CIP and oxidant CAT were found to be first order in each. The
variation of acid concentrations showed opposite effects in cationic and anionic micellar aggregates. Liquid chromatog-

raphy–electrospray ionisation mass spectrometry was used to identify degradation products of CIP, which confirmed the
full dealkylation of the piperazine ring in CIP as themajor product. The piperazinemoiety of CIP is the principal active site
for the CAT during oxidation. Activation parameters for the CIP degradation in cationic and anionic micelles were

evaluated by studying the reaction at different temperatures, which lent further support to the proposed degradation
mechanism for CIP. The rate constants were evaluated to confirm the micellar effect from incorporating sodium dodecyl
sulfate and cetyltrimethylammonium bromide in the reaction mixture and the intrinsic reactivity constants were

determined in the aqueous as well as in the micellar pseudo-phases as 4.85 and 0.0083.
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Introduction

One of the primary tasks of environmental chemistry has been

detection, determination and fate studies of pharmaceuticals and
organic compounds in different compartments of the environ-
ment, particularly in water ecosystems where analytical che-
mists have played an important role in developing procedures

for determination or degradation of a wide spectrum of chemical
species including toxicants and species of biological interest in
complex samples.[1–6] The persistence of different drugs in the

aqueous environment results from their manufacturing by
pharmaceutical industries to consumption by humans and
excretion of drug residues, and discharge of large quantities of

expired drugs by households as well as hospitals.[3,7,8] Therefore,
the use of large amounts of antibiotics, hormones, analgesic,

sedative drugs, and different disinfectants preparations as well as
difficulty in their complete inactivation in water treatment has

been a serious problem.[3,9] The use of water polluted with
pharmaceutical residues and their metabolites disturbs balance in
the body and enhances dangerous resistance to drugs, creating
serious problems for human health.[10] Some review articles have

been published dealing with environmental and analytical pro-
blems related to pharmaceutical residues.[3,11,12]

Micellar catalysis is an invention in the field of chemical

kinetics. Thus, surfactants and their properties have received
considerable attention in the last few decades.[13,14] Apart from
their other specific properties, the ability of surfactants to affect

the rates of chemical reactions has become of interest as they
play a role of catalyst in various physical processes as well as in
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organic, biochemical and physiological reactions. During the

oxidation of a substrate, the surfactant plays an important role in
the reaction pathway in acidic as well as basic media[14–17]

because micelles are effective catalysts for a wide range of
organic reactions.[15–17] An overview of several extensive

monitoring programs on the determination of various classes
of surfactants in raw and treated waste water revealed that
95–98% surfactant load removal can be achieved during con-

ventional water treatment processes, leaving the rest either in
their active forms or inmetabolite forms that are more toxic than
the parent compounds.[18–26] Release of sewage effluent into

natural water reservoirs and sludge clearance onto soil cause
contamination because surfactants as well as pharmaceuticals
are the major contaminants reaching the water compartment of
the environment. Thus, to reduce the concentration of surfac-

tants, pharmaceuticals and their metabolites in waste-water
effluents, some researchers have reported advanced oxidation
processes (AOPs), especially for the removal of pharmaceutical

from waste water.[27–34] However, to date, there are not many
reports on the effect of surfactants on the oxidative transforma-
tions of pharmaceuticals, except where we have reported the

influence of cationic[34] and anionic surfactants[35] on the
oxidative transformation of norfloxacin.

With increased surfactant concentrations in aquatic systems,

the chemical and physical properties of the solution change
abruptly over a range up to the critical micelle concentration
(CMC). After the achievement of CMC, micelles or aggregates
tend to form in the solution, where the rates of various reactions

are affected by the micelles formed from surfactants.[4,17] Thus,
the kinetics of a bimolecular reaction between a neutral substrate
and a charged reagent are usually strongly modified in aqueous

solutions by the presence of micellar aggregates of ionic
surfactants.[20–22,36–40] Therefore, the phenomenon of ‘micellar
catalysis’ has been investigated by many researchers for several

systems.[21,22,34–40]

The drug ciprofloxacin (cyclopropyl-6-fluoro-1,4-dihydro-4-
oxo-7-(piperazinyl)-quinolone-3-carboxylic acid) (CIP) is one of
the leading fluoroquinolones used in hospitals, where they make

their way into the different environmental compartments because
there is no regulation of concentration limits of such compounds.
The structure of CIP, which has piperazine and pyridone moie-

ties, is shown in Fig. 1. Few researchers have reported the
oxidation of CIP by different oxidants.[41–46] However, a review
of the literature revealed that none of the investigations consid-

ered the influence of surfactants on the degradation of CIP that
has reached the aquatic environment, whereas the presence and
simultaneous accumulation of surfactants have widely been

reported.[33,34] Therefore, the present study was undertaken to
elucidate the effect of surfactants on the oxidative transformation
of the pharmaceutical CIP in an aqueous environment. Thus, in
continuation of our studies,[34,35] the current report is on the study

of kinetic aspects of the oxidative transformation of CIP by the

commonly used disinfectant chloramine-T i.e. N-chloro-p-tolue-

nesulfonamide (CAT) under the influence of cationic cetyltri-
methylammonium bromide (CTAB) and anionic sodium dodecyl
sulfate (SDS) micelle media.

Experimental

Materials

Analytical grade reagents were used without further purifica-
tion. All the solutions were prepared using triple-distilled water.
The CIP (Sigma–Aldrich) stock solution was prepared by dis-
solving a known amount of its hydrochloride salt and was stored

in amber-coloured bottles to prevent any photochemical reac-
tions. To recrystallise CTAB (Merck), it was dissolved in
minimum quantity of lukewarm methanol (MeOH) at ,40 8C.

Diethyl ether (Et2O)was then addedwith constant stirring until a
permanent white precipitate was obtained. The content was
cooled to room temperature and placed in the refrigerator for

further cooling. The crystalline white solid obtained was filtered
in a Buchner funnel. Finally, the crystals were washed with
excess cold ether and air-dried for further use. SDS (Sigma) was

used as received, without further purification.

Kinetic measurement

All reactant solutions were placed in a thermostatic water bath

for 30 min in order to attain a temperature of 298.0� 0.2 K. The
kinetics of the reaction were studied by taking the requisite
amounts of CIP, surfactant, acid (H2SO4 with CTAB, and

HClO4 with SDS) and CAT in a black-coated reaction vessel
that was kept in the thermostatic water bath at 298� 0.2 K. The
reaction initiation time was taken as the time when half of

the required volume of thermally equilibrated CATwas added to
the reaction system. The kinetics of the reaction were followed
spectrophotometrically at 275 nm by measuring the absorbance

(A), at constant intervals of time, on a Varian Cary 50 Bio
UV-vis spectrophotometer (Systronics, India), using a 10-mm
quartz cuvette, and under pseudo-first order conditions where
[CIP] ,, [CAT]. The slope of log kobs v. log(concentration)

(where kobs is the observed rate constant), while keeping all
other concentrations and conditions constant, gave the reaction
order with respect to the particular reagent. The experiments

were carried out in duplicate and the rate constantswere found to
be reproducible and well within 4% error.

The spectral changes occurring during a typical kinetic run at

each minute for the oxidation of CIP by CAT in CTAB and SDS
micelle media were recorded in the region of 220 to 360 nm and
are shown in Fig. 2a, b, respectively. There is a continuous
decrease of absorbance at 275 nm, which clearly indicates the

disappearance of CIP with the progress of the reaction.

Determination of CMC

The determination of CMC values is important in understanding

the self-organising activities of the surfactants. In the presence
of the reactants at the required temperature, the CMCs of the
surfactants, CTAB and SDS were evaluated conductometrically

by measuring the conductivity with a Systronics 304 con-
ductometer (Alpha Scientific Works, Bhilai (CG), India) at
298.0 � 0.2 K.

Stoichiometry and product analysis

The stoichiometry of the reaction, with a large excess of CIP at
298 K, was determined by estimating unreacted CIP, which
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Fig. 1. Structure of CIP showing pyridine and piperazine moieties.
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revealed that the oxidation of each mole of CIP requires two

moles of CAT. For the identification of the oxidation products of
CIP, excess CAT over CIP was reacted in H2SO4 media.
p-Toluenesulfonamide (PTS), the reduced product of the oxi-
dant CAT, was visualised by thin-layer chromatography

(TLC).[47] The main oxidation product of CIP has complete
dealkylation of the piperazine ring, leading to formation of
the –NH2 product. The products isolated were confirmed by gas

chromatography–mass spectrometry (GC-MS) analysis. The
products were extracted with diethyl ether, with slow evapora-
tion of the ether layer for concentration before analysing with

GC-MS (Jeol-JMS, Mate-MS system, Nagoya, Japan). The
illustration of liquid chromatography–electrospray ionisation
mass spectrometry (LC-ESI-MS-MS) spectrum (Fig. 3) of the

oxidation products of CIP showed the presence of products with
molecular ions at m/z 364 (5%), 351 (10%), 295 (15%), 263
(55%) and 193 (40%). The molecular ion of CIP ism/z 330;m/z
351 corresponds to the N-oxide product whereas m/z 364 cor-

responds to the [Mþ 35]þ product (C17H18FN3O5) with respect
to CIP.[48] The product with a fully dealkylated piperazine ring
was identified as the major product, corresponding to m/z 263

(the –NH2 product), and had the highest intensity. This has also
been identified previously as photodegradation product[47,49]

and an oxidation product[48,50] of CIP. The peak at m/z 295 may

correspond to the chlorinated product of the fully dealkylated
product (i.e. m/z 263). The oxidation product of CIP was also
characterised by Fourier-transform infrared (FT-IR) spectral
studies (KBr) showing absorbances at 1560m (–NH2), 1621s

(C=O), 3059s (=NH), 3500s (–OH) cm�1, where s is strong and
m is medium. On the basis of stoichiometric and product anal-
ysis, the formulated stoichiometric equation for the reaction

between CIP and CAT is given in Scheme 1.

Results and discussion

Reaction–time curve

The slope of the plot of log A v. time (min) gave the pseudo-first

order rate constants (Fig. S1) where kinetic plots were linear for
more than four half-lives when A is taken up to 80% completion
of the reaction. The reaction time plots of CIP oxidation at

various CAT concentrations in the presence of cationic (CTAB)
and anionic (SDS) surfactants were found to be linear (Fig. S2).
The linearity of the plots clearly indicates that the oxidation
kinetics proceed at a consistent rate. For several reaction runs

with [CIP] , [CAT], the unreacted CIP was determined spec-
trophotometrically by measuring the decrease in the absorbance
of CIP at 275 nm. The rate constants of the reactions in each

kinetic run were determined from the slope of the tangent in
plots of log A against time.

Influence of [CIP]

The order with respect to [CIP] was determined by studying the

kinetics of the reaction at different [CIP] in the presence of 0.6–
2.5 � 10�5 mol dm�3 CTAB and 0.05–3.5 � 10�5 mol dm�3

SDS while keeping other reagent concentrations fixed. The rate

constants were dependent on initial [CIP], confirming first order
with respect to CIP. Fig. 4 shows the plot of the rate of the
reaction against [CIP], based on which the rate dependence can
be given by the following equation: –d[CIP]/dt (reaction

rate) ¼ kobs[CIP], where t is time.

Influence of oxidant [CAT]

The effect of [CAT] on the reaction rate was studied by varying

its concentration over different ranges. The order of reaction
with respect to CATwas confirmed by varying its concentration
from 1 to 10 � 10�4 mol dm�3 when studied in the presence of

CTAB or 2–12 � 10�4 mol dm�3 in the presence of SDS,
keeping other reaction variables constant. It was observed that
the decrease in absorbance (reaction rate) after 2 min was quite

slow, which indicated the retardation effect of the products
formed, i.e. the rate of oxidation is influenced by the products
formed during the reaction. As shown in Fig. 5, the plot of log
(reaction rate) v. log [CAT] in cationic (CTAB) as well as

anionic (SDS) micelles increases with increasing [CAT] at
lower concentrations, i.e. it shows first-order dependence on
CAT but tends towards zero order at higher concentrations. It is

well documented that CAT undergoes a two-electron change in
its reactions, forming PTS and sodium chloride.[50]

Effect of acid concentration

To observe the effect of [acid] on the rate constant, in the case of
the CTAB-catalysed reaction, [H2SO4] was varied in the range
1–10� 10�4 mol dm�3. The reaction rate was found to decrease

with increase in [H2SO4]. In the case of the SDS-catalysed
reaction, [HClO4]was also varied from1 to 10� 10�4mol dm�3

but the rate constant was found to increase at initial concentra-
tions while achieving a constant value at higher concentrations.

The effect of [HClO4] shows that the oxidation of CIP proceeds
through the adsorption of Hþ and reactants (CIP and CAT) on
the surface of SDS (Fig. S3).

Influence of additives

To judge the effect of additives on the oxidative transformation
of CIP, different kinetic runs in the presence of varying con-
centrations of [acetic acid], [PTS], [HCOONa], [KCl], [KNO3]
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Fig. 2. Spectral changes at 1-min intervals under the influence of
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and [K2SO4] were performed in cationic micellar media with

CTAB. The results (kobs) presented in Table 1 clearly show that
the rate of reaction had no influence from [acetic acid] variation
and had negligible effect from the variation of salts, [HSO4Na],

[KCl] and [KNO3]. However, the rate constant (kobs), i.e. reac-
tion rate, increases with increasing [K2SO4] as shown in Table 1.
The enhancement of the micellar catalysis rate by added elec-

trolytes is caused by their changing shape or reducing the charge
density on the micelles. Electrolytes decrease the CMC and
increase the aggregation number of ionic micelles,[51] which
may be owing to the increased screening by counter-ions and

thereby decrease in the effective charge density of the micelle.
The observed rate constant steadily decreased with increasing
concentrations of PTS, which is the reduced product of the

oxidant CAT, and the same is shown in Table 1 (Fig. S4).
The influence of the concentrations of various additives on

the oxidative transformation of CIP by CAT in presence of

anionic-micelle SDS was also studied by varying their concen-
trations and the results are presented in Table 2. As in case of
CTAB, all the additives do not have any pronounced effect

except PTS (Table 2). In an anionic micelle (SDS), increasing
[PTS] from 1 to 10� 10�4mol dm�3 in the reactionmixture also

caused a decrease in the reaction rate. The plot of kobs v. [PTS]

shows a fractional slope (�0.331), indicating PTS involvement
in a fast pre-equilibrium to the rate-determining step (Fig. S5).
The effect of the ionic strength of the mediumwas studied using

KNO3 and no noteworthy effect was observed on the reaction
rate (Table 2). Also, there was no pronounced effect on the
reaction rate, i.e. kobs, due to the decrease in dielectric constant
of themedium that was achieved by increasing addition of acetic

acid to the reaction mixture (Table 2).

Effects of surfactants

The conductometer was calibrated with 0.01 M KCl solutions.
The breakpoint of the near-straight line in the plots of equivalent
(specific) conductivity v. [surfactant] gave the CMC values
(Fig. 6) that are indicative of micelle formation (Fig. S6 and

Table S1).
The typical profile of the pseudo-first order rate constants,

kobs, as a function of the concentration of the surfactants (CTAB

and SDS) for the oxidation of CIP at 298 K in aqueous acidic
solutions has been studied. The experimental rate profiles
obtained are characteristics of micellar-catalysed reactions in

aqueous solutions in the presence of both the surfactants CTAB
and SDS. The addition of CTAB and SDS to the reaction media
caused an increase in the rate of oxidation up to a point where
there was total incorporation of the substrate (CIP) in the

micellar phase. Subsequent addition of the surfactant caused a
decrease in the reaction rate, probably due to the dilution of the
reactive counter-ions in the Stern layer of a higher number of

micelles. There is a well-defined maximum in the rate profile at
4.5� 10�4 mol dm�3 for CTAB and at 4.0� 10�3 mol dm�3 for
SDS. Both the surfactants (cationic CTAB and anionic SDS)

increase the reaction rate despite being opposite in nature. It may
well be confirmed by the study of the effect of increasing acid
(H2SO4 and HClO4) concentrations (inset in Fig. S7).

Influence of temperature and activation parameters

To calculate activation parameters, the effect of temperature on
the reactions between CIP and CAT in the absence and presence
of CTAB and SDS was studied in the 298–313 K range. The

enthalpy of activation (DHz) and entropy of activation (DSz)
were calculated using the linear form of the Eyring equation
(Eqn 1) where a plot of ln(kobs/T) v. 1/T produced a straight line

(T is absolute temperature)[52] while Gibbs free energy of acti-
vation (DGz) was calculated using Eqn 2. Energy of activation
(DEa) was calculated using the Arrhenius equation, where the

slope of the straight-line plot of log kobs v. log k gave the value of
the activation energy, Ea. The calculated activation parameters
for the oxidative transformation of the drug CIP in the presence

and absence of the CTAB and SDS micelles are shown in
Table 3.

ln
kobs

T
¼ �DHz

R

1

T
þ ln

kB

h
þ DSz

R
ð1Þ

DGz ¼ DHz � TDSz ð2Þ

Nearly the same values of DGz in pure aqueous medium and
in the presence of surfactants (CTAB and SDS) indicate that a

similar mechanism is followed in both media. The large
decrease in DSz in case of CTAB is suggestive of the formation
of a more ordered activated complex in surfactant media.[53–56]

However, the positive values of DGz and DHz indicate that the
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Fig. 4. The effect of the variation of substrate concentration, i.e. [CIP],

(ciprofloxacin) on the rate of the reaction (dc/dt) in the presence of

(a) cetyltrimethylammonium bromide (CTAB) (reaction conditions:

[H2SO4] ¼ 2.0 � 10�4 mol dm�3, [CAT] ¼ 2.0 � 10�4 mol dm�3,

[CTAB] ¼ 10.0 � 10�4 mol dm�3 at T ¼ 298.0 � 0.2 K) and (b) sodium

dodecyl sulfate (SDS) (reaction conditions: [HClO4]¼ 4.0� 10�4mol dm�3,

[CAT] ¼ 2.0 � 10�4 mol dm�3, [SDS] ¼ 10.0 � 10�3 mol dm�3 at

T ¼ 298.0 � 0.2 K) (CAT, chloramine-T). c, concentration.
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transition state formed is highly solvated.[53,54] A large negative
value of DSz (Table 3) clearly indicates the associative mechan-

isms in the presence of surfactants where an inner-sphere
mechanism for binding of reactants in the transition state takes
place.[55–57]

Reactive species of CAT

The possibility of existence of free radicals in the reaction
mixture and their interference was investigated by adding

acrylonitrile to the reaction mixture and leaving it in an inert
atmosphere for 24 h. No precipitate was observed on diluting the
reaction mixture with methanol, confirming that free radicals

were not involved in the reaction.[58]

CAT acts as a mild oxidant in both acidic and alkaline media
and undergoes a two-electron change in its reactions, forming

the reduced products PTS (p-CH3C6H4SO2NH2, represented as
TsNH2) and sodium chloride.[52] Therefore, depending on the
pH of the reaction medium, CAT provides different forms of

reactive species.[59–61] Various probable chlorinating, i.e. oxi-
dising, species (TsNHCl, TsNCl2 (dichloramine-T), HOCl and
TsNH2Cl

þ or (H2OCl)
þ) of CAT exist in acidic media.[62] To

confirm the identity of the CAT reactive species, a close look at
the influence of acid and [PTS] on the rate of reaction was
essential. TsNCl2 is the reactive species in the oxidation of CIP

because the reaction is not second order with respect to [CAT]
and TsNH2 does not have a negative effect. Experimental

Table 1. Effects of additives on reaction rate, i.e. kobs, in the presence of cetyltrimethylammonium bromide (CTAB)

Reaction conditions: T ¼ 298.0 � 0.2 K, [CAT] ¼ 2.0 � 10�4 mol dm�3, [CIP] ¼ 2.0 � 10�5 mol dm�3, [H2SO4] ¼ 2.0 � 10�4 mol dm�3 and

[CTAB] ¼ 10 � 10�4 mol dm�3

[Acetic acid] (%) kobs (�103 s�1) [HSO4Na] (�104mol dm�3) kobs (�103 s�1) [PTS] (�104 mol dm�3) kobs (�103 s�1)

5.0 0.10 1.0 1.68 1.0 1.62

2.0 1.45

10.0 0.10 3.0 1.65 3.0 1.21

4.0 0.89

20.0 0.10 6.0 1.66 5.0 0.69

6.0 0.47

30.0 0.10 10.0 1.62 10.0 0.25

[KNO3] (�104 mol dm�3) kobs (�103 s�1) [KCl] (�104 mol dm�3) kobs (�103 s�1) [K2SO4] (�104mol dm�3) kobs (�103 s�1)

1.0 1.66 1.0 1.61 1.0 1.69

2.0 1.67 2.0 1.55 2.0 1.70

3.0 1.64 3.0 1.49 3.0 1.88

4.0 1.66 4.0 1.31 4.0 2.18

5.0 1.66 5.0 1.37 6.0 2.62

6.0 1.65 6.0 1.38 8.0 3.19

8.0 1.64 8.0 1.38 10 3.71

10.0 1.63 10.0 1.32

5.0 5.2 5.4 5.6 5.8 6.0
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Fig. 5. Effect of [CAT] (chloramine-T) on reaction rate (dc/dt) in the presence of (a) cetyltrimethylammoniumbromide (CTAB)

(under reaction conditions: [CIP]¼ 2.0� 10�5 mol dm�3, [H2SO4]¼ 2.0� 10�4 mol dm�3, [CTAB]¼ 10.0� 10�4 mol dm�3)

and (b) sodium dodecyl sulfate (SDS) (under the reaction conditions: [CIP] ¼ 2.0 � 10�5 mol dm�3, [HClO4] ¼
4.0 � 10�4 mol dm�3, [CAT] ¼ 2.0 � 10�4 mol dm�3, [SDS] ¼ 10.0 � 10�3 mol dm�3) at T ¼ 298.0 � 0.2 K (CIP,

ciprofloxacin). c, concentration.
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observation has shown first order dependence on [CAT]. As

there is no effect of acid, i.e. [Hþ], on the reaction rate, so
TsNH2Cl

þ cannot be taken to be the reactive species. Thus,
HOCl may be taken as the reactive species in the oxidative
transformation of CIP.[59–61]

Rate law and proposed mechanism

The studies on the influence of the reaction variables, other
experimental observations and the proposed reaction in
Scheme 1 reported above lead us to propose the rate laws for the

oxidative transformation of CIP in the absence and presence of
the surfactants CTAB and SDS separately.

Oxidative transformation of CIP in absence of surfactant

The mechanism of the oxidative transformation of CIP by

CAT in absence of surfactants is given in Eqns 3–5 where Ts
stands for p-CH3C6H4SO2,K1 andK2 are equilibrium constants
and kw represents the rate constant in the aqueous pseudo-

phase.

TsNHClþ H2O Ð
K1

TsNH2 þ HOCl ð3Þ

HOClþ CIP Ð
K2

X� þ Hþ ð4Þ

X� �!kw Product ð5Þ

On the basis of Eqns 3–5, it can be proposed that the electron
flow during oxidation of CIP by CAT is in accordance with

electrophilic attack by the oxidant resulting in the formation of
an intermediate X�, which slowly gets converted into product.
Considering the conversion of X� into product, the rate of the

reaction is given by Eqn 6.

Rate of reaction ¼ � d½CIP�
dt

¼ kw½X�� ð6Þ

During the course of the oxidative transformation, the total

concentration of CIP, i.e. [CIP]T, is given by Eqn 9, which is
derived with the help of Eqns 7 and 8.
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Fig. 6. Plots of specific conductivity versus surfactant concentrations for determination of criticalmicelle concentration (CMC) values under

the experimental conditions given in Tables 1 and 2 for CTAB and SDS respectively.

Table 2. Effects of additives on reaction rate in the presence of sodium dodecyl sulfate (SDS)

Reaction conditions: T ¼ 298.0 � 0.2 K, [CAT] ¼ 3.0 � 10�4 mol dm�3, [CIP] ¼ 3.0 � 10�5 mol dm�3, [HClO4] ¼ 4.0 � 10�4 mol dm�3 and

[SDS] ¼ 10 � 10�3 mol dm�3

[Acetic acid] (%) kobs (�103 s�1) [HSO4Na] (�104mol dm�3) kobs (�103 s�1) [PTS] (�104mol dm�3) kobs (�103 s�1)

5.0 1.97 1.0 1.97 1.0 1.95

10.0 1.95 2.0 1.89 2.0 1.54

20.0 1.97 4.0 1.58 4.0 1.09

30.0 1.92 6.0 1.46 6.0 0.83

8.0 1.39 8.0 0.56

10.0 1.36 10.0 0.45

[KNO3] (�104mol dm�3) kobs (�103 s�1) [KCl] (�104mol dm�3) kobs (�103 s�1) [K2SO4] (�104mol dm�3) kobs (�103 s�1)

1.0 1.96 1.0 1.99 1.0 1.95

2.0 1.99 2.0 1.99 2.0 1.96

3.0 2.01 3.0 2.04 4.0 1.97

4.0 2.04 4.0 2.07 6.0 1.96

5.0 2.07 5.0 2.09 8.0 1.97

6.0 2.11 6.0 2.12 10.0 1.96

8.0 2.11 10.0

10.0 2.11
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½CIP�T ¼ ½CIP� þ ½X�� ð7Þ

½CIP�T ¼ ½CIP� þ K1K2½TsNHCl�½CIP�
½TsNH2�½Hþ� ð8Þ

½CIP�T ¼ ½CIP� 1þ K1K2½TsNHCl�
½TsNH2�½Hþ�

� �
ð9Þ

Mathematical manipulation of Eqns 6 and 9 gives Eqn 10,

which explained the observed kinetic order with respect to the
reactants very well.

Rate of reaction ¼ kwK1K2½TsNHCl�½CIP�T
½Hþ�½TsNH2� þ K1K2½TsNHCl�

ð10Þ

From Eqn 10, it can be concluded that the observed rate of
reaction depends on the concentration of the substrate CIP and
reactive species of oxidant. However, the rate of reaction is
inversely influenced by increasing acid concentration, [Hþ].

Oxidative transformation of CIP in presence of CTAB

Themechanismof the oxidative transformation ofCIPbyCAT

in the presence ofCTABis givenbyEqns 11–14whereKD,K3 and
K4 are equilibrium constants. Y� is an intermediate species
formed during the oxidation of CIP by CAT in the presence of
the surfactant CTAB, which slowly gives the final product. Dn

shows the number n of detergent molecules (D) that aggregate
with the substrate (S ¼ CIP) to form the critical micelle (DnS)
associated with the substrate CIP that reacts to yield the product.

Dn þ CIP Ð
KD

DnS ð11Þ

CATþ Hþ Ð
K3

CATHþ ð12Þ

CHATHþ þ DnSþ H2O Ð
K4

Y� þ PTSþ 2Hþ ð13Þ

Y� �!km
slow

Product ð14Þ

The rate constant in the micellar pseudo-phase is represented
by km and thus the rate of reaction in the presence of CTAB is
given by Eqn 15 whereas total concentration of CIP is given by

Eqn 16.

Rate of reaction ¼ � d½CIP�
dt

¼ km½Y�� ð15Þ

½CIP�T ¼ ½CIP� þ ½DnS� þ ½Y�� ð16Þ

Using the equilibria Eqns 11–13 and Eqns 14–16, the
following equation, Eqn 17, is obtained.

Rate of reaction ¼
kmKDK3K4½Dn�½CAT�½CIP�T

½Hþ�½PTS� þ KD½Dn�½Hþ�½PTS� þ KDK3K4½Dn�½CAT�
ð17Þ

The rate law deduced, i.e. Eqn 17, is in good agreement with
experimental observations for the degradation of CIP in pres-
ence of surfactant CTAB.

Oxidative transformation of CIP in presence of SDS

The mechanism of the oxidative transformation of CIP in the

presence of SDS using CAT as the oxidant is shown in Eqns 18–
21, where the rate of reaction is given by Eqn 22 and the total
concentration of CIP in Eqn 23. Dn is number of surfactant
(SDS) molecules and DnS is the micelle associated with the

substrate S, which is CIP.

Dn þ CIP Ð
KD

0

DnS ð18Þ

CATþ Hþ Ð
K5

CATH� ð19Þ

CATHþ þ DnS Ð
K6

Yþ PTS ð20Þ

Y �!km
slow

Product ð21Þ

Rate of reaction ¼ � d½CIP�
dt

¼ km½Y� ð22Þ

½CIP�T ¼ ½CIP� þ ½DnS� þ ½Y� ð23Þ

Here KD
0, K5 and K6 are equilibrium constants and Y is the

intermediate species, which slowly dissociates, leading to the
formation of the product. On the basis of equilibria Eqns 18–20

and Eqns 21–23, a rate of reaction (Eqn 24) has been obtained
that explains the experimental observations for the degradation
of CIP in the presence of the surfactant SDS.

Table 3. Comparative account of activation parameters for the oxidative transformation of the drug ciprofloxacin (CIP) in the

presence and absence of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) micelles

Reaction conditions: [CIP] ¼ 2.0 � 10�5 mol dm�3, [CAT] ¼ 2.0 � 10�4 mol dm�3, [CTAB] ¼ 10.0 � 10�4 mol dm�3,

[SDS] ¼ 10.0 � 10�3 mol dm�3 and T ¼ 298.0 � 0.2 K

Surfactant

used

DEa (kJmol�1) DSz (JK�1mol�1) DHz (kJmol�1) DGz (kJmol�1)

Aqueous

medium

Surfactant

medium

Aqueous

medium

Surfactant

medium

Aqueous

medium

Surfactant

medium

Aqueous

medium

Surfactant

medium

Without

surfactantA
34.96 – �60.21 – 32.42 – 17.98 –

In presence of [H2SO4]¼ 2.0� 10�4mol dm�3

CTAB 22.88 12.63 �116.98 �130.14 20.43 10.09 34.90 38.79

In presence of [HClO4]¼ 10.0� 10�3mol dm�3

SDS 40.38 28.89 �64.77 �93.32 37.87 26.38 19.34 27.84

AReaction mixture contained CIP þ CAT (chloramine-T) þ acid.
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Rate of reaction ¼
kmKD

0K3K4½Dn�½CAT�½CIP�T½Hþ�
½Hþ�½PTS� þ KD

0½Dn�½Hþ�½PTS� þ KD
0K3K4½Dn�½CAT�

ð24Þ

Model application to micelle-catalysed oxidative
transformation of CIP by CAT

To understand the catalytic activity of the micelles (CTAB and
SDS) in the oxidation of CIP by CAT in acidic medium, a series
of kinetic runs were performed in presence of varying [CTAB]
and [SDS] separately in the range of 0–12 � 10�4 mol dm�3

while keeping all other reaction variables constant. The
observed pseudo-first-order rate constants plotted against sur-
factant concentrations clearly show that with increased [CTAB]

and [SDS], the rate increases, attains a maximum and decreases
steadily. The [CTAB] and [SDS] at which the kobs value
becomesmaximum are taken as the CMCof the surfactants (Fig.

S7). Oversimplified two-dimensional schematic representation
of the concentration effect of micelles showing incorporation of
reactants into the Stern layer of anionic and cationic micelle
moieties are shown in the supplementary material (Fig. S8). The

catalysed oxidative transformation of CIP by CAT in the pres-
ence of micelles can be well explained by the pseudo-phase
kinetic model[62] (for CTAB) and Piszkiewicz’s model[63] (for

SDS).

Pseudo-phase kinetic model for CTAB-catalysed
oxidative transformation of CIP by CAT

The catalytic performance observed during oxidative trans-
formation of CIP by CTAB (Fig. S9) is well explained using the

pseudo-phase model of micelles,[62] which is in consensus with
reported bimolecular reactions.[62,64] For [CTAB] less than its
CMC, the rate constant stays almost constant because it is the
reaction only in water where concentrations of the two reactants

remain constant. For CTAB concentrations in which the mono-
mers start aggregating, the catalysis effect is observed as a
consequence of local reactive concentrations in the Stern layer.

Thus, kobs increases as the surfactant concentration increases
until it reaches a maximum value, i.e. the CMC. After the CMC,
the rate constant decreases owing to dilution of the reactants in

the micellar pseudo-phase. When [CTAB] increases, the num-
ber and size of the micelles also increases. This behaviour
suggests the use of the micellar pseudo-phase model, consider-

ing that the loci of reaction are both, i.e. in the aqueous pseudo-
phase as well as in the micellar pseudo-phase. The different
reactivities in the two pseudo-phases, i.e. aqueous pseudo-phase
and micellar pseudo-phase, are defined using the second-order

rate constants k2
w and k2

m respectively, as shown in Scheme 2.

The micelle concentration was calculated using the phase
separation concept and assuming that the unassociated surfac-
tant concentration remains constant above the CMC of the

surfactant CTAB. Thus, the surfactant concentration, i.e. [Dn],
is defined as the micellised surfactant concentration, as shown in
Eqn 25. Thus, CMC was determined in each case (aqueous and

micellar) experimentally because it depends on [CIP]. The
surfactant concentration, from which we observe a kinetic effect
on the reaction, was taken as the CMC in Eqn 25. According to
reactionScheme 2, theCIP is distributed between the twopseudo-

phases, in a balanced process. In other words, the CIP will be
considered as substrate, which is associated with the micellar
pseudo-phase with a constant K1 coincident with the CAT

association constant K2. These constants were calculated using
different experimental techniques involving Eqns 26–30.[64,65]

½Dn� ¼ ½CTAB� � CMC ð25Þ

K1 ¼
½CIP�m

½CIP�w½Dn�
ð26Þ

K2 ¼
½CAT�m

½CAT�w½Dn�
ð27Þ

The total CIP and CAT concentration is the sum of concen-
trations in each pseudo-phase as shown in Eqns 28 and 29. Thus,
based on Scheme 2 and according to the considerations above,

the observed rate constantmay be given byEqn 30whereV is the
partial molar volume of the interfacial region in the micellar
pseudo-phase, determined by Bunton as 0.14 dm3 mol�1.[62,66]

½CIP�total ¼ ½CIP�w þ ½CIP�m ð28Þ

½CAT�total ¼ ½CAT�w þ ½CAT�m ð29Þ

kobs ¼
kw2 þ km

2

V
K1K2½Dn�

1þ K1½Dn� þ K2½Dn�
½CIP�Total ð30Þ

The rate constant in the aqueous phase, k2
w, has been calcu-

lated kinetically.[64] To determine k2
w and kobs for the oxidation

of CIP by CAT in a cationic micelle moiety, the reaction was
studied in the absence of CTAB (which gave k2

w) and then in the
presence of CTAB (which gave kobs). The association constants
K1 and K2 have been determined with the Raghvan and Srini-

vasan model.[67] The rate constant in the micellar pseudo-phase,
k2
m, was calculated by putting the experimental data into Eqn 30.
Table 4 shows the results obtained for oxidative degradation of

CATm
�CIPm

k2
m

Products

Products

K1

CATwCIPw

Micellar pseudo-phase

Bulk water

�

k2
w

K2

Scheme 2. Reaction in aqueous and micellar pseudo phases with different reactivity.
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CIP. In the present investigation, we observe that there is a good
relationship between the experimental and theoretical values,
which predicts the micellar pseudo-phase model (Fig. S9).

Piszkiewicz’s model for SDS-catalysed oxidative
transformation of CIP by CAT

According to Piszkiewicz’s model,[63] the SDS-catalysed
oxidative transformation of CIP by CAT may be explained by
considering the concentration effect of the reactants on, or

around, the micellar surface. The higher rate found in SDS
could be attributed to the adsorption of CIP on the micellar
surface, which increases the local molarities of the complex in

the Stern layer. The SDS concentrates both CIP and CAT onto
the surface of micelles and brings the reactants into close
proximity, which increases the reaction rate. Both the reactants,

CIP and CAT, are fairly soluble in water; therefore, KD (the
binding constant) is evaluated by the kinetic method.[63] In the
presence of SDS, the binding constant was calculated by
Piszkiewicz’s approach.[63] The values of n (8.195 � 10�4)

and KD (–log KD ¼�8.574) were determined from the gradient
and intercept respectively of the straight line plot of log [(kobs –
kw)/(km – kobs)] v. log D with the help of Eqn 31 where n is the

index of cooperativity (Fig. S10). Applying Piszkiewicz’s
model, we obtained values of the binding constant, n, which
refer to the positive cooperativity of substrates with a micelle.

log
kobs � kw

km � kobs
¼ nlog ½D� � logKD ð31Þ

Conclusion

For the first time, the influence of cationic and anionic surfac-
tants on oxidative transformation of CIP using the mild oxidant
CAT have been investigated along with observations in aqueous

solution. Three main conclusions are drawn from the experi-
mental results. First, pH plays a significant role in both the
micelle media i.e. CTAB and SDS. Second, cationic as well as

anionic micelles influenced the rate of CIP transformation by
CAT in a similar way to that observed by the change in [acid] in
the reaction system. Third, applicability of the pseudo-phase

model to the kinetic data justifies the transformation influenced
by the cationic micelles well whereas the anionic micelle-
influenced transformation kinetic data fitted well in Piszkiewiz’s

model. The present investigation may widen the applicability of
CAT as a mild oxidant in various redox reactions.
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