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The characteristics of a reef-top boulder field created by a local submarine landslide tsunami are presented for the first time. Our 

examination of large reef-derived boulders deposited by the 1953 tsunami near Suva City, Fiji, revealed that shorter-than-

normal-period tsunami waves generated by submarine landslides can create a boulder field resembling a storm boulder field due 

to relatively short boulder transport distances. The boulder-inferred 1953 tsunami flow velocity is estimated at over 9 m s−1 at 

the reef edge. Subsequent events, for example Cyclone 

 
1. Introduction 

Coastal boulders transported by high-energy wave (HEW) events, such as 

storms and tsunamis, have been studied at various locations worldwide for 

approximating the magnitude and occurrences of past extreme wave events 

(e.g., Noormets et al., 2004; Hall et al., 2006; Scicchitano et al., 2007; Goto 

et al., 2010; Engel and May 2012; Salzmann and Green, 2012; Yu et al., 2012; 

Araoka et al., 2013; ShahHosseini et al., 2016; Terry et al., 2016). New 

boulders deposited in modern storms and tsunamis have been described in 

detail (e.g., 1951–2004 Okinawa typhoons: Goto et al., 2011; 2004 Indian 

Ocean tsunami: Goto et al., 2007; 2009 South Pacific tsunami: Etienne et al., 

2011; 2010 Chile tsunami: Spiske and Bahlburg, 2011; 2011 Tohoku-oki 

tsunami: Yamada et al., 2014; 2013 Typhoon Haiyan: May et al., 2015; 

Kennedy et al., 2017; Soria et al., 2017; 2016 Cyclone Winston: Terry and 

Lau, 2018). However, there remains a lack of 
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research on boulder fields that resulted from landslide tsunamis. Herein, we 

present a case study from Fiji where large carbonate boulders were primarily 

dislodged and deposited by a local submarine landslide tsunami that occurred in 

1953. 

On 14 September 1953, a Mw6.75 earthquake was generated by the rupture 

of a 30-km strike-dip fault segment S of the coast of Viti Levu Island in Fiji 

(Houtz, 1962; Rahiman et al., 2007) (Fig. 1). Although of moderate magnitude, 

the earthquake induced a tsunamigenic submarine landslide and associated 

collapse of a seaward-facing section of fringing coral reefs. Tsunami waves 
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Kina (1993), appear to have remobilised some large boulders. While prior research has demonstrated headward retreat of Suva 

Canyon in response to the repeated occurrence of earthquakes over the past few millennia, our results highlight the lingering 

vulnerability of the Fijian coastlines to high-energy waves generated both in the presence (tsunami) and absence (storm) of 

submarine failures and/or earthquakes. To explain the age discrepancies of U-Th dated coral comprising the deposited boulders, 

we introduce a conceptual model showing the role of repeated episodes of tsunamigenic submarine landslides in removing reef 

front sections through collapse. Subsequent high-energy wave events transport boulders from exposed older sections of the reef 

front onto the reef where they are deposited as ‘new’ boulders, alongside freshly detached sections of the living reef. In similar 

situations where anachronistic deposits complicate the deposition signal, age-dating of the coral boulders should not be used as 

a proxy for determining the timing of the submarine landslides or the tsunamis that generated them. 

© 2017 Elsevier B.V. All rights reserved. 
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struck Suva, the capital city, within a few minutes, inundating low-lying areas, 

killing five people. On Namuka and Lami Reefs (hereafter called NL (Namuka-

Lami) Reefs; 18°8.700′S, 178°22.900′E), which fringe the coastline immediately 

W of Suva, more than a hundred isolated large carbonate boulders are clustered 

around the opening of Rat-tail Passage that separates Namuka and Lami Reefs 

(Fig. 2). Most of these boulders were reported by eyewitnesses to have been cast 

up by the 1953 tsunami (The Fiji Times & Herald, 1953a; Houtz, 1962; Atkinson 

and Collen, 2000; Rahiman, 2006; Collen et al., 2011). 

Despite being mentioned multiple times by the media and the academic 

literature, this boulder field has not been studied in detail. The aims of this study 

are to (1) provide detailed information on the characteristics and distribution of 

boulders formed by the 1953 local submarine landslide tsunami; (2) investigate 

post-1953 boulder remobilisation and reef morphology at the study site for 

improving understanding of coastal hazard characteristics in Suva and the 

surrounding urban area, a major economic hub in the South Pacific Islands; and 

(3) reveal specific challenges in reconstructing long-term tsunami history on a 

submarine-landslide-prone reef. 

2. Study area 

2.1. Historical accounts of the 1953 tsunami and boulder transport 

At 12:26 pm Fiji standard time on 14 September 1953, b10 s after the Mw6.75 

earthquake was felt in Suva, eyewitnesses observed a drop in sea level at the 

entrance to Suva Harbour. Some observed “a large brown “bubble” had arisen 

between the entrance beacons, and the first annular wave from this disturbance 

had struck the reef” (Houtz, 1962, p.7). The first and largest tsunami wave arrived 

at the western shore of Suva Peninsula 3–4 min afterwards. Eyewitnesses 

reported the wave reached 3–15 m in height when it broke at the reefs at Suva 

harbour and along the southern coast (Houtz, 1962). Measured maximum wave 

heights were N3 m and run-up heights reached 2 m (Prasad et al., 2000; Rahiman 

et al., 2007). A photo taken at the time showed a 1.5–2.0 m high bore crest. The 

inundation distance at the southern tip of the Suva Peninsula was estimated from 

a boat carried over 100 m inland (Rahiman et al., 2007). About 4 km W of Suva, 

eyewitnesses at Muaivuso village (18°8.400′S, 178°21.600′E) behind NL Reefs 

 

Fig. 1. Regional setting and location of the study site. (a) Plate boundaries surrounding Fiji. The labelled submarine trenches are the major subduction zones in the region. (b) Locations of the study 

area, the 1953 earthquake epicentre and focal mechanism (Hamburger et al., 1990), and other places mentioned in the text. Land elevation contours are at 20 m intervals. 
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described a 3 m high wall of muddy water sweeping across the reef flat, hitting 

the low cliffs in front of the village. The tsunami source was identified as a 60 

million m3 submarine landslide off Lami Reef (Rahiman et al., 2007) (Fig. 3a). 

An aerial photo taken 12 days later showed that 30–50 m of reef scarp was 

missing, indicating a part of the canyon wall had slipped into the sea following 

the earthquake. 
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Fig. 2. Large boulders on Namuka-Lami Reefs investigated in this study. (a) Clusters of boulders on the reef crests. Suva city is in the background, approximately 4 km behind the boulder field. The 

direction of view is indicated in Fig. 3. (b) Closer view of two large boulders (LR209: 23.7 m3 and LR210: 26.2 m3); (c) a tall-standing, 18.1 m3 boulder (NR150); (d) close up of a typical carbonate 

boulder studied (LR234). The boulder lithology is boundstone. Boulders are typically encrusted by intertidal organisms: 1- barnacles (Tetraclita squamosa viridis), 2patterns of chiton grazing, 3- eroded 

fossil coral (Acropora sp.?); (e) A 1.2 m3 overturned fossil table coral in the back-reef area behind the Muaivuso Lagoon. 

Villagers in Muaivuso recalled that large boulders appeared at the time of 

the tsunami (Houtz, 1962; Atkinson and Collen, 2000; Collen et al., 2011). 

Newspaper articles similarly described previously unseen boulders, as well as 

older, pre-1953 boulders that had been identified on reef flats earlier by the 

Geological Survey of Fiji (The Fiji Times & Herald, 1953a, 1953b). Rahiman 

(2006) described the 1953 tsunami boulders as large (“from 20 to 30 cubic 

metres”, p.133) and close to the reef edge near Rat-tail Passage, whereas older, 

weathered and smaller boulders were found behind the landward limit of the 

1953 boulders. By comparing the modern locations of boulders to those 

visible on a 1951 aerial photo, Rahiman (2006) specified that older boulders 

had apparently shifted 200 m landward, plausibly during the 1953 tsunami. 

More recently, villagers have reported that some smaller boulders of b2 m3 

had been remobilised by tropical cyclones after the tsunami (Atkinson and 

Collen, 2000). 

2.2. Tectonic setting and other tsunami sources 

The risk of earthquakes and tsunamis in Fiji has been studied extensively 

since the 1953 tsunami (e.g., Prasad et al., 2000; SPDRP, 2002; Rahiman, 

2006; Pearce, 2008). The Fiji Islands lie within a relatively complex tectonic 

setting. To the W and E respectively, tectonic activity in the New Hebrides 

Trench and the Tonga-Kermadec Trench is capable of generating regional 

tsunamis that can reach Fiji within 1 to 2 h (Pearce, 2008) (Fig. 1). 

Prehistorically, a local legend possibly passed down from 400 to 500 years 

ago, described the arrival of great waves at the mouth of Rewa River that 

flooded valleys for many miles (Reed and Hames, 1967) (see Fig. 1 for the 

location of Rewa River). This phenomenon was inferred to be a tsunami event. 

Historically since 1868, 33 tsunamis have affected Fiji, although most have 

been minor events with b0.5 m of water fluctuation (NOAA historical tsunami 

database, 2016). In 1976 and 1999, run-up heights of 0.9 and 1.0 m were 

measured at Suva following earthquakes at the Tonga-Kermadec and New 

Hebrides Trenches, respectively (Pearce, 2008). Pacific-wide, Thomas et al. 

(2007) proposed that any Mw9.0 earthquake at major subduction zones could 
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generate a tsunami with an offshore deep-water amplitude of over 0.75 m in 

Fiji. For comparison, the maximum amplitude of the 2004 Indian Ocean 

tsunami was estimated at only 0.6 m in the open ocean, but resulted in run-up 

heights of tens of metres at affected coasts in Indonesia (Song et al., 2005). 

Near Suva, a series of strike-slip faults exist in SE Viti Levu (Rahiman and 

Pettinga, 2006). Fortunately, because of the complexity of the interlocking fault 

sets, the rupture of a single fault is rarely of sufficient length to produce a large 

earthquake. In the last 150 years, there has been only one earthquake NMw6.0, 

that in 1953. The maximum possible magnitude of an earthquake in SE Viti Levu 

is assessed at Mw7.0–7.5, the recurrence interval of a Mw6.0–7.0 earthquake is 

estimated at 1300– 1500 years (±500 years) – however this estimation is based 

on limited available data, hence these values “should be used with caution” 

(SPDRP, 2002, p.13). Rahiman and Pettinga (2006) used an empirical model to 

joint-bounded. 

estimate that the collapse of the Suva Canyon head might be capable of 

generating a tsunami with initial amplitude up to 16 m following a local 

earthquake, in a worst-case scenario. 

2.3. Coastal setting 

The Namuka-Lami Reefs are a near-continuous formation of fringing coral 

reefs that extend ENE to WSW along the coastline NW of Suva Harbour. The 

seaward margins of the Namuka and Lami Reefs are about 7 and 1.5 km long, 

respectively, separated by the NW-trending, 20–30 m deep, T-shaped Rat-tail 

Passage (Atkinson and Collen, 2000). At their landward extent, the NL Reefs 

merge into mangrove forests at the low-lying shoreline. Behind the mangroves 

are low headlands on which several Fijian villages are situated at approximately 

5 m elevation. Although the southern part of Viti Levu was uplifted during the 

Holocene, and sea level reached a maximum of 2.1 m above present sea level 

around 4200 BP (Nunn and Peltier, 2001), a small portion of the local marl 

bedrock b0.8 m high situated close to Muaivuso Village is the only emerged 

feature on NL Reefs, besides wave-deposited boulders. The reef flats extend 1.5–

2.0 km seawards from the shoreline, and are dominantly covered by sand 

(Roelfsema and Phinn, 2008). A series of elongated lagoons, including the 28 m 

deep Muaivuso Lagoon, occupy the back-reef zone. Closer to the reef edge, the 

reef crest is approximately 40 to 130 m wide, as mapped using multi-scale image 

analysis (Phinn et al., 2012) (Fig. 3a). The outermost part of the crest is raised a 

few cm into a gentle convex arc (Atkinson and Collen, 2000). The seaward edge 

of NL Reefs forms the headward margin of an offshore submarine canyon called 

the Suva Canyon. Here, a composite submarine landslide scar has been identified, 

indicating the canyon head had failed multiple times in the past (Rahiman, 2006). 

The repeated failure of the canyon head is a result of the steep slope angle (25°) 

and high sedimentation rates contributed by terrestrial sediments discharging 

from the Rewa River (Rahiman, 2006). 

2.4. Wave climate 

 

Fig. 3. (a) Map illustrating the 1953 tsunamigenic submarine slope failure and its contribution to a larger composite landslide scar that exists offshore at the head of the submarine Suva Canyon. Landslide 

scars and bathymetry are redrawn from Rahiman (2006). The boulder fields examined on NL Reefs are separated into five zones (I to V) for analyses, according to location and local shore orientation. 

Reef geomorphic features on NL Reefs are based on data from Roelfsema and Phinn (2008). (b) Bathymetric profile for A-A′ on Namuka Reef is adapted from Atkinson and Collen (2000). Boulder 

emplacement and remobilisation are also illustrated on the profile. Boulders on the profile are not drawn to scale. JB stands for 
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Suva has a tidal range of up to 2 m (Australian Government Bureau of 

Meteorology (BoM), 2015). The sea completely submerges the reefs, except 

during low spring tides when they are exposed by a few cm above sea level. 

Under calm conditions, tidal currents are ≤0.51 m s−1 (Atkinson and Collen, 

2000). The prevailing SE trade winds, strongest in the cool dry season from 

May to October, drive swells in directions generally perpendicular to the reef 

front (Fiji Meteorological Service (FMS), 2006; Singh and Aung, 2008). For 

Suva, mean wave height and period are 0.88 m and 12.63 s, respectively; 99% 

of wind-driven waves are b2.9 m in height, while the largest 10% of the waves 

over 1.74 m predominantly come from the SE (130–170°) (Bosserelle et al., 

2015). The 1 in 50 year maximum wind-driven wave height is estimated to be 

7.8 m (BoM and CSIRO, 2014). 

The tropical cyclone season in Fiji usually spans November to April 

during the hot rainy summer. Two or three tropical cyclones cause severe 

damage to Fiji each decade (FMS, 2001, 2006). For Viti Levu Island, the NW 

coast is more frequently affected than the SE coast, where Suva is located, 

because tropical cyclone track directions from the N and W towards the island 

are most typical (Terry, 2007; Terry and Gienko, 2010). From 1969 to 2010, 

only 93 tropical cyclones crossed within 500 km of Suva, an average of 2.2 

per season (Southern Hemisphere Tropical Cyclone Data Portal, 2011). 

3. Methods 

3.1. Boulder data collection 

3.1.1. Field measurements and mapping 

Fieldwork was carried out on the NL Reefs at times of low spring tide over 

four days in September 2013. The following features of each boulder were 

recorded directly in the study area: location coordinates, 3D shape (i.e., 

rectangular prism, triangular prism, ellipsoidal or irregular) and dimensions 

(i.e., maximum lengths along long (a-), intermediate (b-) and short (c-) axes). 

As water flow normally rotates a boulder's a-axis to a flow-perpendicular 

alignment (Imamura et al., 2008; Nandasena and Tanaka, 2013), the long axis 

orientation for boulders with an a-axis that was 20% or more longer than the 

b-axis was used to interpret wave direction. All visible boulders with an a-

axis over 1 m were measured, although it is likely that shorter clasts were 

missed if they were fully submerged before or after the lowest tide level. The 

perpendicular distance of boulders to the nearest reef edge, as delimited from 

the 2013 satellite image on Google Earth, was measured using the Esri 

ArcMap software. Boulders situated in a back-reef area behind Muaivuso 

Lagoon were also included in the dataset (Fig. 3). 

Closer to the Lami Reef edge, at least 18 small boulders were observed in 

an approximately 5800 m2 area (roughly 120 m wide and 50 m long). Owing 

to their short vertical heights, the time of their emergence at low tide was 

limited. Instead of measuring these clasts individually, the extent of this area 

was mapped with a GPS, and the number of small boulders was counted in 

the field. We measured three boulders in this group to estimate volumes of all 

small boulders present within this area (one example measured 1.3 × 1 × 0.45 

m). During data analysis, the extent of this area was drawn on the map. The 

locations of 18 boulders with similar dimensions to the representatives were 

added randomly within this area for further analyses, together with all other 

measured boulders. 

3.1.2. Boulder volume, form, and density determination 

Volumes were calculated for boulders with regular geometric shapes by 

simple geometric formulae for rectangular prism, triangular prism, and 

ellipsoid. For rectangular boulders, estimated volumes were multiplied by a 

scaling factor of 0.7, an adjustment needed to lessen the problem of volume 

overestimation that has been highlighted in earlier studies (Engel and May 

2012; Scicchitano et al., 2012; Gienko and Terry, 2014; Lau et al., 2016). 

Some clasts were highly weathered, exhibiting irregular shapes that cannot be 

simply categorised as rectangular, triangular, or ellipsoidal. Volumetric 

determinations for such boulders were based on their own unique shapes, 

using the closest combination of standard geometries. 

The flatness index (FI) – sometimes referred to as the Cailleux Flatness 

Index – of each boulder was determined as FI = (a + b)/2c. The index ranges 

from 1 to ∞, with a value near 1 indicating that all axes are of similar length, 

meaning the clast is “equant” in form. Clasts with a high FI above 3 are 

extremely “non-equant”: i.e., platy, flat, or elongated (Wentworth, 1922; 

Cailleux, 1945; Blott and Pye, 2008). 

A mean boulder density of 1.3 g cm−3 was determined based on samples 

chiselled from six boulders showing lower levels of postdepositional 

weathering, as they better resemble the clast condition at the time of transport. 

Sample bulk density (BD) was calculated based on the eq. BD = Ma∕ BV, 

where Ma and BV are dry mass and bulk volume of sample, respectively. The 

dry mass of samples was measured on a digital balance (accuracy to 0.01 g). 

Bulk volume was determined via water displacement, whereby a plastic-

wrapped sample was lowered into a water-filled beaker and the difference in 

water level was recorded as sample volume. 

3.1.3. Boulder age-dating 

Rock samples were chiselled from the youngest surfaces of six boulders for 

laboratory density measurement and Uranium-Thorium (U-Th) dating. Age-

dating was carried out in an attempt to corroborate the timing of coral mortality 

with the 1953 tsunami that quarried the living reef framework and transported 

the boulders on top of the reef flats. The underpinning assumption is that living 

and growing corals were dislodged from the submerged reef slope and emplaced 

onto the reef flat by extreme tsunami waves before they subsequently died (Yu 

et al., 2009; Terry and Etienne, 2014). This phenomenon was originally believed 

to have occurred on NL Reefs because “live/dead corals” were mapped on the 

reef slope (Roelfsema and Phinn, 2008), and fragments of freshly broken corals 

(Acropora valida) were observed on the reef crest, indicating the presence of 

living corals on the reef slope. 

The principle of U-Th dating is that 238U decays to stable 206Pb via a series of 

daughter isotopes, including 234U and its daughter isotope 230 Th. If a uranium 

mineral is left undisturbed in a closed system for several million years, secular 

equilibrium will be reached when the rate of decay (i.e., the activity) of each 

daughter isotope equals that of the parent isotope (Walker, 2005). In an aqueous 

system, growing hermatypic corals take up small amounts of soluble uranium 

from seawater and incorporate the element into their carbonate skeleton, whereas 

thorium, being insoluble, is not present. Once the carbonate has been formed the 

system becomes closed. A state of disequilibrium in the activities of 238U, 234U 

and 230Th remains for approximately 500,000 years (about seven times the half-

life of 230Th) before secular equilibrium is reached (Smart, 1991; Walker, 2005; 

Zhao et al., 2009). As the system approaches equilibrium at a predictable rate, 

the time since carbonate formation can be calculated by measuring the parent-

daughter ratio if the initial state of the system is known. 

The ages of carbonate samples were determined by measuring the 230 238 234 

238 

Th/ U and U/ U ratios via multi-collector inductively coupled plasma mass 

spectrometry (MC-ICP-MS) at the Radiogenic Isotope Facility of the University 

of Queensland, and applying the following equation (Zhao et al., 2009, modified 

after Edwards et al., 1987): 

1− 230238ThU  ¼ e−λ230T− 238234UU −1 λ230λ−λ234 

 1−eðλ
234

−λ
230

ÞT ð1Þ 
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where T is the age of the sample, λ230 is the decay constant of 230Th = (9.158 ± 

0.028) × 10−6 year−1, and λ234 is the decay constant of 

234 −6 −1 
U = (2.8262 ± 0.0057) × 10 year (decay constants following Cheng 

et al., 2000). Details of the laboratory procedures for age-dating are provided in 

Clark et al. (2014a, 2014b) and Liu et al. (2016). 

3.2. Historical aerial photos and satellite images 

Aerial photos and satellite images were used to determine changes in reef-

edge outline and boulder positions on NL Reefs over recent decades. Four aerial 

photos were provided by the Fiji Department of Lands and Surveys for the years 

1954, 1978, 1986 and 1994. The photos were taken from altitudes of 20,000 ft. 

(6100 m), 11,000 ft. (3400 m), 26,000 ft. (7900 m) and 25,000 ft. (7600 m), 

respectively. Unfortunately, the 1951 aerial photo examined by Rahiman (2006) 

or other pre-1953 photos could not be obtained to verify the transport of 

preexisting boulders by the 1953 tsunami (Department of Lands and Surveys, 

Fiji, Personal Communication). Satellite images spanning 2005 to 2016 were 

examined on Google Earth. The earliest image with a sufficiently fine resolution 

to show the presence of larger boulders on the studied reefs was dated January 

2005 (Google Earth, 2005). Boulders on aerial photos were identified by 

comparing their shapes and sizes to actual boulder measurements. The a- and b-

axes of boulders on images were measured with the measuring line tool after 

aerial photos were geo-referenced and imported for display into QGIS software 

(QGIS Development Team, 2013). 

3.3. Flow velocity estimations 

We back-calculated the minimum flow velocity (MFV) required to initiate 

movement of each boulder using the hydrodynamic equations proposed by 

Nandasena et al. (2011) to estimate the power of past tsunami and storm waves. 

The equations assume boulders were already detached from the reef prior to 

movement, and that they were sitting in one of the two pre-transport settings — 

either on an unobstructed surface or in a joint-bounded socket. Boulders on an 

unobstructed surface could be moved by sliding, rolling, or lifting (Nandasena et 

al., 2011): 

u2≥ 

2ðρs=ρw−1Þgcðμ cosθþ sin θÞ Sliding 2 

u  ðLiftingÞ ð4Þ 

Cl 

while movement of joint-bounded boulders could only be initiated if the lift force 

alone was sufficient to dislodge the boulders: 

u2≥ 2ðρs=ρw−1Þgcðcosθþμs sinθÞ ðLiftingÞ ð5Þ 

Cl 

In all equations, u is flow velocity (m s−1); b and c are the boulder intermediate 

and short axes respectively (m); ρs is boulder density (g cm−3); ρw is seawater 

density (1.02 g ml−1); Cd is the drag coefficient (1.95); Cl is the lift coefficient 

(0.178); θ is the angle of the bed slope at pre-transport location (°); μs is the 

coefficient of static friction (0.5); and g is gravitational acceleration (9.81 m s−2). 

In this study, the MFVs for boulder emplacement and remobilisation were 

calculated separately. For boulder emplacement, i.e., when a part of the reef is 

dislodged by a wave and thrown onto the reef flat, Eq. (5) was used. This is 

because no remnants of emerged old reef and other boulder source were present 

on NL Reefs, implying these boulders were sourced from the submarine reef 

framework. A pre-transport bed slope angle of 25° was conservatively selected 

as it was determined as the “pre-failure slope angle” of the Suva Canyon 

landslide (Rahiman, 2006). The slope angle at the lagoon edge is determined as 

5° from a cross-sectional profile in the work of Atkinson and Collen (2000). Due 

to the gentle slope angle at the lagoon edge, it is possible that coral 

Table 1 

heads were emplaced onto the subaerial reef flat from an unobstructed lagoon 

floor (Fig. 3b). Estimations from Eqs. (2)–(4) were therefore also used to 

determine the MFVs to emplace zone I boulders. 

For boulder remobilisation, Eqs. (2)–(4) were used as the boulders were 

already sitting on top of the reef flat. They could potentially be remobilised by 

all three transport modes. The bed slope angle in this scenario is taken as 0° 

because NL Reef flats are not inclined. 

3.4. Storm wave modelling 

Storm wave conditions on the reef flats for zones I and II were modelled 

using a 1D phase resolving non-hydrostatic model (XBeach Kingsday Release 

in Non-Hydrostatic Mode, Roelvink et al., 2015). This model calculated the 

transformation of deep water storm waves to reef flat current flow using a 

range of offshore wave conditions. The likely sea state of each storm event 

based on offshore significant wave height (Hso) and period were generated 

using a JONSWAP spectrum over 17 min with an enhancement factor of 3.3 

(Buckley et al., 2014). A wave friction factor (a function of the relative bed 

roughness under waves (Nielsen, 1992)) of 0.3, which is comparable to a 

moderately rough reef (Monismith et al., 2013; Baldock et al., 2014), was also 

used to include the high frictional wave energy dissipation observed on coral 

reefs (e.g., Rogers et al., 2016). All other free parameters were set at default 

values. Successive runs of the model were performed from Hso = 0.5 m to Hso 

= 9.5 m at intervals of Hso = 0.5 m. The wave period for each run was kept 

constant at 12 s, which is based on Bosserelle et al. (2015), who reported that 

wave periods of approximately 10–12 s were associated with the largest storm 

events in the historical wave record. 

The models were run at high tide with a storm surge of 1 m based on storm 

surge analysis for the port of Suva, Fiji. A 1 m storm surge was determined to 

be a 1 in 30 year event (Carter et al., 1991) and was comparable to the wave 

event (Hso = 6.27 m) reported in 1993, which was also determined to be a 1 in 

30 year event (Bosserelle et al., 2015). The maximum Eularian current 

velocity (u (m s−1)) was determined in zones I and II for each of the model 

runs from Hso = 0.5 m to Hso = 

9.5 m. This velocity represents the maximum current flow generated by waves 

in zones I and II during the model runs. The current flow determined from the 

wave model is comparable to the velocities required to transport the boulders 

determined by the Nandasena et al. (2011) equations. The potential offshore 

wave conditions required to transport the boulders by sliding (minimum 

velocity required for remobilisation) and lifting (for emplacement) in zones I 

and II could then be determined. 

4. Results 

4.1. Boulder characteristics 

A total of 136 boulders were examined in this study. Boulders are 

comprised of coral fabric originally derived from the reef framework and are 

identified as boundstone, a type of calcareous rock where components have 

been bound together after deposition (Dunham, 1962). Coral species that 

 Cdðc=bÞþμsCl ð Þ 
ð Þ 

u2≥ 2ðρs=ρw−1Þgcðcosθþðc=bÞsinθÞ Rolling 
3 

Cdc2=b2þ Cl 
ð Þ ð Þ 
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made up these boulders are, however, rarely identifiable due to post-

depositional weathering. No boulders of other 

U-Th ages of six large boulders around Rat-tail Passage on Namuka and Lami Reefs. All errors are quoted as 2σ. 

Boulder Boulder volume (m3), 

mass (t) 
U (ppm) 232 

Th (ppb) 
(230Th/232Th) (230Th/238U) (234U/238U) Corrected age 

(year) 
Mortality year 

NR150 18.1 m3, 23.6 t 2.6634 ± 0.0010 0.2426 ± 0.0005 1711.91 ± 6.16 0.05140 ± 0.00015 1.1462 ± 0.0009 4996 ± 16 2982 ± 16 BCE 

LR227 25.3 m3, 32.9 t 3.6822 ± 0.0035 0.5433 ± 0.0073 941.03 ± 12.83 0.04576 ± 0.00013 1.1470 ± 0.0010 4432 ± 14 2418 ± 14 BCE 

LR208 17.3 m3, 22.5 t 2.3311 ± 0.0014 0.4462 ± 0.0009 669.92 ± 2.45 0.04226 ± 0.00013 1.1445 ± 0.0011 4095 ± 14 2081 ± 14 BCE 

LR217 28.0 m3, 36.4 t 2.6720 ± 0.0011 0.1171 ± 0.0005 2548.54 ± 14.97 0.03682 ± 0.00014 1.1446 ± 0.0010 3562 ± 14 1547 ± 14 BCE 

NR158 23.8 m3, 31.0 t 2.5199 ± 0.0012 0.0716 ± 0.0004 3374.21 ± 23.08 0.03160 ± 0.00011 1.1465 ± 0.0013 3045 ± 11 1031 ± 11 BCE 

LR182 31.2 m3, 40.5 t 3.1911 ± 0.0016 0.4368 ± 0.0008 604.81 ± 2.43 0.02729 ± 0.00010 1.1480 ± 0.0010 2618 ± 10 604 ± 10 BCE 
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Table 2 

Boulder count, orientation, and physical dimensions within five separate zones on NL Reefs. 

Zone I II III IV V 

Number of boulders measured 16 7 34 27 34+18a 

Mean boulder volume ± standard deviation (m3) 1.25 ± 0.76 0.98 ± 1.17 5.85 ± 6.54 7.88 ± 6.90 3.78 ± 6.36 

Median boulder volume ± median absolute deviation (m3) 1.20 ± 0.46 0.41 ± 0.20 3.38 ± 1.84 6.08 ± 2.03 1.70 ± 1.28 

Number of boulders in orientation analysis (a-axis at least 
20% longer than b-axis) 

10 3 32 20 28 

Reef-front orientationb 60°–65° 60°–65° 45°–60° 70° 80°–110° 

Major boulder orientationb 0°–20° and 80°–100° 20°–80° 40°–80° 40°–80° 80°–100° 

Boulder orientation relative to shore orientationc Sub-parallel to others Parallel to sub-parallel Parallel to sub-parallel Parallel to sub-parallel Parallel 

a 
Volumes of 18 smaller boulders were estimated from measurements of three individual clasts (see Section 3.1.1). 

b The degree of orientation is presented such that 0° (north) represents a N-S trend in the boulder long axis or shore orientation. 
c 

The description for boulder orientation relative to the nearest reef-front is organised according to the method of Watt et al. (2010). Boulder orientation within ±10° of reef-front orientation is 

considered ‘parallel’, ±30° to reef-front is ‘sub-parallel’; similarly, boulder orientation within ±10° of reef-front normal direction is ‘normal’, and ±30° to reef-front normal 
is ‘sub-normal’. Other orientations are described as ‘oblique’ in the text. 

lithologies were found on NL Reefs because the local bedrock of the Suva Marl 

formation is composed of calcareous siltstone and fine sandstone, which are too 

soft to form large, durable boulders able to withstand prolonged wave action 

and weathering in the coastal zone. The mean density of boulders is 1.3 ± 0.2 g 

cm−3, based on six samples. This low density value is comparable to the 1.4 g 

cm−3 boulder density on Taveuni, Fiji, as measured by Etienne and Terry (2012), 

and 1.1–1.4 g cm−3 coral clast density among Indian Ocean tsunami boulders as 

presented by Paris et al. (2009). Boulder volume and mass range from a 

minimum of 0.21 m3 and 0.28 t (metric tonnes) for the smallest measured clast 

with dimensions of 0.93 × 0.60 × 0.55 m, to 31.15 m3 and 40.50 t for the largest 

individual with dimensions 7.00 

× 3.74 × 2.38 m (triangular clast). Median volume and mass are 2.38 m3 and 

3.09 t, respectively. 

Surface samples collected from six of the largest (N17 m3) boulders in zones 

III–V date to the mid-to-late Holocene, 5000–2600 years before present (BP) 

based on the U-Th method. The calendar ages are 2982 ± 16, 2418 ± 14, 2081 

± 14, 1547 ± 14, 1031 ± 11, and 604 ± 10 BCE 

(Table 1). 

4.2. Boulder distributions 

The boulders are sub-divided into five spatial zones (I to V), designated 

according to location and local orientation of the reef edge (Fig. 3). The 

majority of boulders, including the largest clasts, fall into zones III, IV and V 

(Table 2), which are the reef-front proximal zones closest to Rat-tail Passage. 

Boulders in zones II to V are scattered at distances ranging from 14 to 232 m 

from the reef edge (i.e., from the presumed boulder source) and display a 

landward-fining trend (Fig. 4). In zone I, which is the most landward zone, the 

largest boulder (3.1 m3) rests 945 m from the reef edge. Smaller boulders are 

situated farther landward. 

The flatness index (FI) of boulders ranges from 1.14 (high equancy) to 6.76 

(low equancy, i.e., “flat”), and is b3 for 80% of boulders on NL Reefs. Flatter 

boulders with FI N 3 were generally clustered closer to the reef edge. For zones 

II to V, almost all flat boulders (16 of 17) are located at relatively short distances 

(b150 m) from the reef edge (Fig. 4). Boulder flatness and distance from reef 

edge are weakly negatively correlated (Pearson correlation index I = −0.23, p-

value = 0.02). In zone I, flat boulders (4 of 5) are located within 100 m of the 

landward perimeter of Muaivuso Lagoon. 

Most boulders in zones II–V are orientated parallel or sub-parallel to the 

reef edge, whereas boulders in zone I have a bimodal pattern whereby boulders 

are oriented predominantly sub-parallel or oblique to the reef edge (Fig. 5). The 

ENE–WSW orientations of boulders in zones III and IV are comparable, despite 

being separated by Rat-tail Passage, while zone V differs slightly with a greater 

tendency for E–W orientation. 

4.3. Evidence for post-1953 boulder remobilisation 

Aerial photographs for years 1954, 1978, 1986 and 1994 were examined to 

infer whether boulder movement has occurred on NL Reefs after the 1953 

tsunami. Differing resolutions and heights of aerial photography limit our 

ability to pinpoint boulder locations accurately for all time steps (see 

Supplementary Data file). As no boulders are visible in the 1954 image due to 

the poor image quality, this image is used only 

https://doi.org/10.1016/j.sedgeo.2017.12.017
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Fig. 4. Distribution of boulders of different mass and equancy of form (according to flatness index, 

FI), plotted relative to the seaward reef margin of NL Reefs. (a) Boulder field zones II to V are 

located close to the reef edge (see Fig. 3). A plot of maximum boulder mass in each 20 m grid 

along a transect running landward from the reef edge shows a strongly negative linear association 

(red line). Median boulder mass in the same 20 m grids also diminishes landward, demonstrating 

a moderately-strong negative logarithmic relationship (blue line). (b) The boulder field of zone I 

is displayed with reference to the reef edge to show the landward-fining trend. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 5. Map of the study area showing analyses results. Rose diagrams of major orientation in each boulder field zone I to V are plotted with 180-degree rotational symmetry, with boulder orientations 

grouped into 20° grid bins. The minimum flow velocities (MFVs) required at the reef edge to lift clasts from the reef-edge framework (i.e., the presumed source) onto the reef flat are indicated by colour 

lines (see legend). Locations of six U-Th dated large boulders are marked by labels showing dating results (i.e., the coral mortality age). All samples were dated to BCE years. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

for analysing reef-edge position over time. In the 1978 image, taken at the lowest 

altitude among all photos examined, 17 boulders are clearly visible, while nine 

and 17 boulders can be identified in the 1986 and 1994 photos, respectively 

(Table 3). Despite the improved satellite image quality, not all boulders measured 

in the field are visible on modern images because of insufficient resolution and 

high tide levels at the time of image acquisition. For example, boulders smaller 

than 1 m3 are not discernible in a July 2016 satellite image. 

Out of the 17 boulders visible on the 1978 photo, 11 were remobilised before 

2005. Among those, seven moved distances of 12–65 m landward, while another 

four originally present on Lami Reef disappeared altogether. These clasts could 

have been broken into smaller pieces, or been washed into the 30 m deep Rat-

tail Passage. A comparison of 1978 and 1986 aerial photos shows that all nine 

boulders visible were already present in 1978, hence there is no evidence for 

boulder reworking between 1978 and 1986. Similarly, although only a small 

number of boulders are visible on the 1994 aerial photo, their positions 

correspond with those in the post-2005 satellite images and field measurements 

in 2013. It can therefore be inferred that remobilising high-energy wave event(s) 

occurred sometime between 1986 and 1994. 

The a-axis alignments of remobilised boulders are perpendicular or oblique 

to the direction of their most recent transport vectors (Table 3). These boulders' 

volumes range from 2.0 to 31.2 m3 and all are shorter than 1.32 m in the vertical 

axis. Four boulders on Namuka Reef, including the third largest measured 

boulder (27.8 m3), were moved NW for distances up to 66 m (Fig. 6). On Lami 

Reef, only three smaller boulders b5.1 m3 were remobilised, over shorter 

distances of 12–18 m towards the NE. The MFV estimations also suggest the 

flow velocity was higher on Namuka Reef than on Lami Reef (Fig. 6). The four 

boulders that disappeared before 2005 had unknown dimensions. To estimate the 

MFVs responsible for their removal, boulder heights were conservatively 

assumed to be 0.55 m, corresponding to the minimum c-axis measured for other 

nearby boulders at the site. The MFV required for their removal by sliding was 

at least 1.37–2.38 m s−1. 

Historical images were additionally valuable for revealing two changes in 

plan morphology of the Lami Reef front between 1954 and 1978 (Fig. 6). First, 

a reef scarp section approximately 1400 m2 in area, with a maximum width of 

22 m, disappeared. Second, an indentation in the reef outline located 

approximately 30 m E of the missing reef scarp retreated landward by 24 m, 

with the widening of an extended erosional groove occurring at the landward 

edge of the indentation. Since 1978, the outline of these two reef sections has 

remained unchanged. 

4.4. Flow velocity estimations 

The calculated minimum flow velocity (MFV) of each boulder represents 

the MFV experienced at the boulder source, i.e., the reef or lagoon edge. For 

illustration and analyses, the edges are divided into 100 m sections on the map 

in Fig. 5. The MFV required to initiate boulder transport from the submarine 

reef and emplace them onto the reef flats ranged from 2.80 to 9.29 m s−1 (Fig. 

7a). Boulders in zones I and II are smaller, hence a velocity of 6 m s−1 was 

probably sufficient to emplace all boulders into these zones. In contrast, over 

half of all boulders in zones III to V (area closest to the submarine landslide 

scar) required at least 6 m s−1 to emplace them. Once deposited on the reef flat, 

boulders may be remobilised by all three transport modes, including sliding 

and rolling that require lower flow velocity to initiate movement. 

Wavegenerated MFVs between 0.89 and 2.38 m s−1 were likely necessary for 

sliding; 1.28–4.67 m s−1 for rolling (Fig. 7b). 
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1978 photo as the image was not clear enough. 

5. Discussion 

5.1. Different mechanisms for boulder emplacement on NL Reefs 

The clustering of large boulders around Rat-tail Passage in zones III–V 

(Fig. 3) supports the notion that these boulders were dislodged and deposited 

by the 1953 Suva tsunami (Houtz, 1962; Rahiman, 2006). Thus, the flow 

velocities calculated based on the large boulders in zones III-V can be used to 

reveal the magnitude and characteristics of the 1953 tsunami as the waves 

Table 3 

Transport history of all boulders visible on 1978, 1986 and/or 1994 aerial photographs, identified by matching measured boulders in the field to the estimated boulder size and aerial view shapes in older 

aerial photos and post-2005 satellite images. 

Boulder IDa A-axis B-axis C-axis Volume Date of aerial/satellite image Boulder transport Boulder orientation relative 

 (m) (m) (m) (m3) history after 1978 to transport directionb 
 20 Jun. 20 Jul. 03 Oct. 22 Jan. 08 Jul. 

     1978 1986 1994 2005 2016   

NR142 3.74 2.61 1.30 8.8 v   N v Moved 65 m NW Perpendicular 

NR155 2.71 1.45 0.90 2.5 v   N v Moved 65 m NW Sub-perpendicular 

NR147 6.37 4.81 1.30 27.8 v v N v v Moved 33 m NW Sub-perpendicular 
NR149 5.39 3.81 0.68 14.0 v v N v v Moved 66 m NW Sub-perpendicular 
NR150 5.01 3.03 2.39 18.0   v v v No movement N/A 

NR151 4.10 2.31 1.44 9.5   v v v No movement N/A 

NR158 4.09 3.27 2.55 23.8   v v v No movement N/A 

NR164 3.35 2.46 1.67 9.6   v v v No movement N/A 

NR165 4.12 1.67 1.38 4.8   v v v No movement N/A 

NR166 5.47 2.90 1.62 12.8   v v v No movement N/A 

LR182 7.00 3.74 2.38 31.2   v v v No movement N/A 

LR183 2.69 2.05 1.32 5.1 v  N v v Moved 12 m NE Oblique 

LR192 2.96 2.62 1.64 6.4 v   v v No movement N/A 

LR193 3.11 2.80 1.45 8.8 v v  v v No movement N/A 

Ac 3.5 2    v     Disappeared 

LR229 4.76 3.74 0.81 10.1 v v  v v No movement N/A 

LR233 5.00 3.71 1.38 17.9   v v v No movement N/A 

LR234 3.71 2.28 1.32 7.8   v v v No movement N/A 

LR225 + LR226 2.30/2.84 1.39/1.77 0.90/1.11 2.0/3.9 v v  N v Moved 12 m NEd Sub-perpendicular 

LR222 2.90 2.24 1.02 4.6 v   N v Moved 18 m NE Oblique 

Bc 3 3    v     Disappeared 

Cc 2 1.5    v     Disappeared 

Dc 4 3    v     Disappeared 

LR217 7.17 4.13 1.35 28.0 v v  v v No movement N/A 

LR209 4.46 4.22 1.80 23.7 v   v v No movement N/A 

LR218 4.18 2.43 1.74 12.4 v   v v No movement N/A 

v = Visible on historical image. Visibility varies due to photo quality (resolution), altitude of camera, and tide level. Empty cell therefore means the boulder was not visible on the photo in question, but 

does not imply it was absent on the reefs. N = New boulder location after reworking. 
a 

NR: Namuka Reef, LR: Lami Reef. 
b Categorisation similar to Table 1. Boulder orientation ±10° to 90° (80–100°) to transport direction is considered ‘perpendicular’, ±30° is ‘sub-perpendicular’, around ±45° is oblique. 
c 

Boulders not found in 2013. The a-b plane areas were estimated from 1978 aerial photo. 
d The boulder seen on 1978 image may have broken into two boulders in the time period: it is uncertain whether it was a single boulder or two boulders arranged side by side in the 
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broke against the NL reefs. The tsunami flow velocity was the highest near 

the Rat-tail Passage opening, with flow exceeding 9 m s−1 impacting the SE-

facing reef edges of zones III and IV. In zone V, wave-generated flow 

similarly attained velocities N5–8 m s−1. The major orientations of large 

tsunami boulders measured in zones III and IV are similarly aligned ENE–

WSW, indicating the strongest wave propagated from the SE. This wave 

propagation direction concurs with what would be expected if a landslide 

occurring at the Suva Canyon generated a tsunami, as was the case in 1953. 

No boulders are located N250 m from the reef edge in these zones. In 

general, most wave energy (60–97%) is lost in shoaling, breaking, and 

reforming into bores at the reef edge (Gourlay, 1994; Parnell, 2011). Energy 

continues to diminish because of bottom friction across the reef flat (Massel 

and Gourlay, 2000; Péquignet et al., 2011). When a wave progressively 

dissipates across a reef flat, larger boulders are typically deposited first, while 

smaller boulders are deposited farther landward. The landward fining trend 

and short transport distances of boulders in zones III to V indicate that tsunami 

energy dissipated to a level that was insufficient to transport boulders farther 

inland. Such a rapid dissipation, however, does not explain the presence of 

boulders in zones I and II, which are located farthest from the tsunami source. 

Hence storm waves could be the alternative boulder emplacement mechanism 

in these two zones. 

Boulder distribution in zone I on Namuka Reef is unusual because of its 

location on the back-reef behind Muaivuso Lagoon, approximately 1 km from 

the reef edge. Our results show that flat boulders tend to be deposited close to the 

boulder source. The clustering of flat clasts near the landward perimeter of 

Muaivuso Lagoon therefore is one key indicator that zone I boulders were 

sourced from the lagoon edge rather than from the distant seaward reef edge. 

Given the flat topography of Namuka Reef and the 2 m tidal range, high-energy 

waves impacting at high tide may be able to inundate areas far back on the reef 

flat (Gelfenbaum et al., 2011; Péquignet et al., 2011). As waves travel across the 

deep Muaivuso Lagoon into the shallower water beyond, they increase in speed 

and wave height (Lowe et al., 2009), allowing boulder delivery from the edge of 

the lagoon (Fig. 8). 

Our simulation shows that when Hso N 7.8 m (as in a 1 in 50 year event), 

almost all boulders in zone II could potentially be lifted by storm waves from a 

joint-bounded setting; however, none could be lifted in zone I. Even if the 

offshore wave reaches 9.5 m in height, the simulated 3 m s−1flow could only move 

one boulder by lifting from the lagoon to zone I. A more plausible explanation 

for zone I boulder emplacement is that boulders were originally coral heads and 

microatolls growing on the lagoon slope. Thus, a slower flow (b2 m s−1) 

generated by a 1 in 30 year system like Cyclone Kina (Hso = 6.27), or a tsunami, 

could have transported the clasts by sliding or rolling into the back-reef area. The 

simulation also confirms Muaivuso villagers' descriptions of boulder 

remobilisations by post-1953 cyclones in both the back-reef area and close to the 

reef edge (Atkinson and Collen, 2000). 
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Photos courtesy of Department of Lands and Surveys, Fiji. 

The distribution of boulders on NL Reefs is similar to that in boulder fields 

on Ishigaki Island of Japan (Goto et al., 2010), as both sites comprise two boulder 

clusters — the first cluster consists of landward fining boulders deposited close 

to the reef edge; another group of boulders sits a few hundred metres farther 

landward. Moreover, groups of boulders at both sites are separated by deeper 

water bodies (2–4 m deep moats on Ishigaki Island; N20 m deep lagoon on NL 

Reefs), and the coasts are similarly prone to both storm and tsunami waves. 

Interestingly, in spite of these similarities, the distributions of tsunami boulders 

are distinctively different on Ishigaki Island and NL Reefs. On the coast of 

Ishigaki Island, it was determined that a tsunami, probably induced by a dip-slip 

fault plus a submarine landslide in 1771, was responsible for emplacing large 

boulders close to the shoreline (approximately 400–1300 m from reef edges). 

Long period tsunami waves are capable of long-distance clast transport, while 

short period storm waves account for the group of smaller boulders close to the 

reef edge (Goto et al., 2010; Miyazawa et al., 2012). In contrast, on NL Reefs, 

the 1953 tsunami could only transport boulders for short distances (b250 m) from 

the reef edge. This is probably a representation of the relatively short tsunami 

wavelength and wave period of events generated at this locality. 

The short tsunami wavelength and period can be explained by the small 

source area and the small amount of material displaced in comparison to other 

tsunami sources. Firstly, tsunamis generated by submarine landslides are usually 

more dispersive with shorter periods and wavelengths due to smaller source 

areas, compared with those generated by earthquakes (Hammack, 1973; Watts et 

al., 2003). As the linear dimension of submarine landslides rarely exceeds 100 

km, the wavelength of landslide tsunamis usually ranges from hundreds of m to 

tens of km; whereas lengths of earthquake tsunami waves can reach hundreds of 

km (Synolakis et al., 2002). Secondly, laboratory experiments have shown that 

wave periods increase with the size of the sliding body (Wiegel, 1955; Watts, 

1998). The volume of the 1953 landslide mass was estimated at 60 million m3, 

or 0.06 km3, which can be considered small compared with other tsunamigenic 

landslides (Rahiman et al., 2007). For instance, the 1998 Papua New Guinea 

tsunami slump was estimated at 4 km3 in volume and it generated a 44 s tsunami 

wave (Tappin et al., 2008). Although the tsunami wave period is also dependent 

on the landslide velocity and slope incline angle (Wiegel, 1955; Ward, 2001), it 

is logical to assume this small local landslide tsunami in 1953 was of relatively 

short wave period, likely at the scale of tens of s, hence resulting in clusters of 

tsunami boulders around the edges of the NL Reefs. 

5.2. Post-1953 boulder remobilisation and reef-front landslide 

The identification of boulder remobilisation on historical aerial 

photographs indicates the effect of probably one major high-wave energy 

 

Fig. 6. Estimated flow velocities for a post-1953 high-energy wave (HEW) event that caused some boulder reworking after 1978. Boulders in white circles have remained in the same position since 

1978. For stable boulders (over 1978–2013), the upper limits of flow velocities that would permit stability are given in white boxes. For remobilised boulders, brown arrows show movement vectors 

between 1978 and 2005, with a dashed arrow used where the transport path is less certain. The minimum flow velocity (MFV in m s−1) to initiate boulder transport for each reworked boulder is written 

in a black box. The MFV value for sliding is used because remobilisation by sliding requires the lowest flow velocity. Dashed box outline indicates MFV based on estimated boulder dimensions for 

four older boulders (named A–D) that were transported away from the reef flat prior to fieldwork in 2013. The inset shows changes in the outline of the Lami Reef front between 1954 and 1978 aerial 

photos, plotted on the 1986 photo. Up to 24 m of reef scarp has been removed. The reef outline has remained stable since 1978. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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(HEW) event in the study area between 1986 and 1994. According to the FMS 

cyclone reports, Cyclone Kina in January 1993 was the most 

 

Fig. 7. Histogram of MFVs that are able to initiate boulder transport from (a) a jointbounded 

setting, and (b) on the unobstructed reef flat, sorted according to the designated five boulder 

field zones I to V on NL Reefs. Each vertical column represents an individual boulder. The 

MFV required for each transport mode is the value at the base of each colour bar (Nandasena 

et al., 2011). Data are arranged in order of increasing MFV required for transport by sliding. 

Boulders remain stable for flow velocities falling within the grey bars. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

severe storm for the SE coast of Viti Levu within this time frame (McGree et 

al., 2010). It was also the largest wave event in Suva from 1979 to 2015 

(Bosserelle et al., 2015). Cyclone Kina waves are therefore the most likely 

responsible for boulder remobilisation. This category-4 tropical cyclone that 

tracked between Viti Levu and Vanua Levu Islands from NW to SE resulted 

in widespread coastal flooding in low-lying areas across Fiji (Prasad, 1993; 

FMS, 1996). While heavy rainfall, watershed flooding and record-breaking 

discharge in the Rewa River caused by Cyclone Kina were described in detail 

(McGree et al., 2010), the effects and characteristics of the associated cyclonic 

waves have not been reported. Our analyses of boulder remobilisation 

revealed that flow velocity on the studied reefs was N2 m s−1, which was 

powerful enough to move a 28 m3 boulder for 33 m. A 1D wave simulation 

also shows this event could have generated a 3.8 m s−1flow at zone II reef edge 

(Fig. 8). In comparison, although the recent Cyclone Winston of February 

2016 was a stronger category-5 system, its track direction towards northern 

Viti Levu spared Suva from the full brunt of enormous waves that devastated 

other places in the Fijian Islands (Terry and Lau, 2018). In villages behind our 

study site, several houses and trees were destroyed by strong wind. The 

villages were not flooded and no reef boulders were remobilised (A. Balawa 

of Waiqanaki Village, 6 June 2016, Personal Communication). 

 

Fig. 8. Modelled storm wave flow velocity on NL Reefs along A-A′ transect. The maximum Eularian 

current velocity (u (m s−1)) was determined in zones I and II for each of the model runs from Hso 

(offshore significant wave height) = 0.5 m to 9.5 m, at 0.5 m interval. Dashed lines for sliding (the 

transport mode that requires lowest flow velocity) and lifting (the only transport mode for 

emplacing joint-bounded boulders) correspond to the lower and upper boundaries required to move 

boulders by the respective transport mode as presented in Fig. 7. 

Not every remobilised boulder was orientated perpendicular to the flow 

direction, with some aligned oblique to the observed transport directions. This 

anomaly can be explained by the short-period of the wind-driven waves that 

moved them. Long axes of boulders may oscillate at the onset of transportation 

before eventually aligning perpendicular to flow, as demonstrated in wave tank 

experiments by Nandasena and Tanaka (2013). Taking into account the short 

transport distances (12–18 m) of the oblique-orientated boulders, it is likely that 

sufficient wave energy was not exerted for a long enough (unquantifiable) period 

of time to realign the long axes of the boulders with the flow direction as 

expected. 

The discussions above and local villagers' reports consistently confirm that 

NL Reefs are subject to strong waves generated from both cyclone and tsunami 

waves. Making the tsunami more unpredictable in this area is the fact that the 

NL reefs may fail without the trigger of a noticeable earthquake. We revealed 

that sections of Lami reef front have failed between 1954 and 1978, a period 

without a significant earthquake occurring within 400 km of the locality (NOAA 

Global significant earthquake database, 2016). This slope failure was possibly a 

delayed response to the 1953 earthquake-landslide event. Indeed, following the 

1953 event, the Fiji Geological Survey observed cracks near the seaward edges 

of the reef flats on the NL Reefs (The Fiji Times and Herald, 1953b). These 

cracks are mostly parallel to the curvature of the reef edge, suggesting they were 

tension features that developed when buttressing support of the reef front was 

removed at depth by the 1953 tsunamigenic submarine slope failure (Atkinson 

and Collen, 2000; Rahiman, 2006). Later, sometime between 1954 and 1978, the 

1400 m2 reef scarp section at Lami Reef failed along these lines of weakness, 

perhaps triggered by strong swells or minor seismic tremors — this time without 

generating a tsunami. Nevertheless, reef front failures are potentially 

tsunamigenic. Thus, the occurrence of non-earthquakeinduced reef-front 
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collapse (in addition to earthquake-induced failure) must nonetheless factor into 

a full appreciation of local tsunami risk, and more specifically, in identifying 

possible future local tsunami sources in the vicinity of Suva. This risk is 

especially relevant as tension cracks running parallel to the modern reef front are 

still visible on NL Reefs today (Fig. 9). 

 

Fig. 9. One of the tension cracks observed on Lami Reef. These features appeared after the 1953 

tsunami as buttressing support below the reef was lost in the submarine slope failure. 

5.3. Challenge in determining the timings of pre-historical landslide-tsunami 

events from boulder age-dating 

Age-dating of boulders derived from the living reef framework may 

disclose the timing of the pre-historical HEW events that produced them, 

based on the assumption that the events in question killed living corals by 

removing them from their natural accommodation space at the reef front (Yu 

et al., 2004). This assumption has been validated by prior workers when 

mortality ages of corals in the fabric of large boulders coincide with known 

historical HEW events (e.g., Araoka et al., 2010; Yu et al., 2012). 

However, identifying past occurrences of landslide-tsunamis from boulder 

age-dating is challenging. A fundamental problem that can hinder the 

application of coral mortality ages for timing of HEW events is that the 

method does not work if a HEW event quarries older parts of dead reef 

framework rather than living corals. Carbonate samples taken from six large 

boulder surfaces on NL Reefs were dated to the mid- to late-Holocene 

(approximately 5000–2600 year BP), in contradiction with local accounts 

suggesting these large boulders were only observed on the reefs after the 1953 

tsunami. One hypothesis is that the villagers' reports were erroneous and the 

large boulders have been sitting on the reefs for thousands of years. However, 

this notion can be rejected considering the boulder erosion rate and past sea 

level. First, weathering of carbonate boulders on this intertidal reef flat is high. 

The tidal range is up to 2 m, and in situ mechanical abrasion by sandarmoured 

wave action is effective each tidal cycle. Moreover, we observed significant 

bioerosion by grazers such as sea urchins and chitons (Fig. 10). On the reef 

crest of nearby Nukubuco Reef (see Fig. 1 for location), Appana and Vuki 

(2003) measured bioerosion by Echinometra sp. sea urchins at rates of 35–37 

× 10−3 kg m−2 day−1, which extrapolates to 12.8–13.5 kg m−2 year−1. With this 

high rate of bioerosion, it is not likely that the dated large boulders were 

preserved for 2600– 5000 years. Second, maximum sea level between 4630 

and 3480 year 
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Fig. 10. Active bioerosion on carbonate boulders by various intertidal fauna: (a) chitons; (b) boreholes of Lithophaga mussels, with parallel traces possibly from chiton grazing; (c) and (d) deep sea-urchin 

crevices. Bioeroder identification following Kázmér and Taboroši (2012), kindly confirmed by Prof. Miklos Kázmér (November 2016, Personal Communication). 
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Fig. 11. Conceptual schema proposed to account simultaneously for the scalloped plan morphology of NL Reefs by tsunamigenic submarine landslides and the deposition of carbonate boulders of 

various ages on the reef flat by the associated tsunami. Left: plan views showing the hypothetical sequence of submarine landslides leading to the modern reef-front outline. Right: cross-sections of 

the reef front at Lami Reef. The timings of all pre-1953 submarine landslide events are unknown, so mid-late Holocene sea-level changes are omitted. (a) Before the earliest submarine landslide, 

youngest living corals are growing on the outermost reef front. (b) Landslide off Lami Reef removes the youngest section of reef. Tsunami generated by the landslide excavates the reef front and 

deposits carbonate boulders on the reef flats. Older, dead reef is now exposed at the reef front. Reef building by lateral accretion recommences, giving a hiatus in reef age. (c) Subsequent landslide 

fails off Namuka Reef, and the resulting tsunami quarries new boulders from Lami Reef front. Lateral reef building continues without a hiatus in reef age. (d) The 1953 tsunamigenic landslide fails 

offshore of Lami Reef following an earthquake. Some 30–50 m of Lami Reef front is removed in the landslide, taking with it some old boulders. Reef materials up to 5000 years old are 

simultaneously dislodged to form another set of new boulders. 
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BP was 2.1 m above present sea level at SE Viti Levu (Lal and Nunn, 2011). If 

boulders were deposited on the reef flats at times of higher sea level, they would 

have been emplaced on a higher reef flat surface on which pedestals form beneath 

the boulders through thousands of years. The absence of any pedestals (rochers 

champignons), or traces of them, in turn support the theory that boulders were 

deposited in more recent times, which is in line with the observations reported. 

Some potential sources of error in using carbonate age-dating for timing pre-

historical HEW events have been discussed in the literature. For example, Yu et 

al. (2012) found that coral ages on the same boulder can differ by 30 years when 

different species of corals (one species with low uranium concentrations) are 

sampled for U-Th dating. Terry and Etienne (2014) demonstrated that ages of 

coral on the top and base of the same boulder may differ by a few hundred years. 

However in this study, the time discrepancy between dated coral mortality (i.e., 

2982–604 BCE) and the actual event that emplaced the boulders (1953 CE) is on 

millennial timescales. This discrepancy raises two linked questions: (1) why 

boulder ages predate the 1953 tsunami by several millennia? and (2) might such 

knowledge be helpful in highlighting the scenarios of landslide-related reef-front 

retreat and associated tsunamigenic boulder deposition on coastal platforms in 

the study area? 

To address such questions, we propose the conceptual model illustrated in 

Fig. 11. The bathymetry of Suva Canyon offshore from Rat-tail Passage, and the 

indented reef fronts around the passage opening, suggest the occurrence of 

several submarine slope failures at unknown times in the past, prior to the 1953 

event (Rahiman, 2006). Scalloping and arcuate bight-like structures along reef 

margins are features of offshore collapse (Fairbridge, 1950; Mullins and Hine, 

1989; Terry and Goff, 2013). Such collapses remove the youngest reef and 

expose older parts of the reef framework. Any tsunami generated by subsequent 

slope failure that occurs before significant lateral reef accretion by new growth 

in the landslide scar may then detach clasts from the older reef-front framework, 

as well as from adjoining younger segments of reef front. All clasts deposited on 

the reef flats will appear to be ‘new’ boulders. The model demonstrates how the 

mixed mortality ages of many coral boulders would be unrepresentative of the 

timing of the tsunami responsible for their production. In the current situation, 

different timing and locations of individual slope failures within the mapped 

composite landslide scar can thus explain how 1953 boulders exhibit a range of 

coral mortality ages and co-exist in relative proximity along the modern edge of 

NL Reefs. Given these limitations, the return period of tsunamis in the Suva 

remains uncertain. Our model has a major implication for similar studies of this 

nature. Attempting to ascertain the timing of past tsunami events by age-dating 

carbonate boulders derived from reef-front sources is ill-advised at sites where 

local submarine landslides are the cause of both reef-front collapse and 

tsunamigenesis. In such circumstances, the time difference between surface coral 

age and actual boulder transport can be on the order of a thousand years, hence 

alternative methods for identifying tsunami timings are needed. 

6. Implications and conclusions 

A boulder field created primarily by a landslide tsunami was investigated in 

detail for the first time. A main finding is that when a tsunami is triggered by a 

local reef failure, the boulder distribution is similar to that created by storm 

waves: it is characterised by short transport distance and clast landward-fining 

trends due to the relatively short tsunami wavelengths and periods. In the case of 

NL Reefs, tsunami boulders are distinguishable from storm boulders by their 

larger sizes because of the lower storm wave regime at this locality. However, 

this size difference is not always the same. The differentiation between storm 

and tsunami boulders would be challenging in places where storm waves are 

capable of emplacing larger boulders (e.g., blocks up to 71.5 m3 were lifted by 

Typhoon Haiyan waves in the Philippines (Kennedy et al., 2017); a 60 m3 boulder 

was emplaced by Cyclone Winston on Taveuni of Fiji (Terry and Lau, 2018) — 

both larger than the largest tsunami boulder identified in this study). Therefore, 

when investigating pre-historical HEW event characteristics from boulder 

deposits, it is easy to regard landslide tsunami boulders as storm boulders due to 

the higher occurrences of the latter event. As a result, the hazard of landslide 

tsunamis may be overlooked on some coastlines. Indeed, many local tsunamis 

may not be recorded if the coastline is sparsely populated. A tsunami at Mangaia 

in the Cook Islands in 2010, probably caused by a submarine landslide, is a 

modern example (Goff, 2011). The author highlighted that volcanic-associated 

submarine slope failures are relatively common among Pacific island countries 

due to the volcanic origin of many oceanic islands. Such failures are potentially 

tsunamigenic, but may only be identified by a detailed bathymetric survey for 

submarine landslide scars, and with the presence of boulder and fine sediment 

deposits onshore. This current study of the NL Reefs landslide tsunami deposits 

can be used as a reference set in identifying possible pre-historical local 

submarine landslide tsunami occurrences. This reference set will be particularly 

useful for regions where storms and earthquakes are rare, such as the equatorial 

central Pacific. 

An unexpected finding is that age-dating of the largest tsunami boulders 

yields coral mortality ages that are inconsistent with the 1953 event that was 

responsible for their emplacement. To explain this, we propose a conceptual 

model (Fig. 11) based on repeated episodes of tsunamigenic submarine 

landslides, which remove sections of the reef front through collapse. The 

model accounts for the discrepancies of millennial proportions between 

tsunami timing and the 5000–2600 BP ages of the coral fabric comprising the 

‘new’ clasts that were deposited. Our principal recommendation is that where 

local tsunamigenic submarine failures are the cause of the reef-front collapse, 

as demonstrated by the resulting arcuate scarps in the reef plan 

geomorphology, age-dating of the reef-derived clastic deposits should not be 

used as a proxy for determining the timing of either the landslides or the 

tsunamis. 

Although the recurrence interval of tsunamis is still undetermined, Suva 

city and its surrounding coastlines are still at risk of tsunamis generated by 

landslides along the steep headward margins of the submarine Suva Canyon 

that lies immediately offshore. Tsunamigenic submarine slope failures may 

occur with, and possibly without, accompanying earthquakes. Waves from 

tropical cyclones also play a role in reef front erosion. Future work should 

focus on identifying the return period of the Suva tsunamis, and should include 

the threat of nonearthquake-induced slope failures in coastal risk assessments 

and preparedness initiatives in the SE Viti Levu area as coastal development 

rapidly expands. 

Supplementary data to this article can be found online at https://doi. 

org/10.1016/j.sedgeo.2017.12.017. 
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