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Fractional-order models of time delay systems using Walsh
operational matrices
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Abstract— Fractional-order modeling is recently attracting
the attention of researchers in many disciplines of science and
engineering. In this paper, a simplified way to identify systems
is proposed using Walsh functions. The complex procedure
for system approximation in fractional-order domain has
been reduced by converting the complex fractional calculus
equations into simple algebra and therefore it allows the esti-
mation of the implicit time-delay in the system together with
other model parameters. The orthogonal Walsh operational
matrix is employed for the assessment of the unknown system
transfer function. The presented method does not require any
prior knowledge of the transfer function structure or partial
information about fractional differentiation order and facili-
tates low order model using time response data without and
with considering the influence of noise. Numerical analysis
and practical study on DC motor speed control system show
the efficacy of the presented approach without additional
filtering or signal smoothing and an extensive computation
burden.

I. INTRODUCTION

The concept of fractional calculus (FC) has become
more interesting and easily applicable with the advent of
readily available powerful computers. Among its recent
applications in signal processing, it has provided a means
to tackle previously intractable problems related to com-
plex dynamics representation [1]. Using fractional-order
derivatives, we can observe more realistic behavior for
real-world phenomena and physical systems. However, it
is not easy to deal with fractional derivatives of input and
output signals. Most classical integer-order (I0) methods
for modeling cannot be directly applied for the estimation
of a fractional-order model (FOM).

Fractional order modeling has been used for various
applications. Modeling of supercapacitor [2], fractional
filter design [3], fractional oscillators [4], servo system [5],
lithium-ion batteries [6], diffusion process [7], viscoelas-
ticity [8] have been well explained using FOMs.

So far, various techniques have been used to address the
problem to identify the fractional order of the operators.
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The simple approach is to use the operational matrix into
the system equation. This approach converts fractional
derivative of signal into the matrix-vector form so the
problem of complex FC calculation can be avoided.

Frequency domain techniques have been proposed in [9]
and [10] for the estimation of system parameters and time
delay. Narang et al. [11] proposed a linear filter based
identification method. Victor et al. [12] approximated non-
integer order and other parameters of FOS. They used
simplified refined instrumental variable method with gradi-
ent based algorithm. A time-domain identification method
using adjustable fractional order differentiator based on
recursive least squares algorithm is illustrated in [13].
Ahmed [14] presented identification method using step
response data assuming that the fractional orders were
known. Nie et al. [15] proposed techniques using three
points data (TPD) on the step response and single-variable
search (SVS). More recently, block pulse functions were
used by Tang et al. [16] to make block pulse operational
matrices (BPOM) for FOS with time delay.

Although the orthogonal basis functions are becoming
very popular in fractional-order identification, the chal-
lenge is yet to address when the system has a time delay.
Most studied so far for fractional order identification are
either only those with no time delays or those that require
some initial information to estimate the parameters of
the system model. In most reported methods, the time
delay estimation is treated separately from the estimation
of model parameters. So, how to identify the FOS more
accurately with less prior information is still an open
problem.

This article proposes an approach, via the Walsh func-
tions, to estimate both model and time delay parame-
ters together from output signal data generated after a
single step or random input sequence signal. The Walsh
operational matrix (WOM) can be obtained using Walsh
orthogonal basis. It can convert the complex integral-
differential equations of any fractional orders into simple
algebraic equations. Without having prior knowledge of
order or structure of the transfer function, fractional first
order model can be identified based on input-output data. It
has given overall more simplicity and accurate estimation
without much computational complexity.
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II. BASIC CONCEPTS
A. Definition of fractional calculus

Fractional calculus is a generalization of non-integer
(real) order integration and differentiation and its operator
is generally defined as

da
T o >
o 1 a=0;
oDy =9 ¢ (D
/(dT)_O‘ a<0;

a

where a and t are the bounds of the operation and « (o €
R) is the order of operation. In our work, we use the
Riemann-Liouville (R-L) definition given by
t
1 d\" / f(7)
P(n—a) \dt (t

oD{f(t) = dr ()

_ T)ochlfn

where n —1 < o« < n,n € N, and I' denotes gamma
function.

Suppose the FO derivative and integral are represented
in the Laplace domain with zero initial. Then [17],

LD} (0] = 5°F(s) ®
LU F(2)] = 5 F(s) @

where s is a fractional Laplacian operator.

B. Walsh functions

Basically, the Walsh functions are the complete set of
orthogonal basis functions developed by J. Walsh in 1923
[18]. From technical point of view, they have similar
properties with the classical trigonometric sine and cosine
sets of orthogonal functions. Therefore, each function is
either even or odd with respect to half of the interval, with
neither function vanishing identically on any sub-interval.
However, they take only the values 1 and —1 which make
them simpler than trigonometric functions [19].

Consider an arbitrary signal x(¢) which is absolutely
integrable over an interval [0,1) and so can be expanded
into Walsh series as [20],

M

> ciwi(t) = CHWa(t)
1=0

2(t) = 5)

1
where, ¢; = [ w;(t)z(t)dt is the Walsh coefficient, Cs =
0

[co,c1,...,car—1]T is the Walsh coefficient vector and
W (t) 2 [wolt),wi(t), ..., wy—1(t)]T is the Walsh
function vector. It is preferable to take the dimension
number M as a power of 2.

After applying a linear transformation between block-
pulse and Walsh functions, one can derive another form
of Walsh functions as [20]

Wi (t) = Qarx () (6)

where 15 (t) represents block pulse functions and Q7 x as
is an M-square Walsh matrix.

III. WALSH OPERATIONAL MATRIX FOR FRACTIONAL
ORDER INTEGRATION

Walsh functions are piecewise constant functions and
analytical expression for WOM of integration can be
derived by using operational matrix of integration of
block pulse functions [16]. The integration of block pulse
functions can be written as,

(I am)(t) = Fatbum () @)

where F,, is the M-square generalized operational matrix
of fractional order integration (FOI) and o > 0 is the real
number. Suppose, the fractional integration of the Walsh
function W, () is expressed as above then,

(I“Wr) (¢) (8)
where P¢

o 18 defined as a WOM. With the use of (7)
in (6), one can get the integration of Wj,(¢) as

(IQWJW) (t) ~ QZ\/IXMIO[’L/JA4(t) ~ QZ\/IXMFawM(t) )

From (8) and (9), we write the simplified expression of
WOM for FOI as

POt

M x M

~ P¢ WM(t)

M x M

~ 0 FQ7!

M x M

(10)

M x M

IV. DELAY OPERATIONAL MATRIX FOR WALSH
FUNCTIONS

It is to mention that the operational matrix of FOI will be
different when a time delay 6 appears into any absolutely
integrable function. In order to design the operational
matrix of the delayed Walsh function, the shifted block
pulse functions ¢y, (¢t — 0) can be taken as

Y (t —0) = Evar(t) (11)

where E is the M-square generalized delay operational
matrix [16]. Similar ways, we can take the delayed Walsh
function Wy (¢t — 6) as in (11) and write

Wit —0) = ZWn(t) (12)

where Z is the M-square delay operational matrix of
Walsh functions. Using (6), Wy, (t — 6) can be expressed
as

WM(t - 9) ~ QMxMwM(t - 9)'

Here, (13) states time delayed Walsh function on the
interval [0, t¢] and ¢ > 6. Now from (12) and (13), we

13)
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get
ZWM(t) zQMxMU)M(t—H) (14)
Substituting (6) and (11) into (14), one obtains
ZQMde}M(t) ~ QMXMEd}M(t) (15)

Finally, the Walsh delay operational matrix Z can be
obtained as
EQ!

M x M

7~ 0 (16)

M x M
Through an algebraic rearrangement of the terms, the
fractional integration on Wy (t — @) can be rewritten as

(IQWM)(t—H) ~ Z(IQWM)(t) ~ ZP® W]w(t) (17)

M x M

Here, (I®Wys)(t — 6) can be obtained simply by matrix
multiplication of Wy,(t) with P7 — and Z. Therefore,
integration of function is obtained by algebraic matrix
multiplication without calculus terms. It is worth noting
here that the application of operational matrices omits
the complex calculation of fractional-order equations and

reduces complexity of system modeling.

V. PROPOSED TECHNIQUE FOR FRACTIONAL ORDER
MODEL WITH INPUT TIME DELAY

Consider a general continuous-time single input single
output (SISO) fractional order system with time delay
described by the following differential equation:

> a;DYy(t) =Y b;DPu(t - 0) (18)
i=0 =0

where a;(i = 0,...,n) and b;(j =0, ...,m) are arbitrary
real numbers, «;(i =0,...,n) and 3;(j =0,...,m) are
fractional differential orders, y(t) and u(t) are the output
and input of the system, respectively. Equation (18) can
be expanded as

an D" y(t) + an_1 D" 1y(t) + - - - + agD*y(t) =
b D u(t — 0) + b1 DP=1u(t — 0) + - - - + boDPou(t — 0) (19)

If we integrate both sides of (19) by fractional-order c,,
we can easily write

any(t) + an 1 170ty (t) + - -+ ag I 0y(t) =
bmlan_ﬁnlu(t _ 9) + bmiljan_ﬁmflu(t — 9) + e +

bo I ~Pou(t — ) (20)

If the output and input of the system is expressed in terms
of Walsh functions, then

y(f) ~ YTW]W (f)
u(t —0) ~ UTWy(t—0) 1)
where YT = [y1,y2,...,yn] and UL = [uy, ug, ..., un].

Using (8), (12) and (21), the following algebraic terms can

be derived:

Ion ey (f) m YT (Wi (1))

YT Pon—cn1 Wy (t)

M x M

Q

(22)
and

Ianfﬁm—lu(t _ 9) ~ UTIanfﬁm—IZ(WM (t))
- UTZP W @

Then (20) can be written as

YT (and + @y PE7 0" 4+ o PO ) &

M x M M x M

UTZ(meanf,Bm + bm7lpan7ﬁm—l 4x bopanfﬂu)

M x M M x M M x M

(24)

Finally, the output y(t) can be calculated from (21) and
(24) as

n—1

m
= (Z bjP;;;:f”) (I D P)
=0 i—0

W (t)

(25)
(25) is an algebraic expression with matrices Z and P that
contain the modeling parameters. It can be seen that the
fractional differential equation is represented into a simple
matrix algebraic equation.

VI. SYSTEM MODEL AND METHOD VALIDATION

In order to validate the proposed technique, the proce-
dure is estimating the single pole general transfer function
model that frequently used in practice.

g(s) = boe_es/(also‘ + ap)

Note that the order o makes the transfer function in frac-
tional domain, where o > 0. The above transfer function
represents the continuous-time fractional first order model
with time delay. From (25), system output y(t¢) can be
represented for single pole model of (26) as,

(26)

-1
y(t) ~UTZ (WP, ) (el +aoPs, ) W)
27)
To derive the open-loop transfer function of identified
system, it is necessary to have available some appropriate
datasets from the system. Given that the step response
datasets {udata(k),ydata(k)}g=1,..0m, the method es-
timates the unknown transfer function parameters. The
proposed technique attempts to solve the problem:

ISTE = min ZZ; [k(y(k) — ydata(k)))?,  (28)

where p is the vector of unknown parameters
(bo,ap,a1,,6), y(k) is the time domain response
of (27) calculated using p, ydata is the collected step
response to fit to y(k). In (28) y(k) and ydata(k) are
the simulated response and collected response data at
time t;, and M is the total number of data points in
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TABLE I
COMPARISON OF IDENTIFIED MODELS

Systems ~Methods Identified models E, x107% E;(%)
g1(s)  Proposed (W/n)  goprrose e T 0.075 1.182
BPOM [16] T g e M 1191 4.720
g2(s)  Proposed (W/n)  rymoarmtsraosste o 2.971 1.482
Proposed (n) e ITIE o Tt i 1.578 1.291
g3(s) Proposed (W/n)  josgrsrien —0.3371s 9.935 2.763
Proposed (n) L —0.9303s 18.550 4.375
TPD [15] e 22.216 2.787
SVS [15] e e 11.466 1.227
ga(s)  Proposed (W/n) ommitamergaarzt Lo 1.804 0.222
Proposed (n) 1_08]05,';4; +0‘9;59670'87498 10.132 3.157
TPD [15] Toomegtmrrgge o ee 4434 2.967
SVS [15] ooz T 1.928 1.094

w/n:= without noise, n:= with noise

the collected step response. This routine aims to find the
model parameters that would ideally reduce the integral
of squared-time-weighted-error (ISTE) to zero. The
MATLAB function £solve is used to calculate the best
estimated parameters which satisfies the above objective
function in (28).

Following benchmark examples from literature are con-
sidered to show the effectiveness of Walsh functions for
solving fractional order differential equations. Two exam-
ples are fractional-order systems and the other two are
integer order systems.

g1(s) = ﬁe—% (29)

g2(5) = 105118182—!0»18 e (30)
93(5) = (952+;;:11)(s+1) BN CD
ga(s) = % 0o (32)

A. Numerical analysis

In order to assess the performance, both the time and
frequency domain errors are calculated for all examples
studied. In some cases, even though identification method
give the close approximations in one domain but deviates
too far away from the real system response in other
domain. To represent better performance, the identification
error should be small in both time and frequency domains.
Moreover, the closeness of estimated model and true model
can be demonstrated via step response in time domain and
the Nyquist plot in frequency domain.

The fitting error of the identified models in comparison
to techniques in recent literature [16], [15] is justified
through the time domain identification error, E; and fre-
quency domain identification error, Ey. The widely used
fitting error of time domain response over the transient

period,

| M
E, = i ; [y(k) — ydata(k)]z, (33)

and of the frequency response
{‘Q(jw) —9(w)
g9(jw)

can be calculated to quantitatively evaluate the accuracy.
Here, g(jw) is the frequency response of the actual system,
§(jw) is the frequency response of the identified model and
w, is the cutoff angular frequency when phase of g(jw,)
equals to —.

Table I shows the identified transfer function models
with/without measurement noise along with respective
models derived using other methods [16], [15]. For all
examples, even a low order system model developed by the
proposed method is very close to that of the actual system.
Fig.1 shows step response and Nyquist plot comparison
for g4(s). The proposed method resulted a much better
match of step response in the time domain, also provided
an excellent match in the frequency domain.

Ey = max

we[0,we]

X 100%} (34)

Im

0 5 10 15 20
time [s]
(@ (b)
Fig. 1. Nyquist plots for g4(jw): 1. actual 2. proposed 3. TPD [15]

and 4. SVS [15]

B. Effect of different types of input excitation

Generally, step signal is used as an input to generate
output ydata. To test the proposed method, different input
signals have been used. A pseudo-random binary sequence
(PRBS) signal is used as an input signal for g; (s) as shown
in Fig. 2. Again, the proposed method identifies the model
very close to the actual system. Also, with mix sine wave
input u(t) = sin5t 4+ 0.5sin3.1¢ + 0.6sint, it estimates
accurate model for g4(s) as shown in Fig.3.

C. Effect of noise

Noise is an unavoidable factor of the real-world systems.
Therefore, to get the sense of realistic condition, it is
essential to validate the identification technique in the
presence of noise to design robust control for the given
system. To verify the usefulness of proposed method, the
system model is estimated in the face of measurement
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Fig. 2. gi(s): 1. PBRS input, 2. actual and 3. identified model
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Fig. 3. ga(s): 1. sinusoidal input, 2. actual and 3. identified model

noise. Let the datasets be corrupted by Gaussian distributed
random noise with signal-to-noise ratio (SNR) value of 20
dB. Fig. 4 compares the step responses of the noisy signal
and fractional-order model obtained with the presented
method for g¢»(s). As can be seen, the method gives
a much better match of the actual system output even
though the output data is noisy. Also, for gi(s), Fig.5

u(t) and y(t)

Fig. 4. g2(s): 1. input signal, 2. noisy output and 3. identified model

shows normalized mean values of all parameters and their
possible range of deviation for different values of SNR.
Normalized value of parameter is obtained by taking ratio
of estimated to true parameter value. The approximation
accuracy increases with the increase of SNR.

D. Effect of data length

The effect of data length M is verified for g (s). Fig.
6 shows normalized mean values of all parameters and

g [—@% —ar —a—b —0|
T 14
R
g 1.05f
N | SN S A— 4
[}
= o095
50
g 0.9f
Z 0 [-74
0 10 20 gyg 50 Inf

Fig. 5. Effect of different SNR on parameter identification

their possible range of deviation for different values of M.
But, for the higher values of M, more time is required for
identification. So, the selection of M is a tradeoff between
accuracy and time. However, for M = 256 acceptable
values of parameters can be obtained with reasonable
speed of the identification process.

1.2F

E [—% —& —a —bh —9] 1
Q
g
S 1
3
[a
g s || I, PSR wh
E
g
= 09r
S
Z.
0 16 64 256 512
Data length
Fig. 6. Effect of data length on parameter identification

E. Real-time experiment

To represent the applicability of the proposed method,
experimental GSMT2014 DC servo system control plat-
form [21] was considered. GSMT2014 is the system of
twin motors based on high-performance motion controller
GT-400 and the intelligent servo drive. The system is inter-
faced with computer for control and data access. The high-
performance motion controller GT400 in the GSMT2014
enables the real control under MATLAB/Simulink. The
laboratory setup for DC servo motor is depicted in Fig.
7. The rated voltage of servo motor is 26V and highest
rotation speed is 3000 rpm. For this experiment, “speed”
was selected as control parameter and experiment was
performed in open-loop configuration. The step input ex-
citation was used as an input with two different values
and output speed data had been collected for identification.
Using available data, the nominal fractional order transfer
function of real system was identified as shown in Table
II. One can compare time responses of identified fractional
model with IO model in Fig. 8 and Table II. Again,
results clearly reveal that the fractional model represents
the actual system more closely than IO model.
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Fig. 8.  Experimentation 1. Real data 2. Identified fractional order
proposed model and 3. Identified integer order model [21]
TABLE II
DC SERVO SYSTEM: IDENTIFIED FO AND IO MODELS
Model type Identified model £t
FO Gri(s) = grmaotimogost 00> 2.1288¢ + 02
10 [21] Gif(s) = gragge 0% 4.5593¢ + 02

VII. CONCLUSION

In conclusion, Walsh operational matrices can help to
transform the fractional differential equations into alge-
braic equations and this facilitates the calculation. Another
merit from the presented technique is to estimate all
unknown model parameters including time delay simulta-
neously. But, its disadvantage is higher computational time
for large value of M. From the results obtained and the
discussions of previous section, it can be concluded that
the proposed method identified the fractional-order time
delay systems accurately without complex calculations
of fractional derivative of input and output signals. The
procedure can deal with the noisy data without additional
filtering or signal smoothing. So, this technique can be
used as a key component for the system modeling.
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