USP Electronic Research Repository

Projected changes in mean rainfall and temperature over East Africa based on CMIP5 models

Ongoma, Victor and Chen, Haishan and Gao, Chujie (2018) Projected changes in mean rainfall and temperature over East Africa based on CMIP5 models. International Journal of Climatology, 38 (3). pp. 1375-1392. ISSN 0899-8418

[img]
Preview
PDF (Projected changes in mean rainfall and temperature over East Africa based on CMIP5 models) - Published Version
Download (253Kb) | Preview

    Abstract

    This study presents potential future variations of mean rainfall and temperature over East Africa (EA) based on five models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and representative concentration pathways (RCPs): 4.5 and 8.5. In this study, climate simulations of two timeframes, a baseline period (1961–1990) and projection period (2071–2100), are compared. The models reproduce EA's bimodal rainfall pattern but overestimate and underestimate seasonal rainfall of October–December (OND) and March–May (MAM), respectively. Rainfall is projected to increase under the two scenarios. Larger increases in rainfall will occur during the OND season than during the MAM season and in RCP8.5 than in RCP4.5. During the last half of the 21st century, EA is likely to warm by 1.7–2.8 and 2.2–5.4 °C under the RCP4.5 and RCP8.5 scenarios, respectively, relative to the baseline period. Scenario uncertainty is projected to exceed model uncertainty from the middle to the end of the 21st century. The central parts of Kenya and the Lake Victoria Basin will witness the highest increases in seasonal rainfall. The probability density functions (PDFs) of future seasonal rainfall show a positive shift and a statistically insignificant increase in variance relative to the baseline. Thus, EA is likely to experience an increase in extreme rainfall events. Understanding the future climate variability in EA is important for planning purposes but these results are based on relatively course resolution models prone to bias and therefore should be used with caution. There is a need for further research on climate projections over EA, including determining the causes of the poor performance of global models in reproducing rainfall climatology and trends over the region.

    Item Type: Journal Article
    Subjects: G Geography. Anthropology. Recreation > G Geography (General)
    G Geography. Anthropology. Recreation > GB Physical geography
    G Geography. Anthropology. Recreation > GE Environmental Sciences
    Divisions: Faculty of Science, Technology and Environment (FSTE) > School of Geography, Earth Science and Environment
    Depositing User: Victor Ongoma
    Date Deposited: 24 Apr 2019 11:44
    Last Modified: 24 Apr 2019 11:44
    URI: http://repository.usp.ac.fj/id/eprint/11450
    UNSPECIFIED

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...