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ARTICLE INFO ABSTRACT

Keywords: This study assesses the performance of ten Regional Climate Model (RCMs) from the latest version of Rossby
CORDEX Centre of Atmospheric models (RCA4) in the simulation of precipitation over Greater Horn of Africa (GHA) from
Greater Horn of Africa 1951-2005. The evaluation was performed against observed data from the Climatic Research Unit (CRU) and
Precipitation

Global Precipitation Climatology Centre (GPCC). Results for mean seasonal analyses demonstrate an under-
estimation of March-May (MAM) and June-September (JJAS) precipitation whilst October to December (OND)
precipitation is overestimated. Further assessment on the annual scale depicts underestimation of rainfall.
However, the west to east gradient representing heavier to lighter precipitation and bimodal patterns of the
north to south rainfall band is well captured by most models. The models fairly reproduce precipitation varia-
bility over the southeast region as compared to the northwest parts of the study domain. The mean ensemble
invariably outperforms the individual RCA4 models due to its minimal probability deviance in precipitation in
each zone and throughout the GHA region. The overall evaluation shows weak correspondence of the model data
with observed CRU based on statistical metrics. The top five performing models are: MIROC5, CSIRO, CM5A-MR,
MPI-ESM-LR, and EC-EARTH. Large variations of model performance are noted from one model to model, and
from one region to the other. The ensemble mean of the outperforming RCMs reproduces the rainfall climatology
over study domain with reasonable skill and the findings of this study will be a base for the study of extreme
floods/droughts events in the region.

Regional climate models
Rossby centre atmospheric models

1. Introduction 2017a, 2017b; Ongoma et al., 2018). However, coarse spatial resolu-

tions of the GCMs that are unable to capture the mesospheric processes

The response of climatic features to ongoing global warming has
been marked by increment in the intensity and magnitude of extreme
events in most parts of the world (IPCC, 2014; Alexander, 2016).
Consequently, sharp decline in light precipitation events and wet spell
length coupled with increase in dry days and dry spells continue to pose
a threat to livelihoods of communities who are dependent on rainfall for
livelihood (World Bank, 2012). This calls for continuous assessment of
spatiotemporal climatic characteristics in a bid to infer the evolving
trends for both hydrological cycles and energy balance across different
regions (Hu et al., 2019).

Over the years, many studies have employed the Global Climate
Models (GCMs) in the appraisal of global and regional climate patterns
(Christensen et al., 1997; Maidment et al., 2015; Almazroui et al.,
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and dynamics driving the occurrence of such physical processes have
prompted the idea of employing high resolution and dynamically
downscaled regional climate models (RCMs) (Pal et al., 2007; Wilby
and Fowler, 2010; Giorgi and Gutowski, 2015). Presently, many in-
stitutions continue to use RCMs for varying applications in climate
studies (IPCC, 2014)

The development of RCMs has contributed immensely to the un-
derstanding of climate processes including extreme precipitation pat-
terns and future projections of temperature trends in many regions of
the world (Nikulin et al., 2012; Jacob et al., 2014; Russo et al., 2015).
This is attributed to a flagship project from the Coordinated Regional
climate Downscaling Experiment Program (CORDEX, https://www.
cordex.org/) through World Research Climate Program (WRCP) that
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Fig.1. a Map of the study area showing the location of Eastern African with enclosed African continent map.Fig. 1b (Nicholson, 2017) show the zone A represented in
the northern sector (5° N - 20° N, 30° E — 51.39° E) and the southern sector defined by equatorial rainfall regime as zone B (12° S — 4° N, 28° E — 42° E). The white line
superimposed upon the schematic diagram separates the zone A and B respectively.

dynamically downscaled GCMs to a high-resolution climate models
available for end users (Giorgi et al., 2009).

Whereas improved performances have been reported in many re-
gions that have employed RCMs, studies over conducted over Africa
have reported the need for in depth evaluations to ascertain limitations
of various models that could arise due different parameterizations
employed or lateral boundary conditions (Gbobaniyi et al., 2013; Endris
et al., 2013; Akinsanola et al., 2015). Christensen et al. (1997) reported
the drawbacks of RCMs in their inability to improve the systematic
errors arising from large-scale circulations that are used as driving
models.

Over East Africa, a number of studies have evaluated the existing
RCMs in order to ascertain their performance (Indeje et al., 2000;
Anyah et al., 2006; Segele et al., 2009; Diro and Tompkins, 2012; Endris
et al., 2013, 2015; Luhunga et al., 2016; Osima et al., 2018). This trend
is observed in other regions across African. For instance, west Africa
(Diallo et al., 2012; Sylla et al., 2013; Akinsanola et al., 2015; Klutse
et al., 2016), central Africa (Haensler et al., 2013; Vondou and
Haensler, 2017; Fotso-Nguemo et al., 2017), south Africa (Favre et al.,
2015; Kalognomou et al., 2013; Pinto et al., 2015; Maure et al., 2018),
Arabian Peninsula (Almazroui, 2019), and north Africa (Tramblay
et al., 2013).

Majority of these studies were however, based on the first phase of
the CORDEX where most model centers employed ERA Interim re-
analysis (Dee et al., 2011) as driven runs (Akinsanola et al., 2017). The
second phase entail GCMs that participated in Coupled Modelling In-
tercomparison Project (CMIP5) (Taylor et al., 2012) for downscaling
the historical run and future climate projections. An example is the
latest version of regional climate model (RCA4) developed by the
Swedish Meteorological and Hydrological Institute (SMHI) (Samuelsson
et al., 2012). The RCA4 model is advanced from High Resolution
Limited Area Model (HIRLAM; Unden et al., 2002), which is a numer-
ical weather prediction (NWP) forecasting system, resulting into en-
hanced physical and dynamical parameterization (Strandberg et al.,
2014; Tamoffo et al., 2019).

Few studies have evaluated such recent developments in RCMs over
EA region (Luhunga et al., 2016; Souverijns et al., 2016; Mutayoba and
Kashaigili, 2017; Osima et al., 2018). Endris et al. (2013) performed an
overall assessment of ten RCMs over GHA region. The study employed
daily data including the old version of RCA35. The report noted some

wet biases during the summer rainfall over northwest sides of study
domain as well as the eastern sides. Over Uganda, Kisembe et al. (2018)
observed the impuissance of the models to reproduce ‘short’ and ‘long’
rains despite the positive mode of El Nino Southern Oscillation (ENSO)
or Indian Ocean Dipole (I0D).

Although, most studies have reported a reasonable performance of
mean ensemble of RCMs in reproducing the annual cycle, trends and
inter-annual variability of climate features over the study domain, the
individual models still exhibit potential uncertainties that needs to be
improved before the datasets can be employed for climate change im-
pact analysis over the study region. Stensrud (2007) points out a
number of factors contributing to model error over the study domain
among them being convective parameterization and limited resolutions
driving boundary models.

The aim of this study is to assess the performance of the latest
version of monthly RCMs simulations that were dynamically down-
scaled from CMIP5 GCMs by Rossby Centre Regional Climate Models
(RCA4), developed by SMHI under CORDEX-Africa. With advent of
extreme events that continue to affect the region characterized by in-
crease (decrease) in drought (rainfall), understanding the performance
of the best model will be significant in exploring the projected changes
for planning purposes. The coverage of the remaining sections in this
paper is as follows: Section two highlights study area, datasets em-
ployed and methods whereas third section gives the findings and the
corresponding discussions. Lastly, conclusion and recommendation are
presented in Section 4.

2. Data and methodology
2.1. Locality of study

The GHA covers: Burundi, Djibouti, Ethiopia, Eritrea, Kenya,
Rwanda, Tanzania, Somalia, South Sudan, Sudan, and Uganda (Fig. 1).
The domain is located astride the equator lying within 11.74° S - 20° N,
and 21.84° E - 51.39° E. In this study, the area was further divided into
two main zones: northern section defined characteristically by summer
rainfall as Zone A (5° N — 20° N, 30° E - 51.39° E) and the southern
section defined by equatorial rainfall regime as Zone B (12° S - 4° N,
28° E — 42° E) (Fig. 1b; Nicholson, 2017). These zones are identified
following the earlier studies that categorized whole Africa into fifteen
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unvarying sub regions (Indeje et al., 2000; Indeje and Semazzi, 2000)
who categorized regions superimposed upon intricate geomophology.
The varying elevation of the region influence local circulation, by en-
hancing the buoyancy which results in local precipitation (Mukabana
and Pielke, 1996; Indeje et al., 2000, Indeje and Semazzi, 2000;
Camberlin and Okoola, 2003; Oettli and Camberlin, 2005; Ogwang
et al., 2014).

The climate of the study region classified as tropical climate is
characterized by dry climate anomaly despite being located in equa-
torial belt. The rainfall patterns are highly heterogeneous, influenced
by a number of factors over space and time. Zone B of the region is
characterized by two rainy seasons, MAM and OND (Maidment et al.,
2015; Ayugi et al., 2016, 2019; Ongoma and Chen, 2017) whereas Zone
A experiences rainfall gradient during local summer of June to Sep-
tember (JJAS). The shifting of convective clouds belt, Inter Tropical
Convergence Zone (ITCZ) is characterized by shift in the wind direc-
tion, from a northerly direction during December to February season
and southerly direction during boreal summer impacting largely on the
wet seasons observed (Nicholson, 2008; Hastenrath et al., 2011).

2.2. Data

2.2.1. Reanalysis datasets

Limited quality of observed data is still a challenge in evaluation of
model simulations across Africa (Nikulin et al., 2012; Endris et al.,
2013). To overcome this obstacle, this study used two observed re-
analysis monthly datasets to evaluate the RCA4 simulations. The Cli-
matic Research Unit (CRU TS v4.02) precipitation dataset with a 0.5° x
0.5° resolution (Harris et al., 2014) and the latest version of the Global
Precipitation Climatology Centre (GPCC v8) of similar resolution were
employed. The two datasets reproduce the precipitation well, with CRU
slightly outperforming GPCC (Ongoma and Chen, 2017).

2.2.2. Model datasets

This study employed monthly rainfall datasets from ten RCA4 si-
mulations driven by GCMs from CMIP5. Table 1 presents a compre-
hensive list of the GCMs from CMIP5 datasets employed in the study.
The CGCMs employed were processed based on deterministic approach
of dynamical downscaling of recent version of RCA4 developed by the
SMHI under the CORDEX infrastructure over diverse regions in the
globe (Samuelsson et al., 2012; Strandberg et al., 2014). This study
focused on simulations of rainfall over CORDEX-AFRICA domain (AFR-
44: 0.44 degree ~50 km resolution). All the approximations datasets
are acquired from Rossby Atmospheric Modelling Centre. The data is
accessible through the Earth Systems Grid Federation (ESGF) under the
CORDEX project (https://www.smhi.se/en/research/research-
departments/climate-research-rossby-centre2-552). Moreover, a mean
ensemble of the ten RCA4 simulations was equally evaluated. The
precipitation estimates from the RCM data were provided in terms of
flux (kg/mzs), whereas the observed estimates were provided in terms
of monthly accumulated rainfall amount (mm/month). To address this

Table 1
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problem, precipitation flux was converted into monthly accumulated
rainfall using every month’s data matrix (Eq. (1));

Tmm/month = Ng/min X Nmin/h X Mh/day X Nday/month X Fkg/mZS (1)

where Tpum/monsn 1S the considered month’s data matrix in mm/
month,n,/m, is the number of seconds per minutes,n,,;, , is the number
of minutes per hour, 1,44y is the number of hours per day, Ngay, mons is
the number of days in the considered month, and Fyg/m2s is the con-
sidered month’s original precipitation flux data matrix.

2.3. Methodology

The study employed various scalar accuracy measures to evaluate
RCA4 in reproducing the fundamental characteristics of precipitation
for the period 1951-2005 over GHA. Three rainfall seasons (JJAS for
Zone A, and MAM and the OND for Zone B) were identified for com-
parative analysis in two distinct zones of the study domain. The study
used mean seasonal, annual and inter-annual variations as a way of
assessing the skillful simulation of rainfall over the region. In addition,
a detailed statistical evaluation was employed to compare the model’s
performance. They include correlation coefficient (CC), bias (B), and
root mean square error (RMSE), amongst the reanalysis and simulated
rainfall cycle by the RCA4 models. The mathematical formulas of the
metrics employed are as shown in Egs. (2)-(4):

1 N
B=—> (M-0
NH(I i)

2
cc - en (oi: OD(M; — J\Ti)_
VZio, (0= 02 X, (M; — DEY? 3)
| 1 N
RMSE = | = Y (M — 0;)?
\/N kz::l @

where M and O are the model simulated and observed values, respec-
tively. I refers to the simulated and observed pairs and N is the total
number of such pairs being evaluated. Further details concerning the
employed statistical metrics are available on previous studies (Wilks,
2006; Dinku et al., 2009; Segele et al., 2009; Ongoma et al., 2019).
Moreover, the Mann-Kendall (MK; Mann, 1945; Kendall, 1975) test was
performed to detect trend. In addition, a cumulative frequency dis-
tribution (ECDFs) for all the models runs were compared with that of
observed datasets to determine the symmetries of simulations deviating
from the observed patterns. The ECDFs employed to fit different theo-
retical distributions of the models against the observed as previously
used by Akinsanola et al. (2017).

3. Results and discussion
3.1. Seasonal climatology

First, the ability of RCA4 datasets to reproduce mean seasonal

The description of the Global Climate Models (GCMs) dynamically downscaled by RCA4 CORDEX.

Institute

. Canadian centre for climate modeling and analysis (Canada)
. Centre national de recherches météorologiques (France)
Met office hadley centre

Consortium of european research institution and researchers
NOAA geophysical fluid dynamics laboratory, USA

. Institut pierre-simon laplace, France

Commonwealth scientific and industrial research organization
Max planck institute for meteorology (Germany)
. Norwegian climate centre (Norway)
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National institute for environmental studies, and japan agency for marine-earth science and technology (MIROC), Japan

GCM name Abbreviated name
CCCma-CanESM2 CanESM2
CNRM-CRAFACS-CNRM-CM5 CNRM-CM5
MOHC-HadGEM2-ES HadGEM2-ES
ICHEC-EC-EARTH EC-EARTH
NOAA-GFDL-GFDL-ESM2M GFDL-ESM2M
IPSL-IPSL-CM5A-MR IPSL-CM5A-MR
MIROC-MIROC5 MIROCS
CSIRO-MK3-6-0 CSIRO
MPI-M-MPI-ESM-LR MPI-ESM-LR
NCC-NorESM1-M NorESM1-M
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Fig. 2. Spatial distribution of MAM mean rainfall (mm/month) over Eastern Africa from1951 to 2005 for (a) GPCC, (b) CRU (c) CanESM2, (d) CNRM-CMS5, (e)
CSIRO, (f) ECEARTH, (g) IPSL-CM5A-MR, (h) HadGEM2-ES, (i) MPI-ESM-LR, (j) NorESM1-M, (k) GFDL-ESM2M, (1) MIROCS5, and (m) ENSEMBLE.

climatology of monthly precipitation characteristics over GHA was as- rainfall (JJAS) over Zone A are presented in Figs. 3 and 4, respectively.
sessed. The spatial patterns of mean March to May (MAM) is presented The RCA4 rainfall simulations are consistent with observed datasets:
in Fig. 2 where RCA4 models, together with the mean ensemble are GPCC and CRU in all the seasons. It is evident that the regional meso-

assessed against CRU and GPCC. Further, OND over Zone B and summer spheric features and the north-south oscillation of the ITCZ that have
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Fig. 3. Same as Fig. 2 but for OND.
considerable influence on the distribution of rainfall (Nicholson and rainfall amount recorded was 1800 mm whilst the least amount of

Kim, 1997) are well captured by most models.

In MAM season, most models except for HadGEM2-ES, GFDL- RCA4 products of CM5A-MR, HadGEM2-ES, and NorESM1-M poorly
ESM2M, and NorESM1-M captured west to east slope (Fig. 2). This capture the simulated rainfall over northwest Ethiopian highlands and
symbolizes significant to low rainfall events. The highest seasonal Nile valley basin. The western sides of the study area are characterized

rainfall recorded has a measure of about 810 mm/month. Moreover, the
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Fig. 4. Same as Fig. 2 but for JJAS.
by complex topography and presence of large water bodies modulating 2013; Souverijns et al., 2016).
convective features. The models that perform relatively in MAM season During the OND, most RCA4 models reproduce the precipitation
are: EC-EARTH, MIROC5, MPI-ESM-LR, and mean ENSEMBLE. This patterns depicting heavier concentration of rainfall band over western
agrees with past studies that observed the changes in season coinciding sides along the equator as compared to the eastern gradient (Fig. 3).
with the location of rainfall band over the GHA domain (Endris et al., Most models overestimate the rainfall amount observed except for
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MIROCS5, CSIRO, and CanESM2. The GFDL-ESM2M highly overestimate
the observed rainfall during OND season as compared to all other
models. The observed overestimation by mean ENSEMBLE data points
to the fact that RCA models capture the increase in precipitation despite
underestimation recorded by the models. For summer rainfall over the
Zone A domain, the mean precipitation shows similar pattern as ob-
served by CRU and GPCC (Fig. 4; JJAS). Interestingly, five models
overestimated the observed CRU rainfall while the rest recorded un-
derestimation of the observed precipitation. However, the GPCC had
seven models underestimating the observed precipitation whilst four
noted an overestimation of the same. Relatively higher precipitation is
observed in the northern parts of Ethiopian highlands than Sudan plain
terrains. Mean precipitation amount is relatively consistent in all RCA4
products as compared to large scale differences in observed mean
summer precipitation. The GFDL-ESM2M, EC-EARTH and MPI-ESM-LR
demonstrated similar distribution as observed with overestimation re-
ported, whereas CM5A and CanESM2 show inconsistent spatial patterns
and underestimation performance. Essentially, most studies based on
RCMs or GCMs have reported projected wetting over the study area
(Shongwe et al., 2011; Kent et al., 2015; Ongoma et al., 2018).

From the seasonal climatology, it can be deduced that RCA4 pre-
cipitation products consistently present spatial variations of rainfall
over the study domain. A precipitation pattern over GHA is diverse and
hence small deviation in terms of relatively high rainfall can be ob-
served for different products. All RCA4 products were able to reproduce
the seasonal and spatial variability over the study region with max-
imum amount of rainfall values recorded during summer rainfall and
OND season. However, MAM season presented reasonably agreeable
values as observed based on reanalysis datasets. The large-scale and
local dynamics (Nicholson and Kim, 1997; Saji et al., 1999; Indeje et al.,
2000) governing the precipitation variability over study area are all
presented in the models’ datasets, despite the slight deviation in regards
to mean values. Thus, most model underestimate MAM and JJAS while
overestimation is noted during OND rainfall across the study domain.

3.2. Annual cycle

The annual cycle of monthly precipitation averaged over two sub-
equatorial regions are presented in Fig. 5 and Table 2. It is apparent
that model datasets capture prominent features of the annual rainfall
patterns associated with the oscillation of the ITCZ. The convergence of
the ITCZ leads to increased moisture flux from easterly and westerly
flow during the peak seasons as represented by models and observed
datasets. The low-pressure belt, characterized by convective activities
that enhances precipitation amount often migrates from 15° S to 15° N
between January and July (Camberlin and Wairoto, 1997). This results
in a bimodal pattern (MAM and OND) over Zone B whereas single
boreal summer peak (JJAS) is experienced in Zone A. However, the
models underestimate annual rainfall over the region despite the small
values of RMSE indicating minimal biases in the spatial patterns of the
mean annual rainfall (Table 2).

On the contrary, most models poorly presented the OND peaks with
overestimations observed except for MICOC5 and CSIRO. This agrees
with the recent study by Endris et al. (2013) that reported similar
patterns where RCMs models poorly reproduced the OND peak. The EC-
EARTH model overestimated precipitation in all regions by 68 mm/
year for Zone A and 80 mm/year for Zone B whilst CanESM2 strongly
underestimated the annual cycles in Zone A (Table 2). Similar perfor-
mance of the EC-EARTH model is observed in Central Africa (Fotso-
Nguemo et al., 2017). The RCA4 models performance of under-
estimation (overestimation) of annual rainfall cycle concur with the
findings of the past studies carried out in different places over Africa
(Kalognomou et al., 2013; Luhunga et al., 2016; Mutayoba and
Kashaigili, 2017; Akinsanola et al., 2017; Kisembe et al., 2018;
Warnatzsch and Reay, 2019).

Despite the ENSEMBLE mean’s underestimation of precipitation
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between 74 and 101 mm/year in all regions, it outperforms individual
models. These observations exemplify the need to primarily, identify
suitable models over diverse heterogeneous climatic zones in GHA re-
gion that precisely estimate rainfall amounts. The need for accurate
datasets that can clearly represent the climatic variations in the advent
of increase in extreme events is long overdue in the region that is overly
depend on rainfall for agricultural production. Underestimation (over-
estimation) of long (short) rains continues to cause anxiety in a region
whose climate is termed as a ‘paradox’, owing to uncertainty in the
future of rainfall vis-a-vis the observed.

3.3. Interannual variability

Figs. 6 and 7 illustrate the interannual variability of standardized
precipitation anomalies over the GHA sub-regions from 1951 to 2005.
The anomalies are calculated with respect to the precipitation mean
derived from the full study period.The results for interannual variability
of annual precipitation anomalies for CRU and GPCC show a good
agreement over Zone B as compared to Zone A with high correlation
coefficient of 0.98 while for Zone A is 0.75. The majority of the RCMs
fail to reproduce the year-to-year variations of the precipitations
anomalies illustrating the difficulty to properly simulate fluctuations in
the factors controlling interannual variability of precipitation over
GHA. As for the seasonal rainfall anomalies of the RCMs and their re-
spective ensembles over similar sub-regions of GHA, Endris et al. (2013)
reported a realistic performance by the RCMs over the eastern region as
compared to the northwest in simulating interannual variability of
precipitation. On the other hand, Kisembe et al. (2018) noted better
performance of RCMs in reproducing the interannual variability of the
dry season but fail during rainfall seasons (MAM and OND) even if the
ENSO and IOD signal is correctly simulated with most models. Mean-
while, multi-model mean ensemble depicted unsatisfactory perfor-
mance in both regions, with unrealistic patterns over Zone A. The Ca-
nESM2, CMS5A-MR, NorESM1-M, and GFDL-ESM2M show high
amplitudes as compared to observed data in Zone A. In both sub-re-
gions, the mean ENSEMBLE showed relatively better performance over
Zone B as compared to individual models.

Assessing the models’ accuracy in simulating the interannual
variability provides essential insights on the key drivers of relative
changes in climate over a particular region. This is because large-scale
factors influence the interannual variability of precipitation in most
regions. For instance, over the GHA domain, factors such as seasonal
amplitude of the Maiden-Julian Oscillation (MJO), Indian Ocean SST,
ENSO, monsoon winds, quasi-biennial oscillation (QBO), and IOD have
been observed to have significant influence on interannual rainfall
variability (Indeje et al., 2000; Hastenrath et al., 2011; Manatsa et al.,
2014; Ogwang et al., 2015).

These variables are related with extraordinary precipitation that
lead to flooding or dry conditions over the region (Camberlin and
Okoola, 2003). Pohl and Camberlin (2006) noted the influence of
MJOon occurrence of weather extremes characterized by anomalous
wet or dry situations. However, studies (Black et al., 2003; Owiti et al.,
2008) have ascertained strong variability occurs due to the changes in
the Pacific Ocean and Indian Ocean circulations. For example, the years
1991, 1997, 2004 experienced below average rainfall whilst 1998, and
1999 received above normal rainfall, principally due to changes in
ENSO activities. The extreme events are disastrous in the region. Thus,
the capability of models to simulate observed climatic features provides
an opportunity to identify the best possible models to be employed in
studies and operations across the region. However, the unsatisfactory
performance noted across the sub-regions in simulation of annual
rainfall anomalies presents an opportunity for model developers to
further improve the parameterization schemes in order to improve and
have high skill model performance.
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Fig. 5. Mean annual cycle of rainfall distribution during 1951-2010 over Eastern Africa region for regional models and observed datasets from (a) zone A and (b)

zone B.

Table 2
Mean annual rainfall and the spatial RMSE (mm/month) with respect to CRU
for models and ensemble over GHA region during 1951-2005.

Model data Zone A Zone B

Annual RMSE Annual RMSE
CanESM2 215.28 23.22 842.99 28.4
CNRM-CMS5 346.71 14.57 834.80 36.25
CSIRO 363.89 8.31 748.06 24.34
EC-EARTH 512.75 11.57 1076.27 34.86
IPSL-CM5A-MR 267.60 25.96 966.63 24.68
HadGEM2-ES 358.56 11.71 820.08 35.62
MPI-ESM-LR 446.09 7.17 1044.49 27.86
NorESM1-M 377.33 17.36 826.04 27.68
GFDL-ESM2M 438.82 19.84 956.05 42.69
MIROC5 377.63 10.92 817.41 15.63
ENSEMBLE 370.47 11.29 893.33 25.16
CRU 444.26 0.00 994.63 0.00
GPCC 471.30 0.00 988.46 0.00

3.4. Cumulative distribution function

Analysis obtained from the ECDFs of monthly precipitation is pre-
sented in Fig. 8. The ECDFs offer insight on the frequency of occurrence
of precipitations on monthly basis over the region. Fig. 8a presents
results of Zone A and demonstrates that most models slightly over-
estimate monthly precipitation (in range of 0 to 40 mm/month) over
the region that experience dry climate anomalies. CanESM2 and CNRM-
CM5 models undoubtedly overestimate the rainfall distribution whilst
MIROCS, CSIRO and ENSEMBLE exhibit close amplitude from observed
data in all values. On the contrary, the models EC-EARTH, MPI-ESM-LR,
HadGEM2-ES, and GFDL-ESM2M underestimate the rainfall distribu-
tion between 20 and 60 mm/month.

The results for Zone B of RCA4 distribution with respect to observed
data are shown in Fig. 8b. The performance of models over this region
equally presents higher probabilities of large breadth relative to the

observed datasets. The ENSEMBLE mean shows consistent patterns
despite some variations of overestimation of precipitation of more than
80 mm/month. Furthermore, CM5A-MR and MPI-ESM-LR exhibit si-
milar close patterns as observed datasets. Most models overestimate the
frequency with largest deviations depicted by HadGEM2-ES, CSIRO,
CNRM-CM5, and CanESM2. Nevertheless, the models GFDL-ESM2M,
EC-EARH, and MPI-ESM-LR underestimate precipitation exceeding 100
mm/month.

The ENSEMBLE shows a consistent pattern with the observed da-
tasets for the precipitation occurrence above 50 mm/month over the
larger domain of GHA (Fig 8c). Most of the models overestimate the
precipitation with pronounced amplitude as demonstrated in CanESM2
and CSIRO. The MIROC5, CNRM-CM5, and GFDL-ESM2M over-
estimated rainfall by < 50 mm/month and eventually underestimated
heavier rainfall by > 60 mm/month. The EC-EARTH, HadGEM2-ES,
and MPI-ESM-LR underestimate rainfall occurrence.

The results of these comparisons demonstrate that RCA4 models
capture rainfall variations from one locale to another. The northwest
region (Zone A) characterized by high altitude geomorphology exhibits
overestimations of precipitation by CanESM2, CM5A-MR, and CNRM-
CMS5 whereas Zone B, with dominant plains and low plateaus bordering
Indian Ocean display underestimations by GFDL-ESM2M, EC-EARTH
and MPI-ESM-LR. The overall domain of GHA has the RCA4 under-
estimating rainfall with few models such as EC-EARTH exhibiting large
amplitude of underestimations whilst CanESM2 showing contrary re-
sults. ENSEMBLE mean shows relatively good performance across all
the diverse regions. This agrees with previous studies that reported
improved performance Ensemble mean across diverse climatic zones in
West Africa, based on daily datasets (Akinsanola et al., 2017).

3.5. Trend analysis

A brief of the annual and seasonal rainfall tendencies based on
Mann-Kendall approach is presented in Table 3. The analysis was
conducted over two distinct climatic zones as previously identified in a
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study by Favre et al. (2011). The RCMs exhibit positive trends in annual
rainfall over the two zones with models IPSL-CM5A-MR, MIROCS5,
HadGEM2-ES and ENSEMBLE demonstrating significant positive trends
at 95% significant level over the Zone A.

At seasonal analyses, both the JJAS and local MAM rainfall exhibit
significant decreasing trends as presented in the observed datasets
whereas the OND shows increasing trends. The model IPSL-CM5A-MR
particularly demonstrated a significant increasing trend of the OND
while HadGEM2-ES did during the JJAS rainfall. The increasing trend
of the local JJAS rainfall is in contrast to the observed pattern that

presented contrary tendencies. This finding agrees with the past studies
that reported decreasing (increasing) trends in MAM (OND) over the
GHA regions (Cook and Vizy, 2013; Liebmann et al., 2014; Ongoma and
Chen, 2017). Funk et al. (2008) noted the decrease in the MAM rainfalls
currently standing at 15% decline, is likely to continue on the down-
ward trajectory owing to moisture deficits upstream catalyzed by the
warming of Indian Ocean interrupting moisture transport.

The impact of the observed decline in rainfall is of great concern to
society that is already food insecure coupled with growing population.
In general, most models exhibit no significant trends over Zone B
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Fig. 7. Same as Fig. 6 but forzone B.

region. However, most of the RCA4 approximations were in agreement
with the observations with slight difference in veracity level. The best
models for annual and seasonal trend rainfall simulation are: IPSL-
CM5A-MR, HadGEM2-ES, and the mean ENSEMBLE. Luhunga et al.
(2016) in a study of RCMs CORDEX performance over Tanzania pointed
that the observed tendencies in trends analysis of RCMs cannot be used
to estimate model performance. For instance, the study reported de-
creasing trends that were characteristically non-statistically significant
and hence could not demonstrate valuable information. Similarly,
Mutayoba and Kashaigili (2017) concluded that RCMs forced by GCMs
failed to simulate the trends in rainfall as compared to RCMs forced by
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ERA-Interim reanalysis that fairly simulate trends in rainfall.

3.6. Statistical validation

A number of measurable measurements were employed to evaluate
the RCA4 models capability in reproducing the rainfall climatology
over the sub-regions of GHA domain. The results of the analysis are
presented in Table 4. The suitability of the model performance pre-
sented in the analysis depicts overall weak CC, despite the low bias and
RMSD. The GFDL-ESM2M show relatively better CC during MAM while
MIROCS reports fairly improved CC during JJAS. The highest reported
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Table 3

Results of Mann-Kendall test over two distinct regions during 1951-2005.
Data Zone A Zone B

Annual JJAS Annual MAM OND

CRU 0.23 -0.02* 0.24 -0.03* 0.93
CanESM2 0.08 0.65 0.89 0.87 0.77
CNRM-CM5 0.69 0.73 0.46 0.72 0.95
CSIRO 0.87 0.64 0.71 0.94 0.91
EC-EARTH 0.39 0.26 0.36 0.26 0.85
IPSL-CM5A-MR 0.007* 0.88 0.15 0.74 0.01*
HadGEM2-ES 0.006* 0.02* 0.45 0.49 0.45
MPI-ESM-LR 0.33 0.78 0.36 0.26 0.42
NorESM1-M 0.57 0.66 0.13 0.11 0.53
GFDL-ESM2M 0.47 0.54 0.36 0.28 0.34
MIROCS 0.03* 0.26 0.11 0.08 0.20
ENSEMBLE 0.02* 0.37 0.65 0.09 0.41

Negative (positive) Z-values indicate decreasing (increasing) trend. The asterisk
* stands for significant trend at 95% confidence interval.

correlation in this region among the RCA4 driven by GCMs from CMIP5
has a value of 0.23 as observed in GFDL-ESM2M. The short rain season
over Zone B has MIROC5 and EC-EARTH exhibiting improved perfor-
mance (CC=0.12). Similar performance of GFDL-ESM2M model before
it was downscaled to RCM was reported in a study that evaluated
CMIPS rainfall simulations over the equatorial East Africa (Ongoma
et al., 2019). Most importantly, the ENSEMBLE mean demonstrates
noteworthy results during MAM as equated to each model runs as in-
dicated. The findings show weak simulation of seasonal rainfall over
this GHA region with Zone A indicating unsatisfactory performance
with the observed datasets.

Further analyses of long-term variation of RCA4 and observed da-
tasets were assessed spatially on interannual scale. The results show
that HadGEM2-ES, CM5A-MR, MPI-ESM-LR, and ENSEMBLE have re-
latively high correlation, especially on the Zone A region as compared
to Zone B (Fig. 9). The CC ranges from 0.4 to 0.8. On the contrary, EC-
EARTH, GFDL-ESM2M, and NorESM1-M exhibited weak correlation
(0.2 to 0.4) with the CRU data. Except for CSIRO and MIROCS, the rest
of model demonstrated inconsistent performance over Zone B. This
shows that most model dynamics for interannual precipitation is not
agreeing to that of the observed datasets.

From Fig. 9, it is evident that RCA4 products are able to capture
observed rainfall variability on interannual scale, especially on the
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Table 4
A summary of the statistical comparisons between RCMs seasonal rainfall si-
mulations and CRU datasets (mm/month) over GHA region during 1951-2005.

Seasons Model Bias CC RMSD
MAM CanESM2 —23.88 0.17 25.85
CNRM-CM5 —14.5 0.06 19.7
CSIRO -14.41 -0.08 20.43
EC-EARTH 11.96 -0.23 17.38
IPSL-CM5A-MR —11.64 -0.19 16.15
HadGEM2-ES -21.1 0.02 25.19
MPI-ESM-LR 4.13 0.06 13.35
NorESM1-M —6.98 -0.26 16.33
GFDL-ESM2M —9.96 0.23 18.02
MIROC5 9.22 -0.10 15.24
ENSEMBLE -7.79 -0.12 12
JJAS CanESM2 -16.18 0.13 17.57
CNRM-CM5 -3.74 -0.08 10.08
CSIRO —-6.78 0.05 9.18
EC-EARTH 16.22 0.07 19.04
IPSL-CM5A-MR -11.49 -0.07 13.85
HadGEM2-ES 15.35 0.15 17.9
MPI-ESM-LR 8.87 -0.04 12.85
NorESM1-M 1.91 -0.14 10.43
GFDL-ESM2M 11.99 -0.01 18.34
MIROCS —-13.11 0.21 14.6
ENSEMBLE 0.3 0.06 5.33
OND CanESM2 -3.95 -0.11 14.02
CNRM-CM5 17.95 -0.02 26.65
CSIRO -17.95 0.04 26.65
EC-EARTH 28.04 0.12 35.32
IPSL-CM5A-MR 19.64 0 27.6
HadGEM2-ES 12.78 -0.03 24.28
MPI-ESM-LR 20.41 0.03 28.8
NorESM1-M 20.92 -0.02 30.99
GFDL-ESM2M 46.2 0.02 55.67
MIROCS5 -7.59 0.12 15.75
ENSEMBLE 13.71 0.06 18.29

northern region. The strong airflow from Congo Basin and the mid
tropospheric circulations from Atlantic Ocean (Nicholson, 2017) govern
a dominant rainfall season in most parts of the Ethiopian highland and
some parts of Sudan.A number of recent studies suggest the strong in-
fluence from Pacific and Indian Ocean in the annual contribution of
rainfall totals (Nicholson and Selato, 2000; Williams et al., 2012). These
rainfall systems were fairly reproduced by some models with variation
in the ‘CC’ values that could be induced by land cover, climate
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Fig. 9. Correlation coefficientofmean annual rainfall (mm/month) over Eastern Africa based on CRU datasets, 1951-2005.

conditions and terrain. Generally, precipitation varies in both time and
space collation, with manifestation of different intensity and magni-
tude. Hence, the regions that exhibit low correlation could possibly be
due to accuracy of observed data or different dynamics that resulted to
associated uncertainties.

The RMSD of mean annual rainfall (mm/month) based on CRU
datasets, 1951-2005, are shown in Fig. 10. The RMSD values indicate
increase in southwards while a decrease in northern section of the study
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domain indicating systematic differences in dynamics. The EC-EARTH,
GFDL-ESM2M, and HadGEM2 exhibits RMSD values of > 100 to less
than 250 mm in the southeast regions consistent in most locations with
relatively higher altitude with wet climate. In east and north parts,
characterized by ASALs terrain show low RMSD with significantly re-
duced low RMSD of 50 mm. The MIROC5 and ENSEMBLE mean de-
picted inconsistent performance with weak RMSD over most sections of
the study domain. The GFDL-ESM2M showed agreement with, in most
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Fig. 10. RMSD ofmean annual rainfall (mm/month) over Eastern Africa based on CRU datasets, 1951-2005.

parts of the region, high RMSD for regions around coastal belt, high
altitude in central parts and over Ethiopian highlands. From the ana-
lyses in Fig. 10, it is clear that RMSD of most models vary in perfor-
mance with variations to different climatic features and topography.
High RMSD is observed in high altitude with wet climate regions whilst
low RSMD is recorded in ASALs dry climate anomaly. Spatial plots of
RCA4 products bias from the observed datasets for the GHA domain is
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presented in Fig. 11. According to Endris et al. (2013), the model bias
exhibits distinct variations and patterns from one model to another.
However, CanESM2 and CNRM-CM5 show low bias over Zone A
whereas HadGEM2-ES, CSIRO, and NorESM1-M exhibit weak bias in
western belts around Uganda and lower regions of south Sudan. The
systematic dry biases generally depicted over regions of low altitude
characterized by ASAL climate maybe associated with moisture outflow
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Fig. 11. Biasof mean annual rainfall (mm/month) over Eastern Africa based on CRU datasets, 1951-2005.

in this locales. Most mean spatial biases tends to follow the physio-
graphic features in the study domain. For instance, the complex topo-
graphy located over Zone A (Ethiopian highlands) and large mountains
in Zone B, i.e. Mount Kenya, Mt. Kilimanjaro, Rwenzori ranges and
Albertine Rift could not be clearly reproduced by RCMs due to coarser
resolution and physical parameterization. This was noted by Favre et al.
(2015) and Kisembe et al. (2018) over South Africa and Uganda, re-
spectively.
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In general, the statistical metrics of most models performance ex-
hibit uncertainties over the study domain. The simulations are highly
divergent across the models assessed in this study. Weak correlations
between the RCA4 models and the observed data are not a constraint in
the application of models for climate analysis. Furthermore, climate
models may not depict specific weather event which may happen in a
specific year, rather, they are utilized in the examination of climatic
trends.
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4. Conclusion and recommendation

In this study, RCA4 models have been evaluated for their cap-
abilities to reproduce precipitation climatology during the period 1951-
2005 over GHA. Findings from ten different RCMs developed by SMHI,
namely the Rossby Centre regional atmospheric model (RCA4) with
horizontal resolution of 0.44° are compared against two observed based
reanalyzed datasets (GPCCv8 and CRU TS4.02). Performances of the
RCA4 models together with the ensemble are evaluated at seasonal,
annual, and inter-annual time lines. In addition, a number of statistical
measurements are employed for robust analysis of the model perfor-
mance. Results for mean seasonal analyses demonstrate an under-
estimation of March-May (MAM) and June-September (JJAS) seasonal
precipitation whilst October to December (OND) precipitation is over-
estimated. Moreover, the west to east gradient representing heavier to
low precipitation and bimodal patterns of north to south rainfall band is
well captured by most models. Further assessment on the annual scale
depicts underestimation of rainfall despite the small values of RMSE.
During the long term simulation at inter-annual scale, majority of the
RCMs fail to reproduce the year-to-year variations of the precipitations
anomalies illustrating the difficulty to properly simulate fluctuations in
the factors controlling interannual variability of precipitation over
GHA. It is no doubt that the mean ensemble invariably outperforms the
individual RCA4 models since it has minimal probability deviance in
precipitation in each zone and over the whole GHA region. The overall
evaluation shows weak correspondence with observed CRU based on
statistical metrics. The better performing five models are: MIROCS5,
CSIRO, CM5A-MR, MPI-ESM-LR, and EC-EARTH. Large variations of
model performance are noted from one model to another and from one
region to the other. However, all the models present the bimodal pat-
terns and the unimodal patterns over the two distinct regions assessed.
The overestimations or underestimation of the models underscore the
need to conduct bias corrections on the models outputs in order to
rectify the systematic uncertainties before employing datasets for cli-
mate analysis application. The results in the present study offers in-
sightful information on the CORDEX performance, in support of pre-
vious evaluative studies conducted over the study domain (Anyah et al.,
2006; Endris et al., 2013). Therefore, the analysis elucidates the ap-
plication of the ensemble of the recommended models for future cli-
mate projections and impact analysis in the ever increasing changes
over the study domain.
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