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Abstract In the current paper, the vibrational behavior of viscoelastic cylindrical shells under moving internal
pressure is studied, analytically. The viscoelastic behavior is considered as viscoelastic in shear and elastic in
the bulk. The equations of motion are extracted based on the classical shell theory by applying Hamilton’s
principle. These equations which are a system of coupled partial differential equations are solved by employing
a closed formmathematicmethod, and the natural frequencies, the critical velocity, and response due tomoving
pressure are determined. Moreover, the effects of different geometric and viscoelastic parameters on the results
are studied. The results are compared with the finite element analysis and the results available in the literature.

1 Introduction

Moving loads have a significant effect on dynamic stresses in the structures and cause them to vibrate, especially
at high velocities. Therefore, the moving load on the structures has become one of the notified problems in
engineering. Transmitted fluid in a tube, and the air flow on aircraft parts or a car body are some of the practical
cases. Also, the material properties are an important issue which has noticeable effects on the responses of
structures due to this excitation. In most studies of structures in recent years, the material has been assumed
elastic while the main of materials has time-dependent characteristics, and they are in the viscoelastic field.
Jones and Bhuta [1] determined the response of an elastic cylindrical shell under a moving ring load with
constant velocity, using Duhamel integrals by considering the classical shell theory (CST). Huang [2–4]
studied the effects of moving pressure on an infinitely long viscoelastic cylindrical shell with a material
that obeys the solid linear standard (SLS) model. The Williams modal acceleration method was applied to
reduce the governing equations to a set of quasi-static equations. Datta et al. [5] investigated the dynamic
response of pipelines to moving loads. The pipeline was modeled as an elastic thin shell. A thin layer of
viscoelastic material was assumed to separate the pipe from the ground. It was indicated that the viscoelastic
layer does not influence the pipe response. Singh et al. [6] studied the dynamic response of a buried orthotropic
infinite cylindrical shell subjected to a radial load which moves along the shell axis. Huang and Hsu [7]
investigated the resonance of a rotating elastic cylindrical shell under harmonic moving loads using the Love–
Timoshenko theory. Panneton et al. [8] evaluated the vibration and sound radiation of an elastic cylindrical
shell excited by a circumferentially moving load. They identified the critical velocity numerically. Singh et al.
[9] determined the non-axisymmetric dynamic behavior of fluid-filled orthotropic cylindrical shells under a
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load which was moving along the shell axis. The shell was considered thick. Barkanov et al. [10] determined
the transient response of sandwich beams, plates, and shells with viscoelastic layers subjected to impulse
loading by applying the finite element (FE) method. The dynamic stability of elastic cylindrical shells under
periodic axial load was analyzed by Pellicano and Amabili [11]. The geometric nonlinearity was considered
using Donnell’s shallow shell theory. The results were obtained using a numerical method based on the
Galerkin procedure. Sheng and Wang [12] investigated the dynamic behavior of functionally graded (FG)
cylindrical shells with piezoelectric layers subjected to moving loads numerically. The governing equations
were determined using the first-order shear deformation theory (FSDT), Hamilton’s principle, and theMaxwell
equation. Pellicano [13] studied the dynamic stability of elastic cylindrical shells subjected to compressive
static and periodic axial loads. The nonlinearity of the system was modeled by applying the Sanders–Koiter
theory. The nonlinear partial differential equations were reduced to a set of ordinary differential equations
using the Lagrange equations. Sofiyev [14] presented an analytical procedure to study the dynamic behavior of
an infinitely long, FGM cylindrical shell subjected to combined action of the axial tension and internal constant
moving compressive pressure. Sofiyev et al. [15] investigated the dynamic behavior of an infinitely long, non-
homogenous orthotropic cylindrical shell resting on an elastic foundation under combined axial tension and
internal moving compressive pressure. The effects of some parameters such as the Pasternak foundations and
materials distribution were studied parametrically. Malekzadeh and Heydarpour [16] presented the transient
thermo-elastic analysis of FG cylindrical shells subjected to moving pressure and heat flux. A combination
of differential quadrature (DQ) and FE methods was employed to discretize the governing equations in the
spatial domain. Wang et al. [17] studied the nonlinear vibration of an elastic cylindrical shell subjected to a
harmonic excitation moving in a circular path. The equations were solved by applying Galerkin’s method. Lee
and Seok [18] investigated the dynamic behavior of an elastic hollow thick cylinder under a dual traveling
force applied to the inner surface. The governing equations were solved by employing the Frobenius method.
Tahami et al. [19] investigated the optimum designs of FG carbon nanotube-reinforced pipes conveying fluid
which were under a moving load, by applying a harmony search algorithm. The dynamic displacement of the
system was determined based on the DQ method. Thomas and Roy [20] studied the vibrational behavior of
functionally graded carbon nanotube (FG-CNT)-reinforced composite shells based on Mindlin’s hypothesis.
It was concluded that the carbon nanotube (CNT) distribution and the volume fraction of the CNT have a
remarkable effect on the vibrational behavior of the structure. Eftekhari [21] presented a numerical method
based on a DQ methodology which was used for a vibration analysis of variable thickness circular arches
subjected to a moving point load. Askari and Esmailzadeh [22] studied nonlinear and linear vibrations of fluid
conveying CNT considering thermal effects and a nonlinear Winkler–Pasternak foundation. The governing
equations were derived using the nonlocal Euler–Bernoulli beam theory. The nonlinear differential equations
were solved by applying Galerkin’s procedure. Tahami et al. [23] studied the dynamic response of FG-CNT-
reinforced pipes conveying fluid subjected to accelerated moving load. The material properties of the pipe
were temperature dependent, and the DQ method and Newmark’s time integration scheme were applied to
obtain the dynamic response of the system. Lu et al. [24] investigated the dynamic behavior of an infinite
circular tunnel subjected to moving loads. According to Biot’s theory, the Helmholtz equations were derived
and the response was determined using the Fourier transformmethod. Norouzi and Alibeigloo [25] presented a
static analysis of a viscoelastic cylindrical panel made of FGM, under transverse uniform pressure using three-
dimensional elasticity theory. For simply supported boundary conditions, an analytical solution based on the
state space method and Fourier expansion was presented, and for other boundary conditions, a semi-analytical
method using DQ method has been applied. Akbari et al. [26] investigated the dynamic response of an FG
viscoelastic cylinder under thermo-mechanical loads. Themeshless local Petrov–Galerkin method was applied
to extract the result. A numerical investigation of geometrically nonlinear forced vibration of a cantilever shell
was presented by Avramov and Malyshev [27]. The dynamic responses were determined numerically using
a combination of the shooting technique and the continuation algorithm. Sofiyev presented a solution for the
dynamic stability of heterogeneous orthotropic viscoelastic [28] and FGM [29] cylindrical shells under an
axial load and determined the critical time. He studied the effect of different parameters on the stability of
the system. Also, he [30] prepared a complete literature review on the vibration and buckling problems of
FG and composite conical shells. Mirzaei and Ramezani [31] studied the transient elasto-dynamic response of
cylindrical shells subjected to internal moving pressure by applying an analytical solution. The shell was thick,
and the effects of transverse shear and rotary inertia were considered. Arazm et al. [32] presented an analytical
method to analyse the dynamic behavior of FG shells subjected to moving internal pressure. The effect of
z/R was not considered in their work. Sadeghi and Alibeigloo [33] studied the free vibrational behavior of
a viscoelastic cylindrical shell using the theory of elasticity. The viscoelastic material has been assumed to
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obey the Boltzmann model, and the time-dependent modulus of elasticity was modeled by employing Prony
series. The governing equations of motion have been solved analytically using the state space technique and
Fourier series. Sofiyev et al. [34] analyzed the free vibration and the dynamic stability of FG viscoelastic plates
subjected to a compressive load and resting on the Winkler and Pasternak elastic foundations. The equations
were extracted by employing the concepts of Boltzmann and Volterra integral, and they have been solved using
the Galerkin and Laplace methods.

In the analysis of shells under moving load, most of the researchers investigated elastic shells. In this
paper, the governing equations of motion for a viscoelastic cylindrical shell subjected to an internal moving
pressure are extracted by assuming the CST as the displacement field and applying Hamilton’s principle. In
the formulation, the following features are considered:

(i) The shear and bulk behavior of the materials are separated. The shear behavior is defined with the SLS
model, and the bulk behavior is assumed as elastic.

(ii) The effect of z/R is considered in the formulation. So, the stresses resultants are calculated with more
precession.

(iii) The shell has a finite length.

The governing equationswhich are a systemof coupled partial differential equations are solved analytically,
and the frequencies, critical velocity, and the response due to moving pressure are determined. By performing
a parametric study, the effects of different viscoelastic parameters on the results are studied.

2 Governing equations

The location of each point on the cross section of a shell in the cylindrical coordinate system can be defined by
three parameters r , x , and θ as Fig. 1. The origin of the coordinate system is on the middle surface. We have
r = R0 + z; where R0 is the middle surface radius and z is a through thickness variable, which is measured
from the middle surface of the shell. The geometry of the shell is shown in Fig. 1.

The displacement field for axisymmetric conditions is defined by employing classical shell theory as follows
[32]:

u(x, z, t) = u0(x, t) − z
∂ w0(x, t)

∂ x
; v = 0 ; w(x, z, t) = w0(x, t). (1)

u, v, and w are displacement components in x , θ , and z directions, respectively; u0 and w0 are the middle
surface displacements which are unknown functions of x and t , and t is time. According to Eq. (1), the radial
displacement of each layer is the same or it is independent of z. For the linear kinematic relations, the nonzero
strains are the following [35]:

ex = ∂ u

∂ x
= ∂ u0

∂ x
− z

∂2w0

∂ x2
; eθ = w

r
= w0

R0 + z
. (2)

Fig. 1 Geometry of the cylindrical shell
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The constitutive equations according to Hooke’s law are [35]:

σx = b0(ex + eθ ) + 2Gex ; σθ = b0(ex + eθ ) + 2Geθ ; b0 = K − 2G

3
(3)

where K and G are the bulk and shear modulus, respectively. Due to εz = 0, the value of σz has not effect on
the strain energy. The strain energy U , kinetic energy T , and the external work W are the following [36]:

U = 1

2

∫∫∫
(σxεx + σθεθ )dV ; dV = (R0 + z) · dz · dθ · dx, (4.1)

T = 1

2

∫∫∫
ρ

[(
∂ux
∂t

)2

+
(

∂uz
∂t

)2
]
dV ; −h/2 ≤ z ≤ h/2; 0 ≤ θ ≤ 2π; 0 ≤ x ≤ L , (4.2)

W =
∫∫

s

( fxux + fzuz)ds; ds =
(
R0 − h

2

)
dθ.dx; fz = P; fx = 0 (4.3)

where fx and fz are the traction components in x and z directions, respectively, and P is the internal
pressure distribution. The stress resultants are defined as follows:

Nx=
∫ −h/2

h/2
σx

(
1 + z

R0

)
dz; Mx=

∫ −h/2

h/2
σx

(
1 + z

R0

)
z dz; Nθ=

∫ −h/2

h/2
σθ dz; Mθ=

∫ −h/2

h/2
σθ z dz.

(5)

The Hamilton principle states that:

δ

t2∫

t1

(T −U + W )dt = 0. (6)

By substituting Eqs. (1)–(5) into Hamilton’s equation [(Eq. (6)], the equations of motion in terms of stress
resultants are derived as follows:

R0
∂Nx

∂ x
− ρR0h

∂2u0
∂ t2

+ ρh3

12

∂3w0

∂ x∂ t2
= 0, (7.1)

R0
∂2Mx

∂ x2
− Nθ − ρh3

12

∂3u0
∂ x∂ t2

− ρR0h
∂2w0

∂ t2
+ ρR0h3

12

∂4w0

∂ x2∂ t2
+ P

(
R0 − h

2

)
= 0. (7.2)

By substituting Eqs. (2), (3) into Eq. (5), the stress resultants are determined in terms of displacements:

Nx = b1h
∂ u0
∂ x

− b1h3

12R

∂2w0

∂ x2
+ b0h

R
w0; Mx = b1h3

12

(
1

R

∂ u0
∂ x

− ∂2w0

∂ x2

)
, (8.1)

Nθ = b0h
∂ u0
∂x

+ b1α0 w0; b1 = K + 4

3
G; α0 =

∫ h/2

−h/2

dz

R0 + z
. (8.2)

In this paper, the Zener or SLSmodel is employed tomodel the characteristics of a viscoelasticmaterial (Fig. 2).
As it is seen in Fig. 2, the SLS model contains a Kelvin element parallel with a spring. This model can

predict the creep as well as the relaxation behaviors of materials. For this model, K = K0, G = G1G2+ηG1D
G1+G2+ηD ,

Fig. 2 SLS model
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and D = ∂
∂t [37]. By substituting these parameters and Eq. (8.1) into Eq. (6), the equations of motion in terms

of displacements are extracted in the general following form:

L1[u0(x, t), w0(x, t)] = 0; L2[u0(x, t), w0(x, t), P] = 0. (9)

L1 and L2 are differential operators. The explicit form of these equations in dimensionless form is reported
later. Equations (9) are a system of two linear coupled partial differential equations. The boundary conditions
are determined from Hamilton’s principle as follows:

RNx δu0|L0 = 0 → Nx = 0 OR u0 = 0 at x = 0, L ,

R
∂Mx

∂x
δw0

∣∣∣∣
L

0
= 0 → ∂Mx

∂x
= 0 OR w0 = 0 at x = 0, L ,

RMx δ
∂w0

∂x

∣∣∣∣
L

0
= 0 → Mx = 0 OR

∂w0

∂x
= 0 at x = 0, L . (10.1)

As special cases, the following boundary conditions have been used in the modal analysis in this text:

Clamped : u0 = 0 , w0 = 0,
∂w0

∂x
= 0; Simple : w0 = 0, Nx = 0, Mx = 0,

Free : Nx = 0, Mx = 0,
∂Mx

∂x
= 0 (10.2)

3 Analytical solution

In this paper, to prepare a more convenient report of the results, the equations are converted into dimensionless
form. For this purpose, the following dimensionless parameters are defined:

x∗ = x

L
; t∗ = t

t0
; h∗ = h

h0
; R∗ = R0

R′
0
; w∗ = w0

h0
; u∗ = u0

h0
; β = τ

t0
; e = ρ

K0

(
h0
t0

)2

,

ε = h0
L

; P∗ = P

K0
; Z2 = R′

0

h0
; R′

0 = R0; t0 = L
√

ρ/K 0 (11)

where h0, R0, and t0 are thickness, radius, and time characteristics, respectively; and (*) stands for a dimen-
sionless quantity. By applying the above dimensionless parameters into Eq. (9), the dimensionless form of the
equations of motion is determined as Eq. (12.1),

− ε3
h∗2

12

∂3

∂x∗3 L6[a10, a11, w∗] + ε2R∗Z2
∂2

∂x∗2 L6[a10, a11, u∗] − e R∗Z2
∂2

∂t∗2
L6[βG∗

1,G
∗
0, u

∗]

+ ε
∂

∂x∗

(
e
h∗2

12

∂2

∂t∗2
L6[βG∗

1,G
∗
0, w∗] − L6[a3, a2, w∗]

)
= 0;

L6[a, b, v1] = a
∂v1

∂t∗
+ b.v1; a10 = β

(
4

3
+ G∗

1

)
; a11 = 4

3
+ G∗

0 ; a2 = 2

3

−G∗
0; a3 = β

(
2

3
− G∗

1

)
; (12.1)

ε4
Z2R∗h∗2

12

∂4

∂x∗4 L6[a10, a11, w∗] + ε3
h∗2

12

∂3

∂x∗3 L6[a10, a11, u∗] − eR∗Z2
∂2

∂t∗2
L6[βG∗

1,G
∗
0, w

∗]

+ ε2
eZ2R∗h∗2

12

∂4

∂x∗2∂t∗2
L6[βG∗

1,G
∗
0, w

∗] + ε
∂

∂x∗

(
−e

h∗2

12

∂2

∂t∗2
L6[βG∗

1,G
∗
0, u

∗] + L6[a3, a2, u∗]
)

− 1

h∗ (α∗
0L6[a10, a11, w∗] + L6[βG∗

1,G
∗
0, P

∗]
(
h∗

2
− Z2R

∗)
)

= 0; α∗
0 =

∫ h/2

−h/2

dz

R0 + z

= ln
2R∗ + Z2.h∗

2R∗ − Z2.h∗ . (12.2)
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3.1 Modal analysis

For the free vibrations analysis, the load P is neglected. The solution will be considered as {u∗, w∗} =
{V (x∗)}2∗1exp(iωt∗), where ω is the dimensionless natural frequency, and by substituting into Eq. (12.1), it
gives the following equation:

[B5]
d4V

dx∗4 + [B4]
d3V

dx∗3 + [B3]
d2V

dx∗2 + [B2]
dV

dx∗ + [B1] = {0}2∗1
[B1] = [B6] + i

(
ω [B7] − ω3 [B9]

) − ω2 [B8] + [B0] (13)

where [Bj ], j = 0, 1, . . . , 9 are the coefficient matrices. Equations (13) are a system of ordinary differen-
tial equations, and the solution can be considered as {V (x∗)} = {A} exp(βx∗), where {A}2∗1 is the eigen-
vector and β is the eigenvalue. By substituting {V (x∗)} into Eq. (13), a system of algebraic equations as
[ax]2∗2{A}2∗1 = {0} is obtained. For nonzero solution, the determinant of [ax] is equated to zero which results
in a relation between β, and ω. It is an equation of order six with respect to β. It has six roots, and for each
root, an eigenvector {A} can be determined. These eigenvalues and eigenvectors are functions of ω. So, the
general solution of Eq. (13) is the following:

{V } =
6∑
j=1

C j {A} j exp(β j x
∗) (14)

where C j are constant and will be determined from the boundary conditions. By applying the boundary con-
ditions at x∗ = 0, 1, six algebraic equations are obtained in terms of C j , j = 1..6. The general forms of these
equations are as [bx]6∗6{C}6∗1 = {0}. For nonzero solution, we set det ([bx]) = 0. It is a complicated algebraic
equation, and its solutions are the frequencies ω. We used the bisection method to solve this equation.

3.2 Forced vibrations analysis

To determine the response of the shell to the moving load, the displacements are considered as in Eqs. (15),

u(x∗, t∗) =
∞∑
n=1

f un(t
∗) cos(nπx∗) ; w(x∗, t∗) =

∞∑
n=1

f wn(t∗) sin(nπx∗). (15)

In these equations, sin(nπx∗) and cos(nπx∗) are the mode shapes that satisfy the simply supported boundary
conditions at x∗ = 0,1. By substituting Eq. (15) into Eq. (12.1), and applying the half-range expansion of the
Fourier series, two coupled ordinary differential equations [(Eq. (16)] are obtained where p1n and p2n are in
terms of f1n(t∗), f2n(t∗), and their derivatives,

∞∑
n=1

p1n sin(nπx∗) = 0 ;
∞∑
n=1

p2n cos(nπx∗) = Q∗; Q∗ = L6[βG∗
1,G

∗
0, P

∗]
(
Z2R

∗ − h∗

2

)

p1n =
3∑
j=0

(
a1 j

d j f un
dt∗ j

+ b1 j
d j f wn

dt∗ j

)
; p2n =

3∑
j=0

(
a2 j

d j f un
dt∗ j

+ b2 j
d j f wn

dt∗ j

)
. (16)

The pressure distribution is P = P0(1-H(x-v.t)) where P0 is the pressure intensity, v is the velocity of the wave
front, and H is theHeaviside step function.Weassume that the pressuremoveswith a constant velocity v. So, the
applied pressure for the points behind of thewave front is P0 (x < vt) and after it, the pressure is zero (x > vt). It
is clear that when td = L/v, thewave front is at the end of the shell. td is called the departure time.When t > td ,
the entire of the shell is subjected to the constant pressure P0. Therefore, we divide the solution into two parts:

(a) Before departure of the wave front from the shell (t < td), Eq. (15) results in:

∞∑
n=1

p1n sin(nπx∗) = 0 → p1n = 0 ; v∗ = v

L/t0
,
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∞∑
n=1

p2n cos(nπx∗) = Q∗ → p2n = 2

v∗t∗∫

0

Q∗dx∗. (17)

v∗ is the dimensionless velocity. Note that in this region after x∗ > v∗t∗ the pressure value is zero.
(b) After departure of the wave front from the shell (t > td), from Eq. (15) we have:

∞∑
n=1

p1n sin(nπx∗) = 0 → p1n = 0;
∞∑
n=1

p2n cos(nπx∗) = Q∗ → p2n = 2

1∫

0

Q∗dx∗. (18)

Equations (17), (18) are two systems of ordinary differential equationswith constant coefficients. Each equation
contains two coupled equations with time derivative of order-three. One can use the elementary theory of
differential equations for the solution. The solution of Eq. (17) has six constants which are determined from
the initial conditions at t∗ = 0. We assume that the function, the first time derivative, and its second derivative
are zero. So, the constants can be determined. The solution in this part is designated with the vector {y1}. The
solution of Eq. (18) is determined like that of Eq. (17). If we call the solution of Eq. (18) as {y2}, the constants
can estimated from the initial condition at t∗ = td/t0. It is the dimensionless time at the departure of the wave
front from the shell. {y1}, {y2} and their first and second derivatives must have the same at this time (continuity
conditions). Note that, if we rewrite the solution as the rational form, their denominators are functions of v∗.
The values of v∗ which result in the zero value for the denominators are called the critical velocities. In other
word, the critical velocity can produce a large amplitude for response. For each quantity of n, the response and
the corresponding critical velocity are determined. In order to find the required number of terms of convergence
[(in Eqs. (17), (18)], the critical velocity in each step is compared with the new obtained critical velocities.

4 Numerical solution

ANSYSFE software was employed for the modal analysis of the cylindrical shells. PLANE182, which is an
element with four nodes and two translational degrees of freedom at each node, in axisymmetric mode was
used to determine the axisymmetric frequencies and mode shapes.

5 Sensitivity analysis

According to the presented formulation, a mathematical code has been prepared on Maple 15 mathematical
environment to study the effects of different parameters on the vibration behaviors of viscoelastic shells. The
boundary conditions are designated with two letters in this text. The first letter is the boundary condition at
x∗ = 0, and the second relates to x∗ = 1. S, C, and F stand of the simple, clamped, and free conditions,
respectively. So, S–F defines the simply supported boundary condition at x∗ = 0 and free at x∗ = 1. The
characteristics of the shell are listed in Table 1, and all the results are according to this Table, and S–S boundary
conditions except those are mentioned.

Table 2 reports the axisymmetric natural frequency for an elastic cylindrical shell for various length-to-
middle radius ratio (L/R0), and the middle radius-to-thickness ratio (R0/h) that attains from the current

Table 1 Characteristics of the shell

Property Quantity

Length (m) L = 0.4
Middle radius (m) R0 = 0.16
Thickness (m) h = 0.01
Bulk modulus (N/m2) K = K0 = 2.12e7
Viscoelastic modulus (Pa) G1 = 9.808e6, G2 = 2.455e6
Viscosity coefficient (Pa.s) η = 2.74e3
Poisson’s ratio ν = 0.3
Pressure intensity (kPa) P0 = 100
Density (kg/m3) ρ = 7800
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Table 2 Comparison of axisymmetric natural frequency (Hz) of S–S elastic shell for different values of the aspect ratio. (R0 =
0.16)m

R0/h ↓ L/R0 → 2.5 5 10 15

16 Current method 24.293 15.950 8.292 5.559
Amabili [38] 25.475 16.749 8.741 5.987
FE 24.883 15.746 7.984 5.329

25 Current method 24.292 15.949 8.292 5.559
Amabili [38] 25.475 16.749 8.741 5.987
FE 24.665 15.714 7.979 5.327

35 Current method 24.292 15.949 8.292 5.559
Amabili [38] 25.475 16.749 8.741 5.987
FE 24.562 15.697 7.976 5.326

70 Current method 24.292 15.949 8.292 5.559
Amabili [38] 25.475 16.749 8.741 5.987
FE 24.445 15.675 7.973 5.325
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Fig. 3 Natural frequency of viscoelastic cylindrical C–C shell versus G1, G2, and η

method, FE, and the formula presented by Amabili [38]. Amabili extracted the equation of motion from Don-
nell’s theory with canceling the nonlinear terms. It is concluded that the results of the presented method are
closer to the FE in comparison with the Amabili results. Also, it can be seen that by increasing L/R0 the
natural frequency decreases. By substituting τ = 0, the presented results can be obtained for the elastic case.
Also, the following equations are used for the elastic case [39,40]:

K0 = 2

3
Gs

1 + ν

1 − 2ν
; E = 2Gs(1 + ν); Gs = G1G2

G1 + G2
. (19)

Figure 3 shows the effects of viscoelastic modulus and viscosity coefficient on the first natural frequency
of viscoelastic cylindrical shells with C–C boundary conditions. It is seen that, by increasing G1, the natural
frequency increases. As a result, increasing G2 just in the interval [1.0E4, 1.0E10] can increase the natural
frequency for input data (Table 1). Moreover, the viscosity coefficient η affects the natural frequency in the
range η < 1.0E5, and by increasing η the natural frequency increases.
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Table 3 Effect of boundary conditions on the first natural frequency (Hz) of a viscoelastic shell

S–S C–C C–S C–F F–F

24.143 27.870 27.257 26.900 28.429

Table 4 Critical velocity (Vcr)–m/s for elastic cylindrical shells (L/R0 = 10, E = 210 GPa, ρ = 7800 kg/m3, ν = 0.33)

R0/h Current method Arazm [32] Sofiyev [14] Ogibalov [42] Ruzzene [41]

5 1904 1752 1816 1816 1870
10 1380 1264 1284 1284 1322
50 627 572 574 565 591
100 446 405 406 400 418

Table 5 Effects of viscoelastic modulus and viscosity coefficient on the critical velocity of a viscoelastic shell

η (Pa.s) (G1, G2 . . . Table 1) Vcr (m/s) G1 (Pa) (η, G2 . . . Table 1) Vcr (m/s) G2 (Pa) (η, G1 . . . Table 1) Vcr (m/s)

2.74E3 7.629 9.808E6 7.629 2.455E6 7.629
2.74E4 7.632 9.808E7 13.498 2.455E7 10.808
1.50E5 11.814 9.808E8 22.204 2.455E8 11.718
2.74E5 11.837 9.808E9 24.449 2.455E9 11.833
2.74E6 11.846 9.808E10 40.445 2.455E10 11.845

Table 3 shows the fundamental natural frequency of a viscoelastic cylindrical shell for different boundary
conditions. It is seen that C–C has the highest natural frequency as one would expect. Note that for F–F the
first natural frequency is zero (rigid body motion), and Table 3 reports the first bending frequency.

The critical velocity (Vcr) of elastic cylindrical shells is reported in Table 4 for different formulations.
Ruzzene and Baz [41] used the FE method according to the Donnell–Mushtari theory, and the other references
[14,32,42] used the CST theory without considering the effect of z/R0. The maximum difference percentage
is about 10% which may be due to consideration of the effect of z/R0 in the current formulation. Moreover,
the results presented by the current method for thick shells are closer to the results of Ruzzene and Baz [41],
with respect to the other references which do not consider the effect of z/R0.

Table 5 shows the effects of viscoelastic modulus and viscosity coefficient on the critical velocity for a
viscoelastic cylindrical shell. It can be concluded that by increasing the viscoelastic modulus and viscosity
coefficient the critical velocity increases. As it is seen, the effect of G1 is more significant than G2 and η. The
critical velocity has a significant increase in the ranges [2.74E4,2.74E5] and [2.45E6,2.45E7] of η and G2,
respectively, and in the other ranges its increase is not considerable. In other word, by increasing G2 and η, the
Kelvin part of the viscoelastic model acts as a rigid body. Figure 4 shows the effect of R0/h and L/R0 on the
critical velocity. It is seen that the small values of L/R0 can affect the critical velocity, but for longer shells it does
not have significant effects on the critical velocity, and the shell is similar to a long pipe. In the studied range,
for L/R0 > 3 one can nearly assume that the shell is long but by increasing R0/h the critical velocity decreases.

Table 6 presents a comparison of the radial displacements of the middle point of the elastic cylindrical
shells by the current method, FE, and the FSDT [43] for the static condition. The current method results are
the solution of Eq. (7.1) when ∂/∂t = 0 and P(x,t) = P0. By increasing the thickness, the difference between
the results with respect to the FE increases. In the FSDT solution, the radial displacement is considered as a
function of z and x , while in the current method the radial displacement is just a function of x parameter, and
so the FSDT results are closer than to the FE with respect to the current formulation.

Figure 5 shows the distribution of the dimensionless radial displacements of a viscoelastic cylindrical shell
versus dimensionless length (x∗) and dimensionless time (t∗). It can be seen that, by moving the load along the
longitudinal direction, the radial displacement gradually increases. By increasing the departure time, the dimen-
sionless radial displacement increases significantly. Moreover, it is observed that as the moving load arrives
at the end of the cylinder, and after the departure of the load, the cylinder vibrates about its static deflection.

Figure 6 shows the effects of the viscoelastic modulus G1 on the response of the shell subjected to moving
load. It is observed that by increasing the viscoelastic modulus G1, in contrast to the natural frequency and
critical velocity the response amplitude decreases. The effect of G1 on the axial displacement is less than the
radial one. In addition, it is seen that by increasing G1 the behavior of the viscoelastic shell under moving load
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Table 6 Dimensionless radial displacements of the middle point (x∗ = 0.5, z = − h/2) for different thicknesses of elastic
cylindrical shells by the current method, FSDT [43], and FE (E = 200 GPa, ν = 0.3, P = 0.3 GPa, RO = 0.16 m, L = 1m)

h (mm) R0/h Current method FSDT [43] FE Diff (current method) (%) Diff (FSDT) (%)

5 31.5 1.498 1.505 1.512 0.9 0.46
10 15.5 0.365 0.368 0.372 1.88 1.07
15 10.2 0.158 0.160 0.162 2.46 1.23
20 7.5 0.087 0.088 0.089 2.24 1.12
30 4.8 0.036 0.037 0.038 5.26 2.63
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Fig. 5 a Dimensionless radial response versus dimensionless length at different departure times (v∗ = 1.91). b Dimensionless
radial response versus dimensionless time at different locations (v∗ = 1.91)

approaches to the first mode shape for S–S boundary conditions. The effect of viscoelastic modulus G2 on
the response is shown in Fig. 7. It is seen, just like the effect of G1, by increasing G2, the response amplitude
decreases unlike the critical velocity, but the effect ofG2 in the range of [2.45E6,2.45E7] is remarkable, and for
G2 >= 2.45E6, a significant decrement is observed in the response. Fig. 8 shows the effect of the viscosity coef-
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Fig. 6 Dimensionless radial and axial response of viscoelastic cylindrical shell versus dimensionless length for different vis-
coelastic moduli G1 (t∗ = td/t0)
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Fig. 7 Dimensionless radial and axial response of a viscoelastic cylindrical shell versus dimensionless length for different
viscoelastic moduli G2 (t∗ = td/t0)

ficientη on the response. Just like the viscoelasticmodulus, by increasingη, the response amplitude decreases as
expected. Moreover, it is seen that the response has the largest variations in the range of [2.74E4, 2.74E5]. As it
is explained formerly, using Eq. (19), one can find the equivalent elastic case for the viscoelastic shells. Figure 9
shows the response of a viscoelastic and equivalent elastic case on the response. It is seen that, by taking into con-
sideration viscous behavior of the material, the radial displacement is decreased, unlike the axial displacement.

6 Conclusions

An analytical formulation based on the classical shell theory has been presented for the dynamic analysis of a
viscoelastic cylindrical shell under moving internal pressure. The behavior of the shell was assumed viscoelas-
tic in shear and incompressible in bulk. The governing equations were solved for free and forced vibrations.
The presented method can be used for elastic materials, too. Some of the most important points mentioned in
the results for the studied range of input data are the following:
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Fig. 8 Dimensionless response of a viscoelastic cylindrical shell under versus dimensionless lengths for different viscosity
coefficients η (t∗ = td/t0)
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• Although the results have been presented for a moving pressure, the presented procedure can be used for
other pressure distributions.

• By increasing G1, G2, and η the natural frequency increases. But G2 just in the interval [1.0E4, 1.0E10]
has effects on the natural frequency. Moreover, the viscosity coefficient η affects the natural frequency in
the range η < 1.0E5.

• The critical velocity increases by increasing G1, G2, and η, unlike the response amplitude. The results
have the most variations in the ranges [2.74E4, 2.74E5] and [2.45E6, 2.45E7] of η and G2, respectively
and in the other ranges, the changes are not considerable.

• The small values of L/R0 can affect the critical velocity, but for long shells it is not a significant effect to
calculate the critical velocity, and the shell acts as a long pipe. As a result, for L/R0 > 3 one can nearly
assume that the shell is long.

• By increasing R0/h, the critical velocity decreases, and this ratio does not have any considerable effect on
the natural frequency.

• As the load moves along the longitudinal direction, the radial displacement gradually increases, and by
increasing the departure time, the dimensionless radial displacement increases significantly.

• By taking into account the viscoelastic behavior, the radial displacement is decreased, in opposite of the
axial displacement.
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