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A B S T R A C T

Understanding future evolution of drought scenario across localized domains remains an imperative process in
bid to adapt tailor suit innovative solutions to drought risks and their impacts. The present study examines
drought events by characterizing the trend, intensity, severity and frequency based on Standardized
Precipitation Index (SPI), over Kenya, East Africa for near future (2010–2039), mid-century (2040–2069), and
late century (2070–2100). The study utilizes Multi-model mean ensemble (MME) of five selected regional cli-
mate models (RCMs). Further, the models are bias corrected based on a quantile mapping bias corrected algo-
rithm in order to minimize possible bias for accurate projections. The changes in annual and seasonal pre-
cipitation over Kenya is examined in order to associate with changes in drought occurrence. Results demonstrate
positive shift, indicating an increase in projected rainfall change during all the three timescales. Projections of
possible future meteorological drought events under RCPs scenario over study locale was conducted using SPI.
The results demonstrate relatively better performance of biased corrected MME derived from Rossby Centre
regional climate model (RCA4) in simulating drought indices over the Kenya. The MME projections for drought
duration show an increase in moderate drought incidences with fewer incidences of extreme events across the
RCP4.5 and 8.5 scenarios respectively. However, the duration of occurrences varies from one region to another
with most hotspots located around northeastern sides of the country. Examination of projected changes in
drought frequency and severity depict an occurrence of severe to extreme drought incidences that are expected
to intensify during the near future time slice while overall projections show that more wet scenarios is depicted,
with fewer cases of drought expected to occur during mid and towards end of the century of projection period.
The study calls for enactment of appropriate mitigation measures to cope with possible scenarios of drought risks
over Kenya in the future.

1. Introduction

The steady increase in the emission of greenhouse gases (GHGs)
across the globe will continue to exacerbate the observed global
warming. This influences the occurrence of extreme events that have
adverse impacts on global economy, human health, infrastructure and
ecosystems. Most noticeable climate extremes over the last few years
such as; 2018 German heatwaves, 2018 heavy torrents in Japan, 2018
Typhoon Mangkhut in Philippines, and 2019/2020 Australian wild fires
among others will continue to reoccur if global community maintain
“business as-usual” emission scenario of the GHGs. Moreover, devas-
tating events such as drought and pluvial scenarios are likely to increase
in frequency and severity in most regions as projected in the recent

studies (Sheffield and Wood, 2007, Sheffield and Eric, 2008; Dai, 2013;
Huang et al., 2016; Spinoni et al., 2020).

For instance, Duffy et al. (2015) projects an increase in drought
events over eastern Amazon ecosystems which is described as the
“lungs of the earth”. This poses threat to the survival of humanity and
the larger ecosystem since the droughts over this region may intensify
fire occurrences, tree mortality, and emissions of carbon to the atmo-
sphere across large domains of Amazonia. Similar projections are noted
over North America region (Wehner et al., 2011; Jung and Chang,
2012; Ahmadalipour et al., 2017a); Sub-Saharan Africa (Gidey et al.,
2018; Nguvava et al., 2019; Naik and Abiodun, 2020); larger basins in
China and Asian domains (Prudhomme et al., 2014; Wang et al., 2018;
Huang et al., 2018); and snowpack regions (Mote et al., 2018; Huning
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and AghaKouchak, 2018). The projected drought scenarios will lead to
the expansion of global dryland with some studies recording an increase
of drylands from current 10–23% of a total land surface to approxi-
mately, 50–56% over the global biospherics component. (Huang et al.,
2016). The resultant impact of the projected drought and aridity index
over already fragile ecosystems will likely trigger some localized feed-
backs such as increased occurrence of dust events or alteration of sur-
face water table (Skiles et al., 2018).

Despite the projected intensification of drought occurrence across
various regions globally, there are still large uncertainties regarding
observed global scale trends in droughts (Burke and Brown, 2008;
Prudhomme et al., 2014; Ukkola et al., 2018). For instance, the last two
recent assessment report by Intergovernmental Panel Climate Change
(AR4 and 5; Christensen et al., 2008; Trenberth et al., 2014) project an
increase of drought frequency over subtropical and mid-latitude region
while an opposite trend is reported in other studies (Huang et al., 2018;
Sheffield et al., 2012; Bonsal et al., 2013). Attributions to the un-
certainties in the projections studies point a number of factors such as
the difference in the datasets and methods accounting for natural cli-
mate variability such as El Nino-Southern Oscillation or warming of
tropical Oceans (Giannini et al., 2005). Other studies (e.g., Prudhomme
et al., 2014; Ukkola et al., 2018) show that discrepancies in drought
evaluation is sourced from the parameterization schemes in the global
impact models (GIM) or global climate models (GCMs), such as those
used in the fifth Coupled Model Intercomparison Project (CMIP5). Thus,
the aforementioned studies point to the need for consideration of
multiple models/datasets in drought evaluation so as to account for
such unforeseen uncertainties. On the other hand, Burke and Brown
(2008) suggest that the selection of drought indices is important source
of uncertainties in impact studies and thus recommends utilization of
appropriate and most widely robust indices to be employed while as-
sessing drought over a particular domain.

African region, regarded as drought “hotspot” continues to suffer
adverse impacts of drought as a result of reduced precipitation
(Nicholson, 2000; Hoerling et al., 2006; Lyon and Dewitt, 2012;
Liebmann et al., 2014), increased evapotranspiration due to enhanced
radiation (Shem and Dickinson, 2006; Abiodun et al., 2008; Nogherotto
et al., 2013), increased surface air temperature (Christy et al., 2009;
Collins, 2011; Omondi et al., 2014; Camberlin, 2017), warming of the
sea surface temperature as result of increased emissions of GHGs
(Richard et al., 2001; Hoerling et al., 2006; Manatsa et al., 2014) and
changes in the circulation anomalies (Hastenrath et al., 2011; Ogwang
et al., 2014). Upward tendencies of observed drought over the con-
tinent will lead to potential losses from hazard imposed by a drought
event (Touma et al., 2015; Carrão et al., 2018). Recent studies on future
drought risk assessment over Africa reveal a dire situation of projected
increase in drought risk across the continent with central African
countries and North Africa exhibiting aggravating drought hazard
(Ahmadalipour et al., 2019). Understanding future evolution of drought
scenario across localized domains over the region thus, remains an
imperative process in bid to adapt tailor suit innovative solutions to
drought risks and their impacts.

Over East Africa (EA), numerous studies have revealed varying
trends at historical perspective with some studies showing an increase
in severity and frequency of drought (Hulme, 1992; Dai, 2011a; Lyon
and Dewitt, 2012; Ayugi et al. 2020). However, future projections point
to a varying patterns of drought tendencies, with some studies reporting
an increase (Dai, 2011b, 2013; Gidey et al., 2018; Reliefweb, 2019;
Haile et al., 2020), while others project an increase of wetting patterns
(Shongwe et al., 2011; Williams and Funk, 2011; Maidment et al.,
2015). Such uncertainties in projections reveal need for more studies to
validate the existing literatures or highlight new tendencies for accurate
planning (Kent et al., 2015).

At a local domain such as Kenya, a number of climate related studies
conducted have mostly focused on examining historical tendencies with
few or no studies at present highlighting the future projections of

drought evolutions, either for meteorological, hydrological or agri-
cultural. Few existing studies have focused on projections of either
precipitations (Yang et al., 2015; Tierney et al., 2015; Ongoma et al.,
2018a) or temperature (Intergovernmental Panel on Climate Change,
2018; Engelbrecht et al., 2015; Dike et al., 2015). Other impact studies
have analyzed extreme events based on indices defined by Expert Team
on Climate Change Detection and Indices (ETCCDI) and revealed an
increasing trend in monthly maximum and minimum vales of daily
minimum temperature over large parts of the study domain towards
end of the century (Gebrechorkos et al., 2018; Ongoma et al., 2018b).

Droughts continue to persist with devastating impacts on economy,
energy and infrastructure, health, land use, society, and water re-
sources. For instance, the economy of the Kenya is based on rain-fed
agriculture supporting 80% of food supplies and employment of the
75% of the populations (World Bank, 2012). The observed reduction in
seasonal rainfall is likely to impact on future projections of drought.
The projections of future climate remain a debate since existing studies
have highlighted a contradictory projection, creating a state of confu-
sion on the likelihood of related impact studies on the same (Rowell
et al., 2015). Thus, more studies on future projections of precipitation
and related impacts remain of great importance. The latest report by
global climate risk index 2020 (Eckstein et al., 2020), further paints a
worrying situation, with Kenya being classified as 7th most affected and
vulnerable country globally to the occurrence of extreme events. To
address the gaps, this study seeks to address the existing gap by ex-
amining the possible future state of climate based on high resolution
biased corrected climate model datasets, sourced from RCA4. In addi-
tion, the study will examine the possible projections of drought sce-
narios based on widely accepted indicator of SPI. A number of studies
utilized the aforementioned index in drought analysis across various
domains (Dutra et al., 2013; Spinoni et al., 2014; Gidey et al., 2018).
However, it should be noted that this index tends to underestimate
influence of global warming on drought due to its inability to account
for influence of potential evapotranspiration (PET) (Nguvava et al.,
2019; Naik and Abiodun, 2020; Spinoni et al., 2020). Due to lack of
access to minimum and maximum temperature datasets from the
modelling centre, that are prerequisite for accounting for PET, the study
utilized SPI that require precipitation data only to compute the drought
anomalies. This study is a first step to highlight a glimpse of future
projected drought trends over Kenya using high-resolution datasets of
RCA4 processed by Coordinated Regional Climate Downscaling fra-
mework CORDEX-Africa).

The remaining section of this study is organized as follows: Section
2 describes the data, methods and more description of the study area
while Section 3 gives a robust account of findings and discussions of the
study. Conclusion and further recommendations are stated in Section 4.

2. Study area, data and methods

2.1. Study area

The focus of this study is over Kenya, located in East Africa along
longitude 34° E- 42° E and latitude 5° S - 5° N (Fig. 1). Neighboring
countries are as follows: Uganda to the west, Tanzania along the south,
Ethiopia on the north and Somalia on the east side. The celestial
equator crosses the country in the middle placing half to the southern
hemisphere and other half in the northern hemisphere. The country has
massive and diverse geographical features. The Great Rift Valley passes
across the country from Ethiopia to the North through to Tanzania in
the south. The western side of the study area has higher elevation while
plains characterize the eastern side. Meanwhile, the eastern Kenya have
large expanse of drylands with aridity index ranging from 0.05 ≤ AI
≤0.2 in some regions to 0.2 ≤ AI ≤0.5 in other areas (Huang et al.,
2016). Consequently, the region is considered as a dry climate anomaly
in an otherwise wet equatorial belt (Camberlin, 2018).

Climatology of rainfall is featured by bimodal pattern with seasonal
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rains experienced from the month of March to May (MAM) and second
regime beginning from October to November (OND). A number of
studies (Philippon et al., 2002; Hastenrath et al., 2004), note that the
second regime rainfall is characterized by more coherency in spatial
distribution as compared to local wet MAM season which is regarded as
“long rains” over the study locale. These seasons are associated with
maximum solar heating driven by the oscillating migration of the rain
belt along the Inter-Tropical Convergence Zone (ITCZ) (Camberlin and
Okoola, 2003; Yang et al., 2014). The ITCZ drives a remarkable influ-
ence in the distribution and patterns of rainfall and temperature fluc-
tuations over the study area (Nicholson, 2008; Ogwang et al., 2014;
Maidment et al., 2015). The country is generally characterized by warm
temperature throughout the year, with slight variations from one
season to another, thus defined as a tropical savanna climate (Aw) (Peel
et al., 2007). Mean annual temperature over the study region ranges
between 19 and 30 °C. The warmest months are January and February
(JF), followed by MAM season, while June–September (JJAS) record

the lowest temperatures (King'uyu et al., 2000; Schreck and Semazzi,
2004; Ongoma et al., 2017; Kerandi et al., 2018). The cold zone is
generally in the areas at high elevation, on either side of the Rift Valley.
In support of the elevation effect on temperature, low temperatures are
observed near the central and Rift Valley regions. The eastern and
northwestern parts of the country record the highest temperatures since
the areas are mainly Arid and Semi-Arid Lands (ASAL); characterized
by low rainfall. The northeasterly winds prevail during the JF and JJAS
seasons while the south easterlies are dominant during MAM and OND
(Hastenrath et al., 2011).

Numerous studies have been conducted to ascertain historical
drought variabilities, trends and the respective impacts on agriculture,
economy, water resources and environment over the study region
(Zargar et al., 2011; Changwony et al., 2017; Frank et al., 2017; Karanja
et al., 2017; Mutsotso et al., 2018; Wambua et al., 2018; Polong et al.,
2019). These researchers have reported varying features of drought
variation and trends over the study region. Ayugi et al. (2020b) detailed

Fig. 1. The study area [34°E–42°E and 5°S–5°N] with topographical elevation (m) in blue/red color. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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more information regarding an in-depth analysis of recent trends, fre-
quencies, intensity and duration of drought patterns over the study
domain using robust index of Standardized Precipitation Evapo-
transpiration (SPEI).

2.2. Data

This study utilizes MME of five selected RCMs. The models are as
follows: Model for Interdisciplinary Research on Climate (MIROC5),
Commonwealth Scientific and Industrial Research Organization
(CSIRO), Institute Pierre Simon Laplace Model CM5A-MR (IPSL-CM5A-
MR), Max Planck Institute Earth System Model at base resolution (MPI-
ESM-LR) and European community Earth-System (EC-EARTH). The
listed RCMs simulations outputs are derived from the dynamical
downscaling of CMIP5 GCMs using RCA4, originally developed by the
Swedish Meteorological and Hydrological Institute (SMHI) under the
CORDEX initiative (Samuelsson et al., 2012). The RCA4 is a product of
major enhancement on RCA3 based on model experimental design.
Unden et al. (2002) and Strandberg et al. (2015) detailed more in-
formation regarding the physics of RCA4 model. The RCA4 simulations
outputs are available on CORDEX-Africa domain have spatial resolution
at grid increment of 0.44° × 0.44° (~50 km × 50 km) and temporal
coverage ranging from 1951 to 2005 for historical runs and projections
from 2006 to 2100. Table 1 present the details of models that were used
to derive the ensemble as used in the present study. Ayugi et al. (2020b)
evaluated the performance of the listed RCMs and noted a better per-
formance over the study domain in simulating precipitation. Similar
performance was observed over larger domain of Greater Horn of Africa
(Endris et al., 2013; Kisembe et al., 2018). Further, the models were
bias corrected based on a quantile mapping bias corrected algorithm in
order to minimize possible bias for accurate projections. Ayugi et al.
(2020c) outlines more information regarding the techniques for quan-
tile mapping bias correction that was employed to reduce the biases in
the models. Findings demonstrated that using QMBC on outputs from
RCA4 is an important intermediate step to improve climate data before
performing any regional impact analysis. For instance, the results show
that most of the models exhibit reasonable improvement after correc-
tions at seasonal and annual timescales. Specifically, the EC-EARTH and
CSIRO models depict remarkable improvement as compared to other
models. On the contrary, the IPSL-CM5A-MR model shows little im-
provement across the rainfall seasons MAM and OND. (See Table 2.)

2.3. Methods

Analysis for the MME was carried out under different RCPs; RCP4.5
(midrange) and RCP8.5 (high) emissions scenarios (Moss et al., 2010).
Three-time slice 30-year period, near-future (2010–2039), mid-term
(2040–2069) and late century (2070–2100), was considered for in-
vestigation of drought and flood events, relative to the reference period
(1971–2000). The techniques applied are described as follows:

2.3.1. Theil-Sen slope
The present study employed Theil-Sen Slope technique to appraise

the long-term trend in the precipitation anomaly data over the study
region. This is non-parametric method that is employed to evaluate the

magnitude of the slope of the linear trend in a sample of “n” pairs of
data (Sen, 1968; Sun et al., 2011). This method is considered effective
due to its robust features of outliers in the datasets. It is not affected by
any extreme distributions and does not entail any normal distribution of
the residuals. It has been widely employed to study the linear trends of
hydro climatic variables (e.g Ongoma et al., 2017; Wang et al., 2018).
Mathematic expression of equation for Theil-Sen slope, Xi, of a time
series can be calculated as.

=
−

−
= …i

qi qj
j k

IX for 1, 2, 3 n
(1)

where qi and qj represent the data value at time j and k (j > k), re-
spectively.

2.3.2. Modified Mann-Kendall test
Commonly utilized non-parametric rank-based modified Mann-

Kendall (m-MK) test (Mann, 1945; Kendall, 1975; Sneyers, 1990;
Hamed and Rao, 1998), suitable in detecting trends in any paired data
is employed in the present study. The advantage of m-MK test is its
capability of incorporate missing values in any time series and also due
to the fact that it employs relative magnitudes rather than numerical
values that allows ‘trace’ or ‘below’ detection data (Hirsch et al., 1993;
Zhai and Feng, 2009). Numerous hydro-climate studies across various
have employed this technique for trend analysis (Ongoma et al., 2017;
Ayugi and Tan, 2019).

2.3.3. Standardized precipitation index (SPI)
The SPI is a tool developed to quantify drought at a given time in-

terval (temporal resolution) for precipitation distribution from histor-
ical data. This tool can also be used to monitor periods of anomalously
wet/dry events. According to McKee et al. (1993), SPI calculation is
based on the long-term precipitation taken for the required period. The
computation of the SPI involves fitting a gamma probability density
function to a given frequency distribution of rainfall tools for station.
The alpha and beta parameters of the gamma distribution are estimated
for each timescale of interest (i.e 1, 3, 6 and 12 months) and for each
month of the year. The gamma distribution is defined by its probability
density function:

= ≥
− −g x

β τ α
x x( ) 1

( )
, 0α

α x
β1e

(2)

where α and β are shape and scale parameters, x is the rainfall amount
and τ(α) is the gamma function. Maximum likelihood solutions are used
to estimate αand β.The resulting parameters are then used to find the
cumulative probability of observed rainfall event for a given month and
timescale. The cumulative probability, after its computation, is trans-
formed to the standard normal random variable zwith a mean equal to 0
and the variance of 1, which is the value of the SPI.

The standardization ensures that the SPI gives uniform measure for
wetness and dryness in different climate regimes or under seasonal
dependence. Drought severity is defined as the cumulative sum of the
monthly SPI values considering SPI values above/under a certain
threshold. The threshold considered in the present study is similar to
that of SPEI of greater/less than +1.0 or − 1.0, which represents the
limit of wetness or dryness. A number of studies have employed SPI in

Table 1
The description of the global climate models (GCMs) dynamically downscaled by Rossby Centre Regional Climate Model (RCA4) CORDEX.

Institute Native horizontal grid increment Abbreviated Name

1. Consortium of European Research Institutions and Researchers, Netherlands 1.125° × 1.125° ICHEC-EC-EARTH
2. Institute Pierre Simon Laplace, France 3.75° × ~1.895° IPSL-IPSL-CM5A-MR
3. National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology (MIROC),

Japan
~1.4° × 1.4° MIROC-MIROC5

4. Commonwealth Scientific and Industrial Research Organization (Australia) ~1.875° × 1.875° CSIRO-Mk3.6.0
5. Max Planck Institute for Meteorology (Germany) ~1.875° × 1.875° MPI-M-MPI-ESM-LR
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drought assessment across different parts of the study region (Manatsa
et al., 2010; Wambua et al., 2018; Changwony et al., 2017).

In this study, the study duration was sub-divided into three time
slices, each with cumulative period of month/years (360/30); i.e., near
future (2010–2039); mid-century (2040–2069); and late-century
(2070–2100). The aim of sub-dividing the study duration in three dif-
ferent time slices is to test if there may be a likelihood of noteworthy
deviations in the drought conditions between different periods. This
approach has been implemented in a similar study across various do-
mains (Ionita et al., 2016; Ahmadalipour et al., 2017b; Huang et al.,
2018).

The present study considered the duration of dryness situation by
the length of time (months) that the drought index is consecutively
above or below a truncation value (i.e SPI ≤ −1.00). The SPI values
were calculated in two-time scales namely, the SPI-3 and SPI -12
(McKee et al., 1993) for three different categories: moderate
(−1.49 < SPI < −1.00), severe (−1.99 < SPI < −1.50) and
extreme (SPI ≤ −2.00). These values for the SPI define the feature of
drought events in terms intensity, severity and frequency of extreme
events define drought episodes. Similar method has been employed in
other studies (Polong et al., 2019; Ayugi et al., 2020a).

Shorter time scales of 3 months are employed to detect soil moisture
anomalies while longer time scales determine hydrologic drought
(Balint et al., 2011). For instance, the months of March to May (MAM)
over the study area represent the growing season, supporting 80% of
agricultural activities. In addition, soil moisture is fully utilized during
this season, hence the deficit is associated with drought condition (e.g
Hayes et al., 1999; Manatsa et al., 2010). Significant percentage of total
annual rainfall is experienced during the season covering entire study
location, and as such, water availability for land cover vegetation is
primarily influenced with seasonal rainfall. The analysis was conducted
for different representative concentrative pathways, i.e. RCP 4.5 and
RCP 8.5 (Riahi et al., 2011).

The advantage of the SPI approach is the spatiality consistent. It
gives the comparisons between different locations in different climates
(climatic sub-regions) regardless of the fact that they may have dif-
ferent normal rainfall (Hayes et al., 1999). In addition, it is adaptable to
any other climatic variable apart from precipitation (Vicente-Serrano
and López-Moreno, 2005).

Further, this study defined the severity, intensity, and frequency for
dry/wet event over the study domain as given in Eqs. (3)–(5);

i) Severity is the cumulative sum of the index value based on the
duration extent (Eq. (3));

∑=
=

S Index
i

Duration

1 (3)

ii) Intensity of an event is the severity divided by the duration (Eq. (4)).
Events that have shorter duration and higher severity will have large
intensities.

=I Severity
Duration (4)

iii) Frequency of occurrence (Fs) is defined in the Eq. (5);

=F n
N

x 100%s
s

s (5)

where ns is the number of drought events (SPEI<−1.0), N2 is the total
of the months for the study period, and s is a grid cell.

In order to demonstrate the regions most affected by the occurrence
of drought events, also referred as “hotspots” zone, the SPI analysis was
conducted at pixel-wise zone. For instance, all datasets were extracted
from 59 grid cells within the study domain (Fig. 1). This was derived
from re-gridding of datasets using bilinear interpolation to 1ο x 1ο

spatial resolution in bid to achieve uniform grids. The dominance of the
dry cases was examined on the percentage of frequency of each in-
cidence with reference to the total number of months. This approach
was successfully employed in a recent study of drought evaluation
along the major water basin in Kenya (Polong et al., 2019) and overall
study domain (Ayugi et al., 2020a). The intention of employing this
approach was to categorize regions that frequently experience con-
currence of extreme and severe climatic cases at corresponding periods.

3. Results and discussions

3.1. Projected changes in rainfall

Drought occurrence is entropic natural event that is mainly influ-
enced from the changes in climatic variables, namely precipitation and
temperature (Sheffield and Eric, 2008). Deviations in drought scenarios
are mainly determined by precipitation anomalies with acute deficit
resulting to severe or extreme drought situation (Dai et al., 2018). It is
thus important to examine projected patterns of rainfall event in order
to understand the changes in drought and pluvial occurrences over a
particular study domain. In this study, the changes in annual and sea-
sonal precipitation over Kenya are examined in order to associate with
changes in drought occurrence. Various statistical models are employed
in assessing the climatic variable employed in this study. Fig. 2 presents
the probability function distribution (PDFs) for annual and seasonal
rainfall changes for baseline and for projections based on RCP4.5 and
RCP8.5 scenarios. This function is useful in explaining the likelihood of
an outcome for stochastic variable based on deviations from the mean
value. In this study, the PDFs for projections were conducted under
three time slices, namely; near future (2010–2039), mid-century
(2040–2069) and towards the end of the century (2070–2100). Results
demonstrate positive shift, indicating an increase in projected rainfall
change during all the three timescales. Most of the changes in variance
are statistically insignificant at 95% confidence interval, except for
RCP4.5 scenario during mid-term (2040–2069) for OND.

The projections under RCP4.5 scenario during three time slices
(Fig. 2a) shows less deviations of the models from the baseline during
near-future and mid-century, indicating dry scenarios during MAM
season. However, a positive shift is noted towards the end of the

Table 2
the duration, severity, and intensity occurrence of drought for SPI 3 and 12- timescale for RCP 4.5 and RCP8.5 during near-future [2010–2039], mid-term
[2040–2069], and late-century [2070–2100] over Kenya.

SPI Duration Severity Intensity

RCP4.5 2010–2039 2040–2069 2070–2099 2010–2039 2040–2069 2070–2099 2010–2039 2040–2069 2070–2099

SPI-3 58 53 53 −87.57 −74.33 −71.70 −1.50 −1.40 −1.41
SPI-12 44 53 49 −77.21 −79.04 −69.76 −1.75 −1.50 −1.42

RCP8.5 Duration Severity Intensity
SPI-3 53 53 51 −78.59 −81.56 −75.41 −1.48 −1.53 −1.50
SPI-12 64 57 53 −86.17 −87.94 −71.71 −1.34 −1.54 −1.35
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century. During the OND season (Fig. 2b), the model shows large shift,
indicating increase in rainfall amount as compared to historical base-
line period (1970–2000). This shows that the study area is likely to
experience a shift in seasons, with historically known ‘long-rainy
season’ of MAM, shifting towards OND, which has been historically
referred as ‘short rainy-season’. Previous studies note that OND tends to
depict stronger inter-annual variability, stronger spatial lucidity of
rainfall anomalies across most region, and substantial association with
ENSO and Indian Ocean Dipole (IOD) (eg. Indeje et al., 2000; Nicholson
and Kim, 1997; Endris et al., 2019).

Annual PDF (Fig. 2c) show a similar patterns as seasonal rainfall
event with positive shift in all the three time slice experienced. Com-
pared to MAM season, the deviation received during annual show large
differences between baseline period and the projected scenarios. This
shows that the region will become wetter as compared to the historical
experience that has been characterized by incidences of drought across
the study domain. The findings of this study agree with other existing
literature that have reported an increase in rainfall frequency over the
study domain (Kent et al., 2015; Maidment et al., 2015; Ongoma et al.,
2018a). Zhao and Dai (2017) linked the wetting trend over East Africa
region to a robust response of the Indian Ocean ITCZ. However, some
studies, i.e. Tierney et al. (2015) based on paleoclimate datasets, pro-
ject drying patterns, mostly associated with weakening in the Walker
Circulation over Indian and Pacific Ocean basins. This confusion sce-
nario of projected rainfall trends is termed as East Africa “climate
paradox” and calls for more evaluative studies to ascertain the clear
projected patterns (Rowell et al., 2015).

The PDFs for rainfall projections under RCP8.5 scenario (Fig. 2d-f)
for MAM, OND and annual show larger deviations as compared to
RCP4.5 scenario. For instance, during OND (Fig. 2e), the late-century

(2071–2100) will likely to experience substantial intensification in
rainfall frequency as compared to other time slices. The strong shift,
indicating the increase in rainfall event, despite the projected future
warming, agrees with a study of Kent et al. (2015) that reported lack of
correlation between uncertainty in global mean temperature and pro-
jected end-of-twenty-first-century change in precipitation. On the con-
trast, the study noted that the uncertainty in regional precipitation over
study region is predominantly related to spatial shifts in convection and
convergence, associated with processes such as sea surface temperature
(SST) patterns and land-sea thermal contrast change. The conclusion of
various studies attempts to elucidate the shifts in rainfall projections
highlights the complexity of regional rainfall changes which leads to
uncertainty on the impact, mainly on extreme events occurrences.

3.2. Projected changes in drought events

Fig. 3-5 depict spatial distribution of projected total moderate, se-
vere, and extreme drought frequencies over different time slices; (a)
2010–2039, (b) 2040–2069, and (c) 2070–2100 relative to the period
1971–2000 for SPI-3 under RCP4.5 scenario while (d-f) under RCP8.5
scenario, with similar time slice as aforementioned pathways. The SPI-
12 is presented in the figures (g-l); (g) 2010–2039, (e) 2040–2069, and
(f) 2070–2100 for RCP4.5 scenario while (j) 2010–2039, (k)
2040–2069, and (l) 2070–2100 for RCP 8.5 scenario. The analysis for
SPI was derived from ensemble of 5 bias corrected RCMs simulations
over Kenya. Units for the frequency reflected are based on the number
of months/periods in which drought occurrence took place at a parti-
cular region.

Analysis of moderate drought duration for SPI-3 under the RCP4.5
scenario for near future (Fig. 3a) shows varying patterns of drought

Fig. 2. Probability density functions (PDFs) for seasonal, (a) MAM, (b) OND, and (c) Annual under RCP 4.5 scenarios while (d) MAM, (e) OND, and (f) show annual
precipitation distribution under RCP 8.5 over Kenya.
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frequencies with regions along the northeast and southeast, stretching
towards coastal belt likely to experience higher number of months af-
fected by moderate drought as compared to other parts of the study
area. For instance, moderate droughts show reduction in occurrence
towards the mid-century (2040–2069), except in southern belt, and far
end northeastern sides that continue to exhibit higher duration of
drought occurrence (48/360 months). The locations along eastern sides
stretching to the southern belt of the study area are mostly character-
ized by bare ASALs. Climatic characteristics of such region is pre-
dominantly dry with below normal rainfall experienced, leading to
increased evapotranspiration which is induced by enhanced radiation,
higher wind speed, and vapor pressure deficit, mostly linked to higher
temperature and low relative humidity. Interestingly, locations suited
along the western sides and northwest will likely to experience fewer
months of moderate drought duration. These locations have large water
bodies and high elevations coupled with dense vegetations.

During the RCP8.5 scenario for SPI-3 (Fig. 3d-f), the study area will
likely to experience homogenous distribution of mild moderate drought
during mid-century and further reduction in drought occurrence to-
wards the end of the century (Fig. 3f). This pattern of drought in-
cidences tends to follow the projected trends of precipitation patterns
that show significant increase in future under the scenarios over the
study domain, most especially under higher emission scenarios
(Shongwe et al., 2011; Tierney et al., 2015; Ongoma et al., 2018a). The
projected increase in precipitation signifies of more pluvial scenarios as
compared to drought incidences with risk such as flooding which will

ultimately impact on disaster management programs due to infra-
structural loss. New emerging challenges will arise due to the coupling
scenarios where the projected surface temperature anomalies show
positive trajectory of across the globe and over the study region
(Ongoma et al., 2018a). The study area is likely to encounter serious
problems associated with health as a result of vector borne disease and
other pestilences.

The above-mentioned studies, further state that the increment in
precipitation amount, will be more pronounced during the period OND
season as compared to the MAM season which also is in harmony with
the findings of the present study as demonstrated in Fig. 2. Numerous
studies (i.e., Saji et al., 1999; Endris et al., 2016; Endris et al., 2019)
have pointed the influence of Indian and Pacific Ocean with important
changes in the strength of teleconnections, mostly related to ENSO and
IOD. For instance, Endris et al. (2019) show a dipole future changes in
precipitation, with a stronger ENSO/IOD related to rainfall anomaly
over most eastern parts of the study area, but a weaker ENSO/IOD
signal over the southern parts of the study area. The projected changes
in rainfall that are linked with mean changes in SST and associated with
Walker Circulations, with impacts varying across the spatial scale over
the study locale is reflected during the SPI-12 under both RCP4.5 and
RCP8.5 scenarios (Fig. 3g-l). The present analysis shows that most
spatial patterns continue to exhibit the hotspots located along the
southeastern regions characterized by coastal planes while western and
central are showing few months of drought duration. The regions lo-
cated along highland plateau featured by the presence of raised table

Fig. 3. Spatial distribution of projected total moderate drought (−1.49 < SPI < −1.00) duration over different time slice; (a) 2010–2039, (b) 2040–2069, and (c)
2070–2100 relative to the period 1971–2000 for SPI-3 under RCP4.5 while (d-f) for RCP8.5, with similar time slice as aforementioned pathways. The SPI-12 is
presented in the figures (g-l) with Figures; (g) 2010–2039, (e) 2040–2069, and (f) 2070–2100 for RCP 4.5 while (j) 2010–2039, (k) 2040–2069, and (l) 2070–2100 for
RCP 8.5 derived from ensemble of 5 RCMs simulations over Kenya. Units: number of months/periods.

G. Tan, et al. Atmospheric Research 246 (2020) 105112

7



land above sea level and large water bodies with humid climate will
likely to experience few occurrences of drought events along such re-
gions. Recent study (Haile et al., 2020) established that the wetting/
drying patterns are directly linked to the widely known concept of ‘dry
gets drier and wet gets wetter’ paradigm. This pattern is mainly asso-
ciated with the P and PET which are main variables in the calculation of
the drought index. These are further associated with the water balance
(P-PET) estimations where humid regions hold wet with positive P-PET
value while arid regions result in deficit/negative P-PET.

In terms of severe drought (Fig. 4), the period 2010–2039 is char-
acterized by fewer months with which the study area is likely to ex-
perience drought occurrence as compared to moderate drought. The
highest duration during this category has a total of 23 months (out of
360 months) and least is< 5 months over the study duration. Parti-
cularly, for the SPI-3 (Fig. 4a-f), the study locale shows varying patterns
of drought hotspots regions, mostly over the northwest and northeast.
The central regions show relatively low drought events as compared to
other parts of the study area. The late century (2070–2100) shows an
increment in severe drought duration covering almost the entire
country with substantial scenarios manifesting for SPI-12 under busi-
ness as usual scenarios (Fig. 4i). Overall, the study area shows that most
parts will likely to experience severe drought during SPI-3 as compared
to SPI-12 in all the three-time slice.

In Fig. 5, the hotspots regarding the extreme drought are depicted
for SPI-3 (Fig. 5a-f), and SPI-12 (Fig. 5g-l) under two RCP4.5/8.5 sce-
narios. Analysis for SPI-3 under RCP4.5 scenario (Fig. 5a-c) shows
substantial period in which the region will experience drought in-
cidences, mostly over the western sides (2010–2039) and northwestern
(2040–2069). However, reduction in drought occurrence is likely to be

experienced across western and southern regions towards the end of the
century under stabilization control scenario (Fig. 5c). During the RCP
8.5 scenario (Fig. 3d-f), the abnormal occurrence of drought events is
depicted along northeast section of the country. The economic activity
of the community residing around this area will likely to be affected
since their main economic activity is solely relying on pastoralist live-
lihood. A recent baseline survey (Mutundu et al., 2013), conducted in
bid to establish the interventions in upgrading animal health and pro-
duction in the wake of increased severe drought occurrence prevailing
currently and projected to increase, revealed fragile situation with lack
of enough infrastructure to enable community cope with adverse effects
of droughts. This calls for more intervention measures so as to enable
affected members of the society cope adequately with expected drought
incidence in the near and mid-century time slice period. The plots for
SPI-12 in the period under RCP4.5/8.5 scenario (Fig. 5j-l) depict a
strong reduction in the amount of drought that the country is likely to
experience. Interestingly, the western sides of the study area show
higher duration of drought occurrence and the southwestern as com-
pared to other parts of the region.

3.3. Projected changes in drought intensity, frequency and severity

Fig. 6 provides an overview of projected changes in drought fre-
quency and severity analysis for SPI 3 timescale under (a) RCP4.5 and
(b) RCP8.5 scenarios during three time slices namely; near future
(2010–2039), mid-term (2040–2069), and late-century (2070–2100)
over Kenya. Fig. 6(c) and 6(d) show the results for SPI 12 timescale
under RCP4.5 and RCP8.5 scenarios respectively. The evaluation of
drought events was conducted based on SPI classifications for

Fig. 4. Same as Fig. 3 but for total severe drought duration (−1.99 < SPI < −1.50).
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moderate, severe and extreme frequencies (Vicente-Serrano et al.,
2010; Beguería et al., 2014). From the SPI-3 results for RCP 4.5 scenario
during the first time slice (Fig. 6a), it can be seen that the study domain
will likely to experience intensification of more severe to extreme in-
cidences towards the end of the near-century period. During mid-cen-
tury projections for SPI-3 (Fig. 6a), the study domain will experience
more of severe and extreme drought scenario as compared to moderate
incidences. However, mid-century and late century projections show
that the study area is likely to experience sharp reduction in severe and
extreme occurrence to more of moderate drought frequency. Late-cen-
tury drought projections under medium stabilization without shoot
show occurrence of moderate to severe events and likely occurrence of
high intense occurrence of extreme event. The causes for this out-
rageous occurrence of extreme drought are still unknown and likely to
elicit for further studies. Analysis for drought possible scenario for SPI-3
under RCP8.5 is shown in Fig. 6b. Similar to medium-term scenario
analysis, three-time slice representing near future, mid-term, and end-
century were considered. The results show intensification of severe and
extreme in the whole time slice while a reduction of moderate drought
across the study period. The study area is likely to experience extreme
drought frequency during the early century of the study period
(Fig. 6d). On the other hand, the mid-century depicts continued oc-
currence of extreme and severe. The observed changes in drought
characteristic during mid-century indicate the intensity phenomenon at
−1.53, with the severity occurrence recording a stronger event of
−81.56 over the duration of 53 months (Table 1). It is apparent from
results presented that SPI-3 exhibit greater temporal frequencies of the
occurrence for wet and dry cases during the study duration. The last
time slice for 2070–2100 for SPI-3 under RCP8.5 (Fig. 6b) depicts

sustained incidences of extreme drought occurrence.
Fig. 6c and d demonstrate the results of meteorological drought

events for SPI-12 under RCP 4.5 (Fig. 6c) and RCP8.5 scenarios
(Fig. 6d) during the near future (2010–2039), mid-term (2040–2069),
and late-century (2070–2100). The reduction in drought incidences
during mid-century under RCP8.5 scenario (Fig. 6d) concur with pre-
cipitation projections that are reported to increase during the mid of the
century (Shongwe et al., 2011; Christensen et al., 2013; Ongoma et al.,
2018a). Similar results were equally observed in the present study that
demonstrated a recovery of MAM seasonal rainfall and significant po-
sitive deviation during OND season for the period 2040–2069 across the
study domain (Fig. 2). Recent studies on inter-annual precipitation
changes have showed robust association of rainfall and SST anomalies,
namely Indian and Pacific Oceans (Behera et al., 2005; Shongwe et al.,
2011; Christensen et al., 2013). The conclusion of these studies de-
monstrates that long-term greenhouse gas forced SST pattern variations
in over the study domain could contribute to precipitation change,
thereby impacting on drought or flood respectively. The drought se-
verity incidences for further analysis, which was derived as sum of the
index value based on duration extent are presented in Table 1. The
result for SPI-12 under RCP4.5 scenario for near-future shows an
overall severe drought occurrence over the study location with ob-
served intensity of −1.75 and cumulative frequency of 44 months
during the study period (Table 1).

Comparison of the two indices shows that SPI-3 is characterized by
moderate drought occurrence while long-term drought (SPI-12) shows
reduction in the extreme events over the study area. This agrees with
other future drought projections over broader region of East Africa. For
instance, a recent study over Ethiopia (Abrha and Hagos, 2019),

Fig. 5. Same as Fig. 3 but for total extreme drought duration (SPI ≤ −2).
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reported an increase in moderate dry conditions at 16.7% and slight
increase of extreme occurrences at 6.7%. This study used an ensemble
of seven drought indices, namely; SPI, percent normal, EDI, Z-score
RAI, Modified China Z-score, and RDI using meteorological drought
monitoring and DricC software. However, some regions have demon-
strated an increase in severe and extreme drought scenarios, which is
contrary to the projected trends over East Africa. To illustrate, drought
projections over South African region based on SPEI and SPI show that
simulations project a robust increase in the magnitude of drought in-
tensity and frequency, which is likely to significantly increase under the
higher-level global warming scenarios (Abiodun et al., 2019; Naik and
Abiodun, 2020). Other studies have equally demonstrated an increased
drought incidence in future across various regions (e.g Wehner et al.,
2011; Duffy et al., 2015; Huang et al., 2018; Ahmadalipour et al.,
2017a, 2017b, 2019; Nguvava et al., 2019). This calls for continuous
evaluation of drought extremes based on varying indices and improved
quality of datasets in order to accurately simulate its evolution and
develop appropriate adaptation measure across the sub-Saharan region.

4. Discussions

Due to lack of minimum/maximum temperature datasets that are
necessary in computing the PET, this study used precipitation-based
drought index to show projected changes. This is in line with other
existing studies conducted over broader East Africa to show the future

changes in drought and pluvial events based on SPI or/and SPEI
(Nguvava et al., 2019; Spinoni et al., 2020; Haile et al., 2020). How-
ever, the conclusion of these studies has reported the better perfor-
mance of SPEI as compared to SPI due to the PET inclusion. For in-
stance, Nguvava et al. (2019) compared performance of two drought
indices, namely SPI and SPEI. The study reported underestimation of
drought frequency, severity, and intensity when employing SPI index as
compared to the robust performance of SPEI. The findings of under-
estimation of SPI in projecting the changes in drought characteristics
are equally noted in another study over Western Cape in South Africa
(Naik and Abiodun, 2020). Spinoni et al. (2020), in a study focusing on
future meteorological drought hotspots at global level based on
CORDEX data and employing a number of drought indices, including
SPI, showed that SPI estimates that about 15% of the global land is
likely to experience more frequent and severe drought during RCP 4.5/
8.5 while SPEI gives projections of about 49% under RCP 8.5 and
(about 47%) under RCP 4.5.

Despite the variation in projections of drought, one fundamental
agreement that models and indices show is an increase in drought in-
cidences across the SPI spectrum as compared to the baseline period.
However, as agreed in most literature, caution should be applied when
employing precipitation-based indices only like SPI, since it does not
account for temperature component that has continued to exhibit po-
sitive trajectory globally. Going forward, the next paradigm of research
frontier regarding drought scenario should focus on addressing

Fig. 6. Evolution of meteorological drought events in 30-year intervals for SPI 3 (12)- timescale for RCP 4.5 (a) (c) and RCP8.5 (b) (d) during near-future
[2010–2039], mid-term [2040–2069], and late-century [2070–2100].
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fundamental questions such as those raised in study by Van Loon et al.
(2016) and AghaKouchak et al. (2020). This study thus recommends in-
depth understanding on the role of humans in aggravating the projected
droughts especially in regions that were less considered as hotspots.
Moreover, further studies should endeavor to investigate innovative
mechanism on how to cope with excepted impact of drought on agri-
culture, energy sector, and human water use. This will cushion society
and infrastructure from the adverse impacts and enable attainment of
sustainable development goals.

5. Conclusion

The present study evaluates drought events by characterizing the
operational features that identify drought's beginning, end and degree
of severity. Examples of such features analyzed entailed: drought fre-
quency, severity, intensity and duration. Meanwhile, the study used
precipitated based index of SPI to evaluate future changes of drought
over Kenya. SPI is useful index for examining the variability of dryness/
wetness conditions due to its capacity to represent precipitation
anomalies. In this study, the changes in annual and seasonal pre-
cipitation over Kenya are examined in order to associate with changes
in drought occurrence. Here, the study employed various statistical
models to assess the climatic variable employed in this study. Results
for future rainfall changes demonstrate positive shift, indicating an
increase in projected rainfall change during all the three timescales.
Most of the changes in variance are statistically insignificant at 95%
confidence level, except for RCP4.5 scenario during mid-term
(2040–2069) for OND. On the drought projections, the results of the
current study demonstrate relatively better performance of biased
corrected MME derived from RCA4 models in simulating drought in-
dices over the Kenya. The MME predict an increase in moderate
drought incidences with fewer incidences of extreme events across all
the RCPs and time slice under investigation. However, the duration of
occurrences varies from one region to another with most hotspots lo-
cated around northeastern sides of the country. However, it should be
noted that more wet scenarios are depicted during the extreme and
severe drought events, with fewer cases of drought events expected to
occur during the projection period. For instance, the SPI-3 exhibits
greater temporal frequencies of the occurrence for wet and dry cases
during the last time slice during 2070–2100 under RCP8.5. The present
study was limited to highlighting the projected changes in drought
occurrence. Future studies should however focus on examining the
causes and drivers of compound and cascading hazards over the study
region.
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