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CHAPTER 5

Being Constructive in Doing Mathematics

Robin Havea, Sione Paea
The University of the South Pacific

____________________

Abstract

The traditional method of doing mathematics is primarily based on classical 
logic. By doing mathematics constructively, we mean doing mathematics 
using intuitionistic logic which can be seen as a generalisation of classical 
logic. Carefully selected examples are used to demonstrate the notion of 
constructivity in mathematics. The emphasis lies in the importance of the 
computational content of mathematics.

Introduction

Teaching mathematics at any level is not always an easy exercise. 
Depending on the subject matter taught and the background of the students 
in a class, the challenge could be higher than anticipated. It is an ongoing 
challenge and throughout the years the Pacific Island countries have been 
continuously invested in improving the skills and expertise of mathematics 
teachers through long-term and short-term trainings at tertiary institutes in 
the region and abroad. Research on mathematics education in the Pacific 
is well documented including recent work done by Begg, Bakalevu, and 
Havea (2018).

The purpose of this paper is to highlight and introduce the readers 
(especially mathematics teachers and interested students) to an existing 
alternative approach to doing mathematics. To be specific, this so-called 
alternative approach is what we refer to as doing mathematics with a ‘twist’ 
in the line of reasoning and is tied to what is widely-known in the realm of 
mathematics as constructive mathematics which is a very active and highly 
specialised research field. Constructive mathematics proper can be very 
technical and may require the sophisticated machinery of mathematical 
logic to unpack the subtleness and depth of how it works, but we shall keep 
all technicalities to a minimum and concentrate on presenting accessible 
demonstrations by means of examples borrowed from senior secondary and 
undergraduate mathematics. It is our intention that this article will serve as 
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a simple and brief guideline to teachers and students of mathematics so 
they can easily identify when an argument in mathematics is constructive 
(or non-constructive), which is not always easy for a non-specialist. 

It should be clearly pointed out at the outset that this paper is not intended 
to be a piece of propaganda nor a suggestion to discredit and abolish the 
existing approach of how we teach and do mathematics. Furthermore, we 
give a slightly philosophical view of how one thinks and approaches doing 
mathematics in an “intuitive” manner. 

The authors were brought up as students in the Tonga education system 
and had taught at secondary schools in Tonga. Based on years of 
experience through research and constantly questioning the status quo, the 
authors decided to share their opinions and it is our hope that this article 
will stimulate teachers and tertiary educators alike to be critical of how 
mathematics works, because it is a very vibrant discipline but that depends 
on how one looks at it. Some may think that mathematics is nothing other 
than routine and textbook discipline and there is no need to be philosophical 
about it simply because everything is either black or white without any grey 
area. Needless to say, it is always a healthy approach to explore alternatives 
as that would open new grounds be it in the epistemological or ontological 
levels of doing mathematics.

In the next section, we will give a quick tour of constructivism in 
mathematics. This is a very broad area and we cannot explain every single 
detail in few paragraphs or pages. As such, where necessary we may direct 
the reader to relevant sources while concentrating on demonstrations and 
using carefully chosen examples. Readers may find that having a decent 
working knowledge of undergraduate mathematics and (but not necessarily) 
elementary classical logic would be an advantage when reading this paper. 
However, for readers who are interested in foundation of constructive 
mathematics, see the works of Beeson (1985), Bishop (1967), Bishop and 
Bridges (1985), and Troelstra and van Dalen (1988).

What is constructive mathematics?

We try to give a short and less technical answer to the question posed as 
the title of this section. The literature is rich with information on a full-
fledged discussion on what constructivity is all about, particularly in the 
context of mathematics. There is a widespread interest in constructivism 
in mathematics shared amongst mathematicians, mathematical logicians, 
and theoretical computer scientists. The authors recommend the works of 
Bridges and Dediu (1997) and Bridges and Mines (1984) as very accessible 
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introductory sources of information regarding constructive mathematics.

The terms “traditional mathematics” or “classical mathematics” refer to 
the usual way of how we do mathematics. In particular, this is the usual 
mathematics that is based on classical logic. As a refresher, let us look 
at a particular example where classical logic is used and it is manifested 
Abstract Algebra as a principle which says that if the product of real 
numbers a and b is zero, then at least one of them must be zero; that is, if 

, then either  or . It is this very reasoning that allows us 
to solve many quadratic equations of the form                                 where 
a,b,c are real numbers with       . In particular, take for instance the 
product                      and courtesy of classical logic, we deduce that 
either                                     giving us the solution that                  . But what 
is constructive mathematics? The answer to this question is very extensive 
and can be very technical. However, we shall adopt the Richman approach 
that constructive mathematics is just doing mathematics using intuitionistic 
logic (Richman, 1990). Under the umbrella of constructive mathematics, 
there are three varieties: Brouwer’s intuitionistic mathematics, Markov’s 
Russian constructivism, and Bishop’s constructive mathematics (Bridges 
and Richman, 1987). These three varieties have subtle differences but they 
all share in common the strict interpretation of mathematical existence.

Existence means Computability

So, what does “computability” mean? It simply means that if you want to 
show that a mathematical object  exists (mathematical objects are those 
that we use in our mathematics including numbers, functions, matrices, 
continuous functions, differentiable functions, to name a few), it means that 
you should be able to compute or construct that mathematical object. In other 
words, if you claim that the object in question exists, then you should be able 
to provide a routine or an algorithm that anyone (including a machine that 
is directed by instructions in codes) can follow and systematically find or at 
least approximate that object to whatever precision required. Anyone that 
is familiar with writing a computer programme may have a deeper insight 
right away because writing a piece of code is actually giving instructions to 
the machine to follow in order to successfully complete the required task. 
It is a very intuitive way of computing and establishing the existence of the 
mathematical object in question. As far as logic is concerned, intuitionistic 
logic allows you to avoid non-constructive decisions and gives you an 
opportunity to be very “honest” with your mathematics; that is, if you claim 
that an object exists, then you should be able to construct  it. On the contrary, 
classical logic allows you to make certain moves in your reasoning where 
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you could prove that a mathematical object exists without even showing 
how to compute it, which is an issue that is very central to computing. 

Most of us were taught and brought up learning (and eventually teaching) 
mathematics based on classical logic even if we weren’t aware or told 
about it. There are several basic principles in classical logic that our 
mathematical reasoning relies on. One of the most notable principle is the 
Law of Excluded Middle (LEM) which simply states that any mathematical 
statement P is either true or false; in logical notation we write

P or ¬P,

where ¬P stands for “not P’. LEM is a tautology which means that it is 
always true no matter what meaning we associate with the propositional 
variable P. This is because we can’t expect a statement to be half-true or 
half-false; there is no grey area or anything in between true and false. You 
can only have one or the other;  you cannot have both which is recalled in 
the following truth-value table.

(Note that a statement that involves the disjunction “or” is true when at 
least one of the disjuncts is true.) Although it is trivially acceptable in 
classical logic, LEM cannot be proved using intuitionistic logic and is, 
therefore, highly regarded as non-constructive. As such, any mathematical 
statement that is equivalent to or implied by LEM is considered highly 
non-constructive and, hence, not acceptable in constructive mathematics. 
But why does LEM allow one to be non-constructive? LEM allows you to 
“cheat” when you argue that an object x exists. Suppose we want to prove 
that x exists. An application of LEM allows us to argue that because LEM 
asserts that 

“x exists” or “x does not exist”,

we only have two alternatives to worry about. So instead of showing 
(directly) that “x exists” holds, we (indirectly) show that if we could rule 
out “x does not exist” that is enough to establish that the other alternative 
“x exists” must be true! How would you rule out “x does not exist”? We 
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assume that “x does not exist” holds, and based on that assumption we 
ended up with a contradiction and, hence, we reject “x does not exist” 
simply because it is contradictory. Therefore, we conclude that the other 
alternative, “x exists”, must be the case. For more information on LEM, see 
the works of Bridges and Richman (1987) and Havea (2005).

Our next Example, 1, is a variation of a well-known classical theorem 
and we have rephrased it to demonstrate the power and application of 
LEM. Notice that it is an existential statement because it purports the non-
existence of two integers.

Example 1. Consider the following statement which is trivially true in 
classical mathematics.

Let us see how we translate this so that we could apply LEM. The statement 
clearly claims that there are no integers  and  such that the conclusion 
followed. The other alternative is that there are integers p and q such that 
the conclusion followed. In short, we have

If we could rule out the alternative “There are integers  and  ...”, then, 
by courtesy of LEM, we have to prove that the other alternative, “There are 
no integers  and  …” is true! We argue as follows. Suppose that there 
are integers  and , with , such that , and we further assume 
that the rational expression  is in its lowest and simplest form; that is, the 
numbers  and  have no common factor other than 1 which means that 
the greatest common divisor is 1 and we write  Then

for some integer k. Furthermore,

for some integer l. Hence,

a contradiction! 

Here we ended up with a contradiction because of the assumption that the 
existence of  and  such that . Therefore, we conclude that there 
are no integers  and  such that .

Apart from the finer details of the argument in the preceding example, the 
point to notice is the general form of the argument which is allowed by 
LEM. What we have done in the example is rule out one alternative, so 
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concluding that it must be the other alternative that is the case.

As mentioned earlier, there are other principles that are constructively 
unacceptable because they allow us to make certain moves and reasoning 
in our mathematics which are highly non-constructive; these are statements 
that have to do with mathematical existence. To be specific, because of 
the strict interpretation of “existence” as “computable”, we need to be 
more elaborative and precise about what we assume and expect to get at 
the end. Some classical non-constructive principles could be converted 
into constructive principles by adding (or deleting) some assumptions to 
(or from) the classical versions. The reader is invited to see the works of 
Bridges and Dediu (1997), Bridges and Richman (1987), and Havea (2005) 
for more extensive discussions of a considerable number of well-known 
non-constructive principles in classical mathematics.

We list a few and commonly well-known principles below.

There is an interesting relationship between AC and LEM whereby Goodman 
and Myhill (1978) showed that AC implies LEM. To be specific, under the 
assumption that AC is true, one could deduce that LEM is also true, and 
because LEM is non-constructive, hence, AC is also non-constructive.

Recall that a binary sequence (an) is simply a sequence that contains 0s and 
1s.

There is a clear indication that Brouwer was very suspicious of the 
constructive status of the above omniscience principles although he used 
different names for LPO and LLPO (Bishop, 1970). For more detailed 
discussion of these principles, the reader is advised to see the work of 
Bridges and Richman (1987).
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Examples and Demonstrations

In this section we look at some carefully chosen examples to demonstrate 
the constructive and non-constructive challenges that we encounter even in 
some very well-known theorems. It should be pointed out that when we say 
that a theorem is non-constructive it does not mean that we completely reject 
such a theorem outright but, rather, we look and apply or add necessary 
conditions so that we have a constructive version of that theorem. When 
doing so, we are also interested in checking to see what is the best we can 
hope for in a constructive setting by means of using Brouwerian examples; 
see the works of Bridges and Richman (1987) for detailed discussion and 
the role of Brouwerian examples in constructive mathematics.

Example 2. This example is due to Bishop (Bishop, 1972; Goodman and 
Myhill, 1972) showing how LEM is used to prove the well-known classical 
theorem:

We argue as follows. Consider the real number . By LEM, either  
is rational or  is irrational (using the fact that any real number is either 
rational or irrational).  In the former case, if  is rational, then we simply 
take  and we are done! In the latter case, if  is irrational, then 
we take  and  in which case both r and s are irrational and, 
hence,  which is rational! 

Carefully studying this proof reveals that under LEM, we were able to prove 
the statement without even showing how to find the irrational numbers r and 
s. It is very clever, neat, and classically an acceptable argument. However, 
if we are interested in the numerical content of the statement, then this proof 
is not helpful at all. A constructive proof of the statement would enable us 
to compute the two irrational numbers or even approximate them to any 
precision that pleases us. Thus, from a constructive standpoint, the proof is 
non-constructive. Why is it non-constructive? Simply because we appealed 
to LEM and it led us to such conclusion. 

Example 3. In this example, we consider the classical Intermediate Value 
Theorem:

One way of proving this is using the interval-halving technique, more 
commonly known to a secondary school student as the bisection method. 
Following a similar presentation given by Bridges and Vîtă (2006), without 
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loss of generality, suppose that the interval in question is (a,b)=(0,1). We 
proceed in the following manner. Consider : 

if , then we take  and stop the process

if , then f satisfies the hypotheses of the theorem with  
and 

if  , then f satisfies the hypotheses of the theorem with  
and .

In either of the last two cases above, we are guaranteed two things: either 
the process terminates and produces the required result, or it continues 
forever, thereby producing a descending sequence of compact intervals 
whose unique point of intersection is the required zero. What you should 
notice in the process is that this is a purely algorithmic proof! It gives you 
a step-by-step procedure of how to locate or at least approximate the root c. 

There is an interesting phenomenon that a typical computer programmer 
may have noticed or find a bit confusing when implementing the algorithm 
in the preceding example. We demonstrate this phenomenon in our next 
example.

Example 4. In this demonstration, we showcase how a computer may get 
confused and register an incorrect answer based on the bisection method 
discussed in Example 3. Again, we follow and use the argument used by 
Bridges and Vîtă (2006) in the following way. Suppose we are implementing 
the algorithm on a machine that works with 50-bit precision. Consider the 
following cubic function defined on the closed interval [0,1]:

.

Using MATHEMATICA, it is easy to see that  satisfies the hypotheses 
of the Intermediate Value Theorem, 

Carrying out the interval-halving technique leads to f  having a zero between 
0 and 1. Now, let us look at the evaluation at the midpoint, where :

.

Since our computer’s floating-point representation of  is 0 (Floating-
point numbers are numbers that involve floating decimal points and 
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are mostly used when dealing with very small and large magnitudes. In 
engineering and most technical calculations, we use floating points to 
represent non-integer numbers with a certain fixed number of decimal 
points. This is very useful when talking about both small and large 
magnitudes; for example, with a fixed number of decimal points, we can 
speak of the diameter of a single hair, or the distance between two galaxies 
in the universe), we are faced with the problem of underflow where the 
machine registers a value (like, for example, 10-10) that is very close to 0 as 
simply 0 which is not correct. However, the only (real) zero (or x-intercept) 
of  is actually  which is quite a distance away from .

    

The graph of  in Figure 1 shows the critical places where the machine 
mistakenly “thought” the zero might be which is 0.5 but actually it is at 
0.75. 

The preceding example is a demonstration of how mathematical existence 
is dealt with in a realistic and practical manner. The Intermediate Value 
Theorem guarantees the existence of a zero under certain favourable 
conditions but finding it using the bisection method can be problematic 
depending on the type of function that we are working with.

Our next example is another demonstration of how classical logic is used in 
a very appealing manner. The theorem is well-known and commonly taught 
in a typical undergraduate course in discrete mathematics.

Example 5. The following theorem was proved by Euclid using a very 
clever contradiction argument.

There are infinitely many primes.

The statement is about the existence of an infinite set of primes. So, we 
proceed by assuming that there is a “finite” set  of primes. We 

Figure 1. Graph of
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define the integer
.

Clearly  is greater than the smallest prime 2. Thus  has prime factors 
and note that  itself may be prime. Since the primes , for  are 
not factors (i.e. divisors) of , whatever the prime factors of  are must 
be distinct from each . So, we have here another prime that is not in 
the set  of primes; that is, a contradiction. Therefore, there are 
infinitely many primes. 

Looking at Euclid’s proof from a constructive point of view, there are at 
least two ways in which it can be criticised. Following the ideas of Bridges 
and Vîtă (2006), we argue as follows.

1. We were able to construct a new prime out of an already known 
finite number of primes. This is perfectly fine and algorithmic but the 
unnecessary contradiction makes the computational side of the argument; 
that is, emphasis is on the derivation of the contradiction making the 
algorithmic process less significant.

2. We witness an application of some form of LEM which is very subtle. 
To be specific, the argument rests on the negativity of the statement about 
“infinite sets” which assumes that

A set is infinite if and only if it is contradictory that it be finite.

It is worth pointing out that there is positivity in Euclid’s proof as far as 
constructivity is concerned and is associated with and hinted at by the 
observation that one should be able to construct a new prime out of already 
known primes. Generally, it emphasises the possibility that if we start with 
a finite subset B of A, then we can compute an element of A that is distinct 
from each element of B; in the preceding example, take A to be the set of 
all primes and B the finite subset of primes. 

Apart from abstract analysis, there is a wide range of examples and 
demonstrations of how constructive mathematics is carried out over the 
real number line. Interested readers having a background in classical real 
analysis are advised to look into the comprehensive work of Bridges (1994).

Conclusion

Constructive mathematics is honest mathematics! If you claim that an object 
exists, then you should be able to demonstrate how to actually construct, or 
compute, that object. It is all about the strict interpretation of mathematical 
existence as simply constructability. Mathematical existence in the classical 
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sense can be seen as being “ideal” or even “virtual” whereas in constructive 
mathematics it is more “realistic”. In a more practical context, if you claim 
that an object exists, then you should be able to provide an algorithm or 
set of instructions where anyone (or even a programmable machine) can 
follow and find (or construct) the object in question to whatever precision 
you please. 

So, why do we need to do mathematics constructively? It all depends on 
what you want to do. If you are interested in the computational content of 
your mathematics, then constructive mathematics, or doing mathematics 
using intuitionistic logic, provides a suitable platform and framework. 
We learn and teach mathematics primarily based on classical logic and at 
times we tend to neglect the very heart of doing mathematics which has to 
do with being able to compute mathematical objects. Further, we should 
be able to avoid certain decisions that would lead us to non-constructive 
moves but that can only be dictated by the very logical principles that we 
use. In particular, intuitionistic logic provides a better alternative as far as 
computability is concerned.

Anyone with a slight interest in the foundation of mathematics would 
welcome the varieties and different approaches in mathematics. It would 
be completely misleading for the authors to present as a case where 
constructive mathematics is the answer to everything and that we must 
abandon the classical approach – no, not at all. We believe that it is equally 
important and relevant for teachers and lecturers of mathematics to have 
at least an appreciation of the many approaches to doing mathematics. Of 
course, the traditional way of doing mathematics using classical logic will 
be the common approach in all aspects of teaching and doing mathematics 
but there are certain limitations when it comes to computational content. 
Having said that, in order to appreciate constructive mathematics, it is very 
important to have a full appreciation of classical mathematics.

We end this note with a challenge to all teachers and lovers of mathematics 
– How can we teach our students to think algorithmically?
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