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Summary

This R package determines optimal stratification of univariate populations under stratified
sampling designs using a parametric-based method. It determines the optimum strata
boundaries (OSB), optimum sample sizes (OSS) and multiple other quantities for the study
variable, y, using the best-fit probability density function of a study variable available
from survey data. The method requires the parameters and other characteristics of the
distribution of the study variable to be known, either from available data or from a
hypothetical distribution if the data are not available. In the implementation, the problem
of determining the OSB is formulated as a mathematical programming problem and solved
by using a dynamic programming technique. If the data of the population (i.e. the study
variable) are available to the surveyor, the method estimates its best-fit distribution and
determines the OSB and OSS under Neyman allocation, directly. When the dataset is
not available, stratification is made based on the assumption that the values of the study
variable, y, are available as hypothetical realisations of proxy values of y from past/recent
surveys. Thus, it requires certain distributional assumptions about the study variable. At
present, the package handles stratification for the populations where the study variable
follows a continuous distribution: namely, Pareto, Triangular, Right-triangular, Weibull,
Gamma, Exponential, Uniform, Normal, Lognormal and Cauchy distributions. In this
paper, applications of major functionalities in the package are illustrated with a number
of real/simulated as well as some hypothetical populations.

Key words: dynamic programming; mathematical programming problem; optimum sample
sizes; optimum strata boundaries; R project for statistical computing

1. Introduction

The main aim of stratification is to produce estimators with a small variance when a
population characteristic (y) is under study. A simple method can be used to create strata
for this population, if y itself is the stratification variable. The ideal situation is that the
distribution of such a study variable is known and the optimum strata boundaries (OSB)
can be determined by placing boundaries on the range of this distribution at suitable cut-
points. This problem of determining the OSB, when both the estimation and stratification
variables are the same, was first discussed by Dalenius (1950). He provided equations for
the determination of stratum boundaries that minimise the variance of population estimates
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384 AN R PACKAGE FOR OPTIMAL STRATIFICATION

under optimal allocation. Dalenius (1957) further proposed a solution to the problem by
taking equal intervals of the cumulative square root of frequency scale of the stratification
variable.

One of the many kinds of stratification methods that has been proposed in the literature
is due to Biihler & Deutler (1975). They formulated the problem of determining the OSB
as an optimisation problem and developed a computational technique to solve the problem
by using dynamic programming (DP). A good review of this method can be found in Khan,
Nand & Ahmad (2008). The DP procedure is applied in some of the following articles by
Khan, Khan & Ahsan (2002); Khan, Reddy & Rao (2015); Reddy, Khan & Khan (2018)
and Reddy & Khan (2019) for determining OSB for many different distributions. With the
known frequency function of the study variable, they considered the problem of finding OSB
as an equivalent problem of determining optimum strata width (OSW), which is formulated
as a mathematical programming problem (MPP) and solved by using DP techniques. All
the authors cited above applied the technique to several univariate populations where the
study variables followed different probability distributions. The authors have established that
the method certainly works with a variety of different populations, skewed and unskewed,
giving precise and accurate results.

This called for an implementation of the idea into an R package that would be available
to the surveyors an additional tool to create more accurate stratification boundaries. Another
package from Rivest & Baillargeon (2017) called stratification solves a similar type of
data-based stratification problem by implementing iterative or approximate methods. In the
proposed R package, the univariate stratification technique implemented is primarily based
on the probability distribution assumed by the stratification variable. With the objective
of improving survey estimation efforts, the package implements the methods for various
distributions, namely Uniform, Triangular, Right-triangular, Pareto, Exponential, Normal,
Lognormal, Cauchy, Weibull and Gamma developed by the authors mentioned above. The
package is able to determine the OSB and optimum sample sizes (OSS) for important study
variables from available survey data; however, the key advantages of the method (hence, the
package) is that it is able to construct OSB and OSS based on the distributional assumptions of
a hypothetical dataset (i.e. when the study variable data are not available to the surveyor). The
assumptions, such as initial value, range, estimated parameter values and best-fit distribution
can easily be obtained as rough estimates from recent or past surveys.

Other advantages of the method are that it leads to substantial gains in the precision of
the estimates over other available methods. Results from Khan et al. (2015); Reddy et al.
(2018) and Reddy & Khan (2019) reveal that the variances get smaller with increasing
number of strata (L), and they get much smaller at a much faster rate than other available
methods. Once the OSB have been determined, the OSS can be easily calculated for each
stratum using Neyman (1934) allocation.

There are two major functions which basically solve the two types of stratification
problems: strata.data, which carries out univariate stratification for those populations,
where the dataset is available and strata.distr which performs stratification when the
dataset is not available prior to conducting the survey.

In the former case, data on the study variable, number of strata h, fixed sample size
n and population size N are used as the input arguments to the strata.data function
in the package. In the latter case, strata.distr function is called which requires the
distribution to be assumed: its parameters, the initial value and the estimated range of the
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distribution; fixed sample and population sizes. When executed, both functions output the
OSB and OSS, among other quantities such as stratum weight (W},), stratum variance (Sﬁ),
stratum objective function values (W,,S),), stratum sample sizes (), stratum population sizes
(Np) and stratum sampling fraction (f},).

The following sections show the general formulation of the problem of stratification,
the DP solution procedure, the concept of Neyman allocation as the method of determining
stratum sample sizes and an overview of package functionalities. To illustrate, the package
is applied to a Pareto Type II distributed study variable from a simulated dataset. The
illustrations for three more distributions (Normal, Gamma and Lognormal) of the survey
variables are presented in the Supplementary section.

2. General formulation of the problem, solution procedure and sample sizes

Khan et al. (2002) and Khan et al. (2008) presented a detailed description of the
methodology of formulating the problem of stratification using MPP. To understand the
problem at hand and the formulation, let the target population of the variable under study
be stratified into L strata where the estimation of the mean of the study variable (y) is of
interest. If a simple random sample of size n, is to be drawn from hth stratum with sample
mean y,, then the stratified sample mean, y,, is given by

L
.)_)st = Z Whyh’
h=1

where W), (stratum weight) is the proportion of the population contained in the Ath stratum.
When the finite population correction factors are ignored, under the Neyman (1934)
allocation, the variance of y,, is given by

L 2
(Zh:l WhSh)
var(y) = ———, 1
n
where Sf is the stratum variance for the study variable in the hth (where h=1,2,...,L)
stratum and n is the preassigned total sample size.

Let f(y); a <y < b, be the frequency function of the study variable, y, on which OSB are
to be constructed. If the population mean of this study variable is estimated under Neyman
allocation, then the problem of determining OSB is to cut up the range, d =b —a, at (L—1)
intermediate points a =y <y} <y2 <,..., <y -1 <y, =>b such that (1) is minimum. The
lower and upper bounds of the study variable are denoted by a and b, respectively, and the
cut-points yi, y2,...,y.—1 are the OSB. For a fixed sample size n, minimising the expression
of the right hand side of (1) is equivalent to minimising

L
Z W,,S),. (2)
h=1

If f(y) is known and integrable, the stratum weight (W},), stratum variance (S,%) and
stratum mean (i) can be obtained as a function of the boundary points y, and y,_; by using
the following expressions:
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Vi
W= fO)dy, 3

Yh—1

o L[, 2
S;FW/ Y dy — “)
h Jyp
where

1 Yh
=— dy, 5
o Wh/ () dy 5

Yh—1
and where (y;,_1,y;,) are the boundaries of Ath stratum.

Thus, the objective function in (2) could be expressed as a function of boundary points
v, and y,—; only. We further define

h=yn—yn-1;h=1,2,....L, (6)

where [, > 0 denotes the range or width of the Ath stratum. Then, the range of the distribution,
d=b—a, is expressed as a function of stratum width as:

L L
S =Y (n—yr1)=b—a=y —yo=d. )
h=1 h=1

The hth stratification point y,; h=1,2,..., L is then expressed as y, =y,— +{; and from (7),
the problem can be treated as an equivalent problem of determining the OSW: [, l,..., 1.
Due to the special nature of functions, the problem may be treated as a function of /, alone
and can be expressed as:

L
Minimise Z Dnly),
h=1

L ®)
subject to Z Iy=d,
h=1

and 1, >0, h=1,2,...,L.

To solve the non-linear MPP (8), Khan et al. (2002) and Khan et al. (2008) presented
a detailed description of the DP procedure, which was the brainchild of Richard (1957). As
remarked by the authors, DP is a computational method well suited for solving an MPP that
may be treated as a multistage decision problem. The solution is found by decomposing the
problem into stages where each stage is comprised of a single variable sub-problem. The
solution for n stages is obtained by adding the nth stage to the solution of n — 1 stages. The
solution procedure guarantees an optimal feasible solution for each stage and hence it is also
optimum and feasible for the entire problem. Khan et al. (2008) presented a good account
of the methodological developments together with an application of the DP method on a
Normal population. Reddy & Khan (2019) presented these steps of the solution procedure
in algorithmic form.

When the OSB (y;,, y,—1) have been determined, the OSS n;,; =1, 2,..., L that minimises
the variance of the estimate can easily be computed. The sample sizes n;, are obtained for
a fixed total sample of size n under the Neyman allocation for h=1,2,...,L, and given as
follows:
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W, Sh
By
Zh:l WiSh

where W), and S, are derived in terms of the optimum boundary points (v, yp—1)-

In Neyman allocation, the total sample size is proportional to the stratum size multiplied
by the standard deviation of the stratum. If the variances are specified correctly, Neyman
allocation will give an estimator with smaller variance compared to proportional allocation
(Lohr 2009).

In (9), it is also worth noting that the OSB (y;, y;—1) are so obtained that n;, must satisfy
the restrictions:

)

Iy

1<n <Ny, (10)

where N, = NW,,. Thus, restriction (10) indicates that the Ath stratum must form with at least
one unit and also avoids the problem of over-sampling.

3. Overview of package functionalities

The package is available through the CRAN website: https://cran.r-project.
org/web/packages/stratifyR/index.html. Forthe numerical illustrations and appli-
cation of the package, some of the real datasets such as sugarcane of Khan et al. (2015),
anaemia of Reddy et al. (2018), hies and math data are provided with the stratifyR
package. The quakes and Boston data provided in the datasets package in R statistical
software may also be used for illustration purposes. The stratifyR package has also been
tested on some published and commonly used datasets such as UScities and UScolleges
data from Cochran (1961), Debtors data of Gunning & Horgan (2004), REV84 variable for
‘Swedish municipalities’ data from Sirdnal, Swensson & Wretman (1992) and MRTS variable
from ‘Statistics Canada Monthly Retail Trade Survey’ together with SHS data collected in
‘Statistics Canada Survey of Household Spending’. For those distributions where real data
are not found in the literature, data may be simulated to demonstrate the application of the
package in this documentation.

For a user, there are two different routes available in the package and these are basically
dependent on the type of stratification problem. It could either be a data-based (i.e. when the
stratification variable dataset is available) or a distribution-based (i.e. when the dataset is not
available but certain distributional assumptions are made) stratification problem. Whether
stratification is based on data or not, the idea is that the problem is formulated as an MPP
using the estimated (with available data) or assumed (with unavailable data) distribution
of the dataset. There are numerous functions created in the package for various technical
calculations; however, there are only two major functions to compute the solutions for the
two different types of problems being studied under univariate stratification.

If it is a data-based problem, the function used is strata.data and the user has to
provide as input arguments: the data, the number of strata (L) and the fixed sample size (n).
For the distribution-based problem, the function used is strata.distr and the user has to
provide the name of the assumed distribution, number of strata (L), possible range of data
(distance), fixed sample size (n) and the population size (N). The following two subsections
delve a little deeper into the workings surrounding the two functions: strata.data and
strata.distr.
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To provide support for fitting of statistical distributions, there are a few R packages that
the stratifyR package is dependent on, which are fitdistrplus (Delignette-Muller, Dutang &
etal. 2015), MASS (Venables & Ripley 2002), zipfR (Evert & Baroni 2007), actuar (Dutang
et al. 2008), triangle (Carnell 2017) and mc2d (Pouillot & Delignette-Muller 2010). The
following subsection presents and discusses the two major functions that exist in the package.

3.1. The function strata.data

This function computes the OSB and OSS, and other important quantities from univariate
survey populations by employing the methodology proposed by Khan et al. (2002), (2015),
Reddy et al. (2018) and Reddy & Khan (2019). Their method uses the estimated distribution of
the data and formulates the problem of determining OSB as an MPP, which is an optimisation
problem that is solved by the DP technique as discussed in Section 2. The OSB obtained are
optimal solutions that are used to calculate the OSS under Neyman allocation. The function
appears as follows:

strata.data(data, h, n, cost = FALSE, ch = NULL)

The key arguments are data, which is a vector data containing every unit of the survey
population; % is the number of strata to be sampled (i.e. h=1,2,...,L) and n is the fixed
total sample size where Zi:l np=mn.

The steps used by strata.data can be described as follows:

1. strata.data function is of class strata which needs the specification of the argu-
ments: data, h and n. If the stratification problem considers sampling cost, two further
arguments, a logical stratum cost (assigned TRUE to indicate it is a cost problem)
and a vector of individual stratum costs ch also need to be specified. If it is not a
cost problem, cost=FALSE and ch=NULL are taken as defaults. This step creates a
new environment called my_env to store all the arguments and various computations
that take place such as scaling of data, various evaluations computed from the data
and also invokes the following functions to determine the best-fit distribution and the
estimated parameters, OSB from the DP procedure, objective function values for the
MPP, sample size allocations and then combines key outputs into a list.

2. The get.dist function takes the data and quantities stored in my_env as arguments.
From a set of ten different distributions (unif, triangle, rtriangle, gamma,
weibull,norm, lnorm, exp, pareto and cauchy), it chooses the best-fit distribution
by looking at the lowest AIC. Parameter estimates for the best-fit distribution together
with the smallest AIC are returned as a list.

3. The create.mat function creates 2D matrices from a set of defined constants, which
depend on the range of data and required precision, to store computed values of the
objective function.

4. The data.optim function then computes 3 dp and 6 dp solutions, respectively, for
different values of the objective function at different incremental progressions of the
y value on the scaled range of the study variable. It invokes the data.root function,
which implements the methods for ten different distributions to calculate the objective
function values.

5. The data.alloc function computes the sample sizes by using Neyman allocation.
The OSB obtained in the previous steps are used to calculate the stratum weights
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and stratum population sizes from the data — these are then used to obtain the stratum
sample sizes. In case of oversampling problems, this function tries to adjust the sample
sizes by the realloc function.

6. The summary . strata function prints important quantities and results obtained through
the above procedures. This function defines the method for the strata class that has
been created in the constructor function strata.data where all computed objects
are collated and passed as a list. Using such an S3 method is a conventional way of
being able to integrate the package within the analysis workflow.

To show the strata.data function call, an example of the command used from the
package is given below. The problem uses the ‘mag’ variable from the ‘quakes’ data (with
a population of N =1000) available from the datasets package in R. As an example, to
construct a 5-strata solution, with a fixed sample size of n =300, we use the following R
codes:

library("datasets") #load the ‘datasets’ package

data (quakes) ; head(quakes) #look at the quakes data

mag <- quakes[, "mag"] #extract the ‘mag’ variable

res <- strata.data(mag, h =5, n=300) #create a 5-strata solution
summary (res) #print out the results

The resulting output from the codes, above, are omitted here. An example illustrating
stratification of a survey data with Pareto Type II distribution will be presented in the results
section. Three other examples involving Normal, Gamma and Lognormal distributions are
also provided in the section to illustrate how the functions are utilised.

3.2. The function strata.distr

This function is also used to compute the OSB, OSS and other important quantities
from univariate survey populations by employing the methodologies proposed in various
literature (for various distributions) provided earlier. The algorithm is quite similar to that
of the strata.data; however, its functionality is applied to the case where the dataset of
the population is not available and the distributional assumptions of the study variable are
required, which could be based on recent or past surveys. If no prior information exists,
assumptions could be based on a purely hypothetical distribution. Another caveat for such
distribution-based stratification is that the distr.alloc function uses the probability density
functions of the assumed distributions and integration rules presented by (3)—(5) to calculate
the stratum sample sizes. It must be noted that this function works on ideal distributions
that assumes the parameters chosen by the user. The function appears as follows:

strata.distr (h, initval = NULL, dist = NULL,
distr = c("pareto", "triangle", "rtriangle", "weibull", "gamma",
"exp", "unif", "norm", "lnorm", "cauchy"), params = c (shape=0,
scale=0, rate=0, gamma=0, location=0, mean=0, sd=0, meanlog=0,
sdlog=0, min=0, max=0, mode=0), n, N, cost = FALSE, ch = NULL)

The arguments could be explained as follows:
h — numeric: number of strata to be sampled

initval — numeric: initial value of the assumed distribution
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dist — numeric: distance or range of the assumed distribution

distr — character: the assumed distribution of the hypothetical population
params — list: parameters of the assumed distribution

n — numeric: fixed total sample size

N — numeric: fixed population size

cost — logical: TRUE if it is a cost problem, FALSE by default

ch — vector: individual stratum costs

The sequence of steps in the algorithm for strata.distr is quite similar to the
strata.data for the construction of OSB. Apart from the fact that it uses the distributional
properties to determine the OSB (i.e. since there are no data, these are normally provided), it
is at the sample allocation (OSS) stage that this function is also different from the data-based
method. This is where the distr.alloc function is utilised in the calculation of the stratum
sample sizes. Once all results have been computed, the step where they are collated and
organised in a list of class strata is the same as in strata.data.

The following code demonstrates the application of strata.distr function when the
dataset of the stratification variable is not available. As an example, to construct a 4-strata,
let us consider the depth variable from the quakes dataset (assuming that it was made
available from a recent survey) from the datasets package. It has a Triangular distribution
with parameters min=39.99998, max=680, mode=39.99999 and starts at an initial value
of initval=40 and has a distance (range) of d=640 with a fixed sample size of n=300
from a population of N=1000 seismic events. Thus, we use the following commands:

data (quakes) #load the quakes data from ‘datasets’ package
depth <- quakes[, "depth"] #extract the depth variable
min (depth); max (depth); d=max (depth)-min (depth) ;d #evaluations
res <- strata.distr (h=4, initval=40, dist=640, distr = "triangle",
params = ¢ (min=39.99998, max=680, mode=39.99999),
n =300, N=1000) #4-strata solution
summary (res) #print the results

Again, the outputs from the above codes are omitted as the aim was to illustrate how
the function is called. Using the functions from the package, an in-depth example illustrating
the MPP formulation and solution procedure involving Pareto Type II distribution, which is
a new addition to the list of distributions covered in the literature, is presented in the next
section.

4. Stratification for a survey variable with Pareto Type II distribution

The Pareto distribution, named after Italian scientist Vilfredo Pareto, is a power law
heavy-tail probability distribution used in description of social, socio-economic, scientific,
actuarial and many other observable phenomena. One notable field of its application, as
presented by Arnold (2015), is size distribution of income or wealth. Many different forms
for Pareto distribution exist in literature but for the purpose of this research, a Type II Pareto
distribution, also called a Lomax distribution, after Lomax (1954), will be utilised.

Hassan & Al-Ghamdi (2009) utilised Pareto II distribution for reliability modelling and
life testing. Atkinson & Harrison (1978) used it for modelling business failure data, while
Corbellini et al. (2010) used it to model firm size and queueing problems. Bryson (1974)
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advised the usage of Pareto II as an alternative to the exponential distribution when the data
are heavy-tailed.

If the study variable y follows the Pareto Type II (or Lomax) distribution on the domain
[0, 00), its two-parameter probability density function with a state space y >0 is given by:

a

as
fOis,a)= W’

a,s>0, (11)
where a >0 is the shape parameter and s> 0 is the scale parameter of the distribution.

The MPP for the Pareto Type II variable, which has a general form given by (8), is
obtained from (3), (4) and (5). The formulated MPP could be expressed as:

L

_ l a _ a

Minimise Z\/{asz" [(yh LI+ = Oh1 +9)
h=1

On=1 +8)* Q-1+l +5)°

2—a 1—a a

» [@h—l + I+ 251+ +5)!7a _ SOt + i+

_ +S2—a 2s _1+s l—a S2 _ +s—a
-1 +9) +(Yh1 ) +(Yh1 )

Z—a l—a a (12)
2
s [abua i ts  apeits
(I1=aP | G +h+5)* o1 +9)°
L
subject to Zlhzd,
h=1

and [,>0;h=1,2,...,L,
where d =y, — yo, a and s are parameters of the Pareto Type II distribution.

4.1. DP solution for the Pareto Type II distribution

To solve the formulated MPP (12), we apply the algorithm using the DP technique
discussed within Section 2. Substitution of the quantity y,_; =yo +d;, — I, into the MPP
results in the following recurrence relations that are used to determine the solutions:

For the first stage, k=1, at [;' =d;:

Dod :\/{as2" [(dl-i-yO-l-S)"—(yo-i-S)“}
o (o +9)*(d; +y0 + 9)°

y {(dl +yo+9)7" 2s(di+yo+9)'

2—a l1—a
P +y0+97 o+ 250+ o+ a3
- - + -
a 2—a 1—a a

x 5% {a(dl-i‘)’o)-i-s_@’mLSr
(I—a) [(di+yo+5)* (o+9)°

and for stages k > 2:
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. 2a | Wi +yo+8)* — (di + 1l +yo+5)*
Ordy = min as
0<he<dy (di + Ik +yo + $)%(dy +yo + )¢

y [(dk + o+ 5)*¢ ~ 2s(dy +yo +5)!74 _ s2(di +yo+ )¢

2—a 1—a a

14)

(e + I +yo+5)* L 25U+l +yo +5)! N s*(dy + Ik + o +s)_“}
2—a l—a a

2a d di +1 2
" i [a( k+yo)+s ald+ k+)’0)+5} }+‘Dk—1(dk—lk)}-
(I —a)* | (d+yo+9)* (dp+Ik+yo+s)°

Upon substitution of the values of a, s, yo and d, the OSW (/) and the OSB (y; =
y; | — 1) are obtained by executing the strata.distr function.

4.2. A numerical example for the Pareto Type II distribution

To illustrate the application of the functions from the package, a dataset for a univari-
ate population (one study variable) of size N =5000 and one that follows Pareto Type II
distribution (pareto_dat) was simulated using parameters shape=5 and scale=8.

The number of strata (%) is usually chosen by the surveyor and depends on how many
mutually exclusive subgroups one is interested in. It has been recommended by Cochran
(1961) that constructing six strata for a continuous variable is ideal because the gain in
precision is minimal after six strata. If we are interested to construct the 6-strata solution
(i.e. h = 6) for the pareto_dat with a fixed total sample size of n=500, the following
codes could be used:

library (stratifyR) #load the package

set.seed(8235411) #to reproduce the random object

#simulate Pareto II random variable

pareto_dat <- rpareto (5000, shape =5, scale = 8)

res <- strata.data(pareto_dat, h =6, n =500) #6-strata solution
summary (res) #print results

In the results obtained in the R console, apart from information on the best-fit frequency
distribution, fitted parameters, minimum, maximum values of the data (and distance), the
solutions in the form of OSB, OSS, etc., are also obtained. These can be presented in Table 1
as follows:

Similarly, in order to find the OSB and other quantities, we can apply the strata.distr
function to a hypothetical Pareto Type II population, which could be based either entirely on

Table 1 Results for the Pareto Type II distribution using strata.data.

Stratum (k) OSB () Wi Vi WSy ny N, fn
1 0.74 0.35 0.05 0.08 83 1773 0.05
2 1.73 0.26 0.08 0.08 83 1318  0.06
3 3.15 0.18 0.16 0.07 80 909  0.09
4 5.44 0.12 0.4 0.08 85 615 0.14
5 10.15 0.06 1.73 0.08 87 303 0.29
6 38.57 0.02 2931 0.09 82 82 1

Total 1 31.73 0.47 500 5000 0.1
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assumptions or on prior knowledge (past or recent surveys) regarding the distribution of the
variable. Let us assume that we have some information from a population with a particular
study variable that follows Pareto Type II distribution. Consider as an example, the case of
previous data that was simulated. If such information was available, key attributes of the
distribution could be used. The data exhibits a two-parameter Pareto Type II distribution with
the MLE estimates of the parameters as shape=5.018971 and scale=8.177219. The
minimum and maximum values in the simulated data are [y, y;] =[0.0002193,38.56871],
which implies that d =38.56849.

Below is a sequence of commands to obtain the characteristics of the study variable and
compute the stratification boundaries (for a 6-strata solution) based entirely on distribution:

d <- max (pareto_dat) - min(pareto_dat); d #evaluations

#fit the distribution to estimate parameters

fit <- fitdist (pareto_dat, distr="pareto", method="mle"); fit

res <- strata.distr (h=6, initval=0.0002193, dist=38.56849,
distr = "pareto", params = c (shape=5.018971,
scale=8.177219), n=500, N=5000) #six-strata solution

summary (res) #print results

The results are presented in Table 2 below:

For both illustrations, since the data and the hypothetical assumptions were the same,
similar results were expected with both functions. There are only slight deviations, where
strata.distr gives slightly better results as the overall objective function value (W;,S;,)
is somewhat smaller. The deviation is simply because once the OSB have been determined,
the strata.distr calculates the other quantities from an ideal Pareto Type II density
function while strata.data calculates from the actual data.

Due to rounding off errors, there are occasions when the totals might not match with
what is presented in the final table as the individual stratum figures have been rounded off.
The stratum weights must total to one, the stratum samples should total to 500 while the
stratum population sizes should total to 5000 for this particular example.

To integrate the package into a data analysis framework for visualisation and reporting,
the package employs S3 classes and methods where various items that were computed are
contained in a list object, which could be accessed and used for reporting. As a result, the
outputs from the two functions strata.data or strata.distr can be integrated into
an analysis tool chain within the R Markdown document or R Notebook. For example, to

Table 2 Results for the Pareto Type II distribution using strata.distr.

Stratum (k)  OSB (y;)) W, Vi WSk 1y, Ny, S

1 0.74 0.35 0.05 0.075 83 1769  0.05
2 1.73 0.27 0.08  0.075 82 1327  0.06
3 3.15 0.19 0.16  0.075 82 932 0.09
4 5.44 0.12 041  0.075 83 586  0.14
5 10.15 0.06 1.61  0.076 83 299  0.28
6 38.57 0.02 21.15 0.079 87 87 1
Total 1 2346 0457 500 5000 0.1
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Figure 1. Visualisation of the density with overlay optimum strata boundaries.

illustrate how an end-user might dynamically utilise the output of strata.data function
in the visualisation workflow: consider the example using the strata.data function where
a 6-strata solution was constructed for pareto_dat data. The end-user is able to visualise
the six strata created over the density plot with the following commands:

library(tidyverse) #load the tidyverse package
pareto_dat <- data.frame (pareto_dat) #convert to dataframe
pareto_dat % > % ggplot (aes(x = pareto_dat)) +

geom_density (fill = "grey", colour = "black",

alpha = 0.3, size=1) +

geom_vline (xintercept = res$SOSB, linetype =

"dotted", color = "grey", size=1)

Figure 1 presents a density curve of the simulated pareto_dat variable, which follows
Pareto Type II distribution, with the six stratification boundaries marked (in dots) as vertical
lines on the curve.

5. Comparison with other methods

To compare the OSB obtained via the proposed DP method implemented in the stratifyR
package, we use the stratification package to determine the OSB for the pareto_dat using
the Cum \/f , Geometric and L-H (Kozak) methods. Comparisons could also be made for
L=2,3,...,6 strata; however, we will only compare 6-strata solutions. For comparison
purposes, since the other methods work on data, we use the strata.data function which
depends on data. The OSB and other important quantities for other methods are presented
in Tables 3-5.
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Table 3 Results for the Pareto Type II distribution using Cum

\/f method.
Stratum (k) OSB (y;) Ly Vi Ny, ny T
1 0.77 0.34 0.05 1819 87 0.05
2 1.54 1.11 0.05 1062 51 0.05
3 3.09 2.18 0.19 1082 102 0.09
4 5.40 4.02 0.41 646 89 0.14
5 10.03 7.05 1.65 305 85 0.28
6 39.57 14.59  28.60 86 86 1.00
Total 5000 500 0.10

Table 4 Results for the Pareto Type II distribution using

Geometric method.

Stratum (k) OSB (y;) Uy, ' N ny fn
1 0.00 0.00 0.00 4 1 025
2 1.01 1.01 0.00 37 1 0.03
3 0.09 0.05 0.00 245 1 0.00
4 0.69 0.37 0.03 1389 22 0.02
5 5.15 2.09 1.32 2898 312 0.11
6 39.57 842 16.78 427 163  0.38
Total 5000 500 0.10

Table 5 Results for the Pareto Type II distribution using L-H

(Kozak) method.

Stratum (h) OSB (y;) Uy, Vi Ny np fn
1 0.60 0.28 0.03 1519 54  0.04
2 1.41 0.96 0.05 1215 56 0.05
3 2.58 1.92 0.11 998 67 0.07
4 4.24 3.32 0.22 639 60 0.09
5 7.40 5.38 0.73 429 74 0.17
6 39.57 11.12  21.66 200 189 0.94
Total 5000 500 0.10

395

Comparing Table 1 with Tables 3-5 reveal that the OSB obtained by the proposed DP
method are very close to the Cum \/f method and the values of the objective function in the
two methods are also quite similar. The OSB in the Geometric and L-H (Kozak) methods
are quite different from the proposed method and their objective function values (given in
Table 6) are also greater than the results from stratifyR package.

To compare the relative efficiency (RE) of the results from the stratifyR package with
other methods, comparisons are made using the sum of objective function values, that is

(Zizl WhSh). The results for other methods are provided in Table 6. It can be established

that for the Pareto Type II simulated distribution, the package results in OSB are comparable
to Cum \/f method (only slightly greater in RE) and are much more efficient than the
other two methods (125% greater than Cum \/f method and 34% greater than L-H (Kozak)

method).
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Table 6 Relative efficiency of stratifyR results against other methods.

Stratum (h) stratifyfR ~ Cum \ﬁ Geometric  L-H (Kozak)

1 0.076 0.081 0.000 0.068

2 0.076 0.047 0.000 0.054

3 0.074 0.094 0.000 0.087

4 0.077 0.083 0.048 0.081

5 0.080 0.078 0.666 0.110

6 0.089 0.092 0.350 0.231
Sk Wiy 0.472 0.475 1.064 0.631

Relative Efficiency 100.64% 225.42% 133.69%

6. Scope for future developments

The package stratifyR is limited to ten distributions which are primarily two-parameter
(2P) distributions. This is because the stratifyR package uses many dependent packages
available in R (particularly for parameter estimation) which are generally able to handle 2P
distributions. A possible upgrade of the package will entail a multitude of optional distributions
that would fit data with the best possible distribution. The possibility of including three- or
four-parameter distributions can also be explored. Future versions can also consider including
other allocation procedures like proportional and optimum allocations.

During the process of generating results using the stratifyR package, time-complexity
issues arose because the solution procedure is quite time-consuming, especially for h >4
onward. The program is still quite slow even in C++ computing environment; hence, faster
convergence with increased computer processing power will be something to look at in future
versions of the package. The possibility of using cluster computers or cloud computers will
be explored to find out if the algorithm can execute faster. The very nature of the method of
DP solution procedure introduces the ‘curse of dimensionality’ problem because the method
is a brute force algorithm which is naturally very slow. Improved computer processing power
will surely solve the problem.

7. Summary and discussion

This paper presents an R package called stratifyR, which deals with the concept
of univariate stratification. The package, which is available through CRAN, successfully
implements the DP technique based on a parametric method of optimum stratification of
populations that follow any one of the ten standard statistical distributions, namely, Pareto,
Triangular, Right-triangular, Weibull, Gamma, Exponential, Uniform, Normal, Lognormal
and Cauchy. If particular data do not fit any one of the ten distributions, it will choose the
next best-fit distribution.

In this research, the concept of constructing OSB from data directly was motivated by
the fact that non-statistics people are able to do stratification without having to estimate the
distribution. For those who have the know-how of estimating a distribution and its parameters,
they would be able to estimate and confirm the best-fit distribution with Kolmogorov—
Smirnov, Shapiro-Wilk and Anderson—Darling tests, together with exploratory and graphical
analysis. Once done, the OSB and OSS could be computed much more efficiently if more
accurate distributions are identified and fitted to the available survey data. Thus, the efficiency
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of the OSB and OSS of the proposed method over others really depends on how well data
are fitted to their ideal distribution.

The results presented in this paper, using the four distributions, illustrate that the stratified
designs can be constructed with the proposed methodology in the stratifyR package. The
OSB, OSS, etc., are presented and their performances against other established methods
such as Cum \/f , Geometric and L-H (Kozak) methods can also be compared. The real
advantage is that when the data of the study variable are not available, which may occur in
practice, the package is still able to construct the OSB and OSS based on the distributional
assumptions of the data, which could be estimated or ascertained from recent, past or
pilot surveys. These assumptions include some of the important quantities like the range
of data, initial value of the data, a guesstimate distribution of the data and its associated
parameters.

8. Supplementary Materials

To illustrate the use of stratifyR package with more examples, this supplementary
section presents the results for the stratification of Normal, Lognormal and Gamma study
variables. In total, as stated in the paper, the package is able to handle a total of ten continuous
distributions that are quite commonly used in real-life situations. In the following sections, for
each of the three distributions, a brief overview and an application of the relevant functions
(using either real or simulated data) are given. Results obtained are not compared with other
methods as these comparisons have already been done in the respective literature. Examples
for hypothetical distributions (i.e. distribution-based stratification) are also presented under
the three distributions. For the sake of brevity, only the recurrence relations of the DP solution
procedure for determining OSB are provided.

8.1. Stratification of a survey variable with Normal distribution

The Normal distribution is commonly known for its bell shape and is considered to be
the most widely known and used of all distributions. Many natural phenomena or biological,
physical and psychological measurements/characteristics approximate normal distributions;
hence, it is usually considered as a standard of reference for many probability problems in
real situations. As an example, Lewis (1957) showed that characteristics such as height and
intelligence are approximately normally distributed.

If the study variable y follows the Normal distribution on the interval [yp,y.], it has
the following two-parameter probability density function:

FOup0)=— ! (y_”>2 <y<
U1, 0)= ex —= , —O00 0,
poy=—=expy =3 (— y

where >0 is a scale parameter and u is the location parameter.

The following definitions of error function are worth noting since they are needed to
simplify the integrations used to derive the stratum weight, mean and variance due to normal
distribution.

2 Z
erf(z) = WG /0 exp {—y} dy.

It can also be written as
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7= oo o= ()
— [ exp{—= =—erf | — ).
27 Jo P 2y Y 2 V2

Then, using (3)—(5), as discussed in Section 4 for the Pareto Type II distribution, the
MPP for determining the OSB for the normal study variable is obtained as seen in Khan
et al. (2008).

8.2. DP solution for Normal distribution

To solve the MPP formulated for the Normal distribution, we apply the algorithm using
the DP technique discussed in Section 2. The recurrence relations to determine the OSB for
the Normal distribution are derived as follows:

For the first stage, k=1, at [{ =d;:

e { oo ) o (35
([
o5 e () - ()] |
Sl (-0 ) e ()] )
and for stages k >2:
Pedy = min, {J{NZ—E[ f(dktfofz_ﬂ>_erf<w>]
[t (- (o))
o2
(dk—i-yo— ) Xp( (dk+i//o_— )2>
() ()
ol (et 2
21 av/2 g

+ @y (di _lk)}-

Upon substitution of the values of p, o, yo and d, the OSB (y;f =y;* | —[;¥) are obtained
by executing the strata.data or strata.distr function.
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Table 7 Results for the Normal distribution using strata.data.

Stratum (k) OSB (yv;)) W, Vi WiSi N, I

1 13.89 0.10 0.44  0.06 86 488  0.18
2 15.06 0.19 0.11 0.06 81 941  0.09
3 16.01 021 0.07 0.06 76 1062  0.07
4 16.97 022 0.08 0.06 82 1109 0.07
5 18.14 0.18 0.11  0.06 78 907  0.09
6 22.51 0.10 056 0.07 98 493 0.20
Total 1.00 137 038 500 5000 0.10

8.3. A numerical example for Normal distribution

A study variable dataset following a Normal distribution (herein called data), of size
N =5000 was simulated to demonstrate the application of the stratifyR package on a Normal
population. The data exhibit a Normal distribution with the parameters mean =16.010776
and sd =1.662357. The minimum and maximum values in the simulated data are [yg, y.] =
[9.923816,22.51267], which implies that d =10.62118.

To construct the OSB for 7=6 (i.e. a 6-strata solution) using the simulated data with
a fixed total sample size of 500, the commands below can be used:

set.seed (89821)

#simuate random normal variable

data <- rnorm (5000, mean = 16, sd = 1.65)

res <- strata.data(data, h = 6, n=500) #six-strata solution
summary (res) #print results

The results output in the R console has information on the best-fit frequency distribution
and the fitted parameters, minimum, maximum values of the data, and the distance. Apart
from these, the main results are presented in Table 7.

Similarly, in order to find the OSB and other quantities, we can apply the strata.distr
function to a hypothetical Normal population, which could be based either entirely on
assumptions or on prior knowledge regarding the distribution of the variable from past or
recent surveys. Let us assume that we have some information from a population with a
particular study variable that follows a Normal distribution with given attributes (such as
the initial value, distance, parameters, etc.). Say, if the simulated data as presented above
was available to us as a recent survey. Then, we can execute the following commands to
obtain the characteristics of the study variable and the stratification boundaries (for a 6 strata
solution) based entirely on distribution:

min(data); max(data); d=max(data)-min(data) ;d #useful quantities
fit <- fitdist(data, distr="norm", method="mle"); fit
res <- strata.distr (h=6, initval=9.923816, dist=12.58885,
distr = "norm", params = c (mean=16.010776,
sd=1.662357), n=500, N=5000) #six-strata solution
summary (res) #print results

The results of the stratification for a Normal study variable using strata.distr are
presented in Table 8.
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Table 8 Results for a Normal distribution using strata.distr.

Stratum (k) OSB (y;) Wy, ' WSy ny Ny, fn

1 13.89 0.1 0.45 0.068 91 506 0.18
2 15.06 0.18 0.11 0.06 80 909  0.09
3 16.01 022 0.08 0.06 79 1087  0.07
4 16.97 022 0.08 0.06 79 1086  0.07
5 18.14 0.18 0.11 0.06 80 908  0.09
6 22.51 0.1 046 0.068 91 503  0.18
Total 1 1.28 0376 500 5000 0.1

8.4. Stratification for a survey variable with Gamma distribution

The Gamma distribution is frequently used as a probability model for waiting times;
for instance, in life testing, the waiting time until death is a random variable that is usually
modelled with a Gamma distribution. It has a moderately skewed profile and due to its
versatile nature in fitting a variety of distributions, it is a flexible life distribution model and
also useful in risk analysis modelling. Stacy et al. (1962) and Chakraborti & Patriarca (2008)
showed that it can also be used as a model in a range of disciplines, including climatology
and economics, where it can be used for modelling of rainfall and various economic data
such as insurance claims or risk, the size of loan defaults, wealth, income, etc.

If the study variable y follows the Gamma distribution (i.e. y~1I'(r,0)) on the interval
[y0, 00), it has the following two-parameter probability density function:

1 y
fir,0)= Q,F(r)y"'e—ﬁ, y>0;7,0>0, (15)

where r is a shape parameter and 0 is the scale parameter and I'(r) is a Gamma function
defined by

o0
I'(r)= / "le7ldt, r>0. (16)
0

The function in (16) is also defined by an upper incomplete gamma function I'(r,x) and a
lower incomplete gamma function y(r,x), respectively, as follows:

F(r,y):/ e tdr;

y
y
y(r,y)= / e dr.
0

There also exist regularised/normalised incomplete Gamma functions which give a value
restricted between 0 and 1 and can be stated as:

_ 1 * r—1 _—t . .
QvJ)_F(r)K e ldt, r,y>0,T(r)#0;

1 y
P(r,y):m/0 t"te7tdr, r,y>0; T(r)#0,

where Q(r,y) denotes the Upper Regularised Incomplete Gamma function while P(r,y)
denotes regularised Lower Incomplete Gamma function (Abramowitz & Stegun 1972). Note
that Q(r,y)=1—P(r,y).
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8.5. DP solution for Gamma distribution

To solve the MPP formulated for Gamma distribution (15), we apply the algorithm
using the DP technique discussed in Section 2. The recurrence relations used to determine
the OSB are given by:

For the first stage, k=1, at [;' =d;:

d
q>1d1=\/{92r(r+1) {Q (r %0) —Q<r, I;y‘))}
{Q(r+2 %) Q<r+2,dl_gyo>} (17)

Yo di+y\1°
0°r [Q(ﬂrl,g) Q<r+1, 0 )] }
and for stages k >2:

ydy = min {\/{HZr(r—i—l)[Q( dk_lg””)
(dk+y0>:| -Q(r+2,dk_10k+yo>

18
So(re2tn)| o (r dirhamy
_2
_Q<r+1,dk_gy0> }+(Dk_](dk—lk)}.

The recurrence relations (21) and (22) are solved using the DP technique to determine
the OSB.

8.6. A numerical example for Gamma distribution

A health data of size N =724, derived from the ‘National Nutritional Survey’ on the
‘Micronutrient Status of Women in Fiji’, which is provided with the package, is used to
demonstrate the application of the stratifyR package on Gamma population. In this example,
the variable Folate is used since it exhibits a two-parameter Gamma distribution with the
shape and scale parameters as r =6.9922 and 0 =2.5785 respectively. The minimum and
maximum values are [yg,y.]=[4.9,45.4], which implies that d =40.5.

To construct the OSB (h=2) for the Folate data with a fixed total sample size of 500,
we use the following codes and the results are shown in Table 9.

data (anaemia) #load the data

folate <- anaemiaS$Folate #extract ‘folate’ variable

res <- strata.data(folate, h =6, n=500) #6-strata solution
summary (res) #print results

Similarly, in order to find the OSB and other stratification results, we can apply the
strata.distr function to a hypothetical Gamma population. Based on the assumption
from past knowledge that the study variable in the population follows Gamma distri-
bution with initial value=0.5, distance=50 and parameters (shape=3.835768,
rate=0.340328). If a fixed sample of n=1500 is to be selected from a total population
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Table 9 Results for the Gamma distribution using strata.data.

Stratum (k) OSB (y;)) W, Vi WiSh  mn Ny fi

1 11.43 0.17 269 0276 103 122 0.84
2 15.18 0.22 1.32  0.251 93 158 0.59
3 18.84 0.22 1.12  0.237 88 162 0.54
4 23.02 0.18 1.4 0.217 81 133 0.61
5 28.83 0.13 274 0.217 81 95 0.85
6 454 0.07 2357 0.362 54 54 1
Total 1.00 3283 1.560 500 724 0.69

Table 10 Results for the Gamma distribution using strata.distr.

Stratum (k) OSB (v;)) W, Vi WiS,  np N, fi
1 2.8 0.18 0.29 0.099 88 2207  0.04
2 4.17 0.23 0.15 0.09 80 2749  0.03
3 5.59 022 0.17 0.089 80 2634  0.03
4 7.3 0.18 024 0.089 80 2195  0.04
5 9.81 0.13 049 0.09 80 1535  0.05
6 50.5 006 325 0.102 91 680 0.13

Total 1.00 459 0.559 500 12000 0.04

size of N = 12000, we can execute the following command to obtain the results as presented
in Table 10.

#obtain a 6-strata solution of a hypothetical gamma variable
res <- strata.distr (h=6, initval=0.5, dist=50, distr = "gamma",
params = ¢ (shape=3.835768, rate=0.340328), n=500, N=12000)

summary (res) #print results

8.7. Stratification for a survey variable with Lognormal distribution

The Lognormal distribution is a continuous distribution in which the logarithm of a
variable has a normal distribution. It is also widely used to describe many natural phe-
nomena. As examples, Limpert, Stahel & Abbt (2001) suggested that phenomena such as
milk production by cows, amounts of rainfall and the volume of gas in a petroleum reserve,
etc., can all be modelled with a Lognormal distribution. If the study variable y follows the
Lognormal distribution on the interval (0, 00), it has the following two-parameter probability

density function:
1 1 ln(y)—u>2
U, 0)= €X —_ = 5 >0 19
f@u)yamp{2<o y (19)

where ¢ >0 is a scale parameter and u is the location parameter.

8.8. DP solution for Lognormal distribution

To solve the MPP formulated for a Lognormal distribution (19), we apply the algorithm
using the DP technique discussed in Section 2. The recurrence relations used to determine
the OSB are given by:
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For the first stage, k=1, at [;' =d;:

1 log(dy +yo) — u —20*
Odi = |{ =~ 2u+202) |erf
“ /{4‘”“’(“ “)[e ( V2

et (k)g(YO) —n=20° )] [erf (log(dl +y0) — u) et <log(yo> - u)]
o2 o2 o2

1 log(d —pu—a? 1 —u—a\1"
—fexp(ZlH—Gz) {erf(Og(l—l—yO) a 0>_erf<0g(yo),ua> ,

4 a2 a2
(20)
and for stages k > 2:
R 1 2 log(dy +yo) — it — 20>
(Dkdk_ogntlklgdk {\/{4exp (2,u+26 ) [erf( o3
log(dy — Iy +yo) — t = 20° log(di +yo) —
—erf erf [ ————— —
) )
log(dy — Ik +y0) — 1t 1 2
—erf - — 2
er ( /2 4exp( p+o°) 1)
log(dy + o) — it — 0> log(dy — b +yo) —u— >\ 1*
x |erf —erf
o2 o2

+(Dk—l(dk_lk)}-

Upon substitution of the values of u, ¢, yy and d, the OSB (y;f = y,’f_] — l,j‘) are obtained
by executing the strata.data or strata.distr function.

8.9. A numerical example for Lognormal distribution

The hies data of size N =3566 is used to demonstrate the application of the stratifyR
package on a Lognormal population. The hies data, which accompanies the package,
comes from the HIES survey conducted in Fiji in the year 2010. The data contains only
two aspects of the survey, namely Income and Expenditure. In this example, the variable
Expenditure is used since it exhibits a 2-parameter Lognormal distribution with the shape
and scale parameters as meanlog = 9.2804934 and sdlog = 0.6917842 respectively.
The minimum and maximum values are [yg,y.] =[991.24,136539.1], which implies that
d =135547.8.

To construct the OSB (h=06) for the Expenditure data with a fixed total sample size
of 500, we use the following codes. Table 11 presents the stratification results.

data(hies) #load data

Expenditure <- hies$SExpenditure #extract main variable

res <- strata.data (Expenditure, h = 6, n=500) #6-strata solution
summary (res) #print results

If data of the study variable are not available but can be assumed to follow a Lognor-
mal distribution, we can apply the strata.distr function to obtain the OSB and other
stratification results as presented in Table 12 by executing the following commands:
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Table 11 Results for the Lognormal distribution using strata.data.

Strata (1) OSB (y;)) W, Vi WSk 1y, Ny Ju

1 7033.13  0.28 1771772.82 374.763 83 1004 0.08
2 11491.13 0.28 1632728.76 362.982 80 1013 0.08
3 17143.84 0.2 2716245.8 336.923 75 729 0.1
4
5

25531.44 0:12 5296567.94 274.932 61 426  0.14
41367.24  0.08 20652444.55 341.538 76 268  0.28
6 136539.06  0.04 462208769 759.641 126 126 1

Total 1 494278529 2450.779 500 3566 0.14

Table 12 Results for Lognormal distribution using strata.distr.

Strata (h) OSB (y:) Wh Vi Wy, Sh ny Ny, fn
1 7033.13  0.27 1978332.72 380.588 90 966  0.09
2 11491.13  0.27 1628962.51 343.018 81 958  0.08
3 1714248 0.21 2602729.74 341.03 81 754 0.11
4 25530.07 0.14 5612494.87 341.053 81 513  0.16
5 41364.5 0.08 18607532.55 342.905 81 283 0.29
6 136539.04  0.03 209845971.7 368.083 87 91 0.96

Total 1 240276024 2116.677 500 3566 0.14

#get important measures

length (Expenditure) ; d=max (Expenditure)-min (Expenditure) ;d

#obtain parameter estimates

fit <- fitdist (Expenditure, distr="1lnorm", method="mle"); fit

#6-strata solution for a hypothetical lognormal study variable

res <- strata.distr (h=6, initval=10, dist=188, distr = "lnorm",
params = ¢ (meanlog=3.23, sdlog=0.65), n=500, N=3566)

summary (res) #print results
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