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Abstract— This paper proposes a maximum torque per 

ampere (MTPA) technique specifically developed for 

Synchronous Reluctance Motors (SynRMs). The proposed 

MTPA is based on a self-organizing artificial neural network, 

called Growing Neural Gas (GNG). The GNG gas been trained 

in order to learn the real maximum torque per ampere points of 

the SynRM under test. The proposed MTPA has been tested 

experimentally on a suitably developed test set-up. The obtained 

experimental results clearly highlight a significant increase of 

maximum producible torque, with respect to the previously 

developed MTPA techniques.  

Keywords—Synchronous Reluctance Motor (SynRM), 

Maximum Torque Per Ampere (MTPA), Rotor Oriented Control, 

Neural Networks (NN), Growing Neural Gas (GNG) 

 

I. INTRODUCTION  

High dynamic performance control of Synchronous 

reluctance motors (SynRM) can be achieved exploiting vector 

control schemes; among these last ones, both rotor-oriented 

and stator flux-oriented control techniques have been 

developed [1]-[4]. The non-linear magnetic behavior of the 

SynRMs limits theoretically their dynamic performance. In 

more details, saturation effects present remarkable 

differences on the direct (x) and quadrature (y) axes, 

Furthermore, cross-saturation phenomena are significant in 

such machines [5][6]. If the electromechanical conversion 

has to be performed with maximum efficiency, maximum 

torque per ampere (MTPA) techniques have to be embedded 

in the control scheme. If the simplification of linearity of the 

magnetic circuit is assumed, implying constant inductance 

terms of the model, the MTPA problem leads to the classic 

solution with equal x, y components of the stator current in 

the rotor reference frame  𝑖𝑠𝑥 = |𝑖𝑠𝑦|  [1]. If the magnetic 

saturation of the machine is to dealt with, several approaches 

have been followed. One of the approaches has been 

proposed in [7], where a set of curves have been traced 

starting from experimental measurements, giving the 

relationship between the amplitude of the stator current and 

its x component, according to different values of load torque. 

Even [8] and [9] propose MTPA techniques based on the 

classic relationship 𝑖𝑠𝑥 = |𝑖𝑠𝑦| . Nevertheless, while [9] is 

based on a classic rotor-oriented vector control, furnishing 

the reference of 𝑖𝑠𝑥  as a function of the load torque, [8] 

proposes a stator flux-oriented control. The magnetic 

saturation, however, has been neglected in the MTPA 

formulation. A different approach, fully considering the 

magnetic saturation, has been followed in [10], proposing an 

algebraic magnetic model based on current versus flux 

functions. Afterwards, the Brent algorithm is exploited after 

inverting numerically the magnetic model by the Powell 

dogleg algorithm. Alternatively, finite element analyses 

(FEA) approaches have been exploited for the optimal torque 

control [11]; they, however, need a punctual knowledge of 

the design and construction of the motor More recently, the 

MTPA problem specifically developed for SynRMs has been 

faced up by an analytical formulation accounting for the 

magnetic saturation of the iron core [12]. This technique is 

based on a simplified model describing the magnetic 

saturation of the SynRM, derived by a previously developed 

more detailed magnetic model accounting for both self and 

cross-saturation [13]. The approach followed in [13] reveals 

effective and performing in a wide working range of speeds 

and loads. Specific working region s exist, however, where 

the MPTA solution obtained with [13] is not optimal; this is 

the case for high values of the speed and load torque. This 

paper, trying to overcome the limits of the method in [13] in 

specific working areas, proposes an MTPA based on an 

intelligent mapping, and specifically on a self-organizing 

artificial neural network, called Growing Neural Gas (GNG) 

[14] by exploiting the specific capability of the GNG to learn 

complex functions with a limited number of processing units, 

called neurons. With this aim, a suitable set of off-line 

experimental tests has been developed to perform the real 

MTPA in the entire working range of the stator current 

amplitude and rotor speed. Afterwards, the set of measured 

real MTPA working points has been trained off-line with the 

GNG. The recalling phase of the GNG has been employed on-

line to implement an intelligent look-up table performing the 

real MTPA task. The proposed MTPA has been tested 

experimentally on a suitably developed test set-up. 

978-1-7281-5826-6/20/$31.00 ©2020 IEEE 2668

Authorized licensed use limited to: University of the South Pacific. Downloaded on November 25,2020 at 23:18:56 UTC from IEEE Xplore.  Restrictions apply. 



II. THE GNG-BASED MTPA 

A. Retrieval of the real MTPA 

In the following, the procedure that has been devised to 

experimentally retrieve the real MTPA, in the entire working 

range of the machine, will be described. The control system 

implemented in the SynRM drive is the rotor-oriented control, 

where the classic MTPA has been further integrated; 

specifically, the rotor oriented control has been operated in 

current control. On the other hand, the PMSM (Permanent 

Magnet Synchronous Motor) drive adopted as an active load 

has been operated in speed control. The procedure adopted in 

each working point is the following. A constant rotor 

reference speed has been given to the PMSM drive. Starting 

from zero, the reference speed is then modified in order to the 

entire drive working range. As for the SynRM drive, starting 

from the working condition at  = /4 corresponding to the 

classic MTPA, the amplitude of the stator current |is| has been 

maintained constant while the angle  had been continuously 

varied, step by step, in both directions, till the maximum 

electromagnetic torque is achieved. Given the stator current 

amplitude |is| and speed 𝜔𝑟 under test, the torque angle max 

and the corresponding maximum electromagnetic torque temax 

have been then memorized as the real MTPA. Such a 

methodology has been applied to the SynRM drive described 

in section 3; the obtained experimental results are provided in 

Fig. 1, that shows the experimental points (red) describing, 

for the SynRM drive under test, the relationship between the 

steady-state real maximum torque versus the stator current 

amplitude and the rotor speed. The same plot provides even 

the surface interpolating the experimental measurements. It 

can be observed that the maximum producible torque 

increases quickly with the stator current amplitude, while it 

decreases slightly for increasing values of the rotor speed, as 

expected. 

 

 

Fig. 1. Steady-state maximum producible torque vs rotor speed and stator 

current amplitude 

 

B. GNG Training of the real MTPA 

The growing neural gas (GNG) is a particular kind of self-

supervised neural network inspired by the self-organizing 

map (SOM). It is a relatively simple algorithm for finding 

optimal representations of data by using feature vectors. The 

algorithm has been called “neural gas” because of the 

dynamics of the feature vectors during the adaptation process, 

which distribute themselves like a gas within the data space. 

A number of variants of the neural gas algorithms exist in the 

literature; Fritzke [14] describes the growing neural gas 

(GNG) as an incremental network model that learns 

topological relations by using a “Hebb-like learning rule” 

only; unlike the neural gas, GNG has no parameters that 

change over time and it is capable of continuous learning. The 

main idea of the GNG is to add new units (neurons) to an 

initially small network in a growing structure. With this 

approach, the network topology is generated incrementally 

and has a dimensionality that depends on the input data and 

may vary locally. Two phases should be distinguished, 

namely, the training and the recalling. The training phase is 

performed off-line and can be run on a regular PC: in this 

phase, specifically, the experimental data related to the real 

MTPA have been learnt by the GNG. The recalling phase is 

performed on-line and it builds an intelligent mapping of the 

data; a limited number of processing units is able, therefore, 

to represent a higher number of experimental data points. 

This phase has been implemented on-line on the same DSP 

on which the control system runs. In the following, the 

algorithms of both the training and recalling phases are 

described. 

 

Training Phase 

A neuron of the GNG is represented, in this case, by the 3-

dimensional vector of its weights, whose variables are 

respectively the direct component of the stator currents, the 

total amplitude of the stator current vector and the rotor 

speed. Besides its weights, each neuron is characterized by 

some links between itself and other close neurons. The links 

represent the topological relationship between the neurons 

and they are labeled with a value indicating the age. This 

parameter measures how well the connected neurons 

represent all the input data. Indeed, after a certain age, links 

are removed and then neurons are deleted because they do not 

correctly represent the data, being considered outliers. 

 The complete algorithm of the GNG is summarized in the 

following steps. 

1. Define the maximum number of neurons nmax and the 

maximum number of the epochs nepmax. 

2. Start with two neurons a and b with random weights wa 

and wb in n.  

3. Present a sample  from the training set, obeying some 

unknown probability density function P(). 

4. Find the nearest neuron s1 and the second nearest neuron 

s2. The closeness of the neurons is established based on 

the Euclidean distance. 

5. Increment the age of all edges emanating from s1. 

6. Add the squared distance between the input signal and 

the nearest neuron in the input space to a local counter 

variable: 

( )
2

1 1
ξws −= serror

. 

7. Move s1 and its direct topological neighbors towards   

by fractions b and n , of the total distance, respectively:  
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for all direct neighbors n of s1. 

8. If s1 and s2 are connected with an edge, set the age of this 

edge to zero. In this way, frequently activated neurons 

remain young. If this edge does not exist, create it.  

9. Remove edges with an age larger than amax. If this results 

in points with no emanating edges, remove them. 

10. If the number of samples presented so far is an integer 

multiple of a parameter  and the number of the created 

neurons n is lower than its maximum nmax, create a new 

neuron as follows: 

a. Determine the neuron q1 with the maximum 

accumulated error. 

b. Insert a new neuron r halfway between q and its 

neighbour f, and remove the original edge 

between q and f.  

c. Decrease the error variables of q and f by 

multiplying them by a constant . Initialize the 

error variable of r with the new value of the 

error variable of q. 

11. Decrease all error variables by multiplying them by a 

constant d. 

12. If a stopping criterion, for example the number of epochs 

nep is equal to its maximum nepmax, is not yet fulfilled go 

to step 2. 

Fig. 2 shows the flow chart of the training algorithm of the 

GNG. 

 

Recalling Phase 

The recall algorithm is as follows: 

1. Present the input vector i.  

2. Compute the K Euclidean distances Dk between the 

vector i and the weights wk of the K neurons. 

3. Sort out the Dk’s in increasing order and select the 

corresponding first P neurons. 

4. Compute the estimated output yi by:  





−

−= P

k k

P

k k

k

i

D

D

w

y

1

1

1

 

 

Before training GNG, the experimental data shown in Fig. 1 

have been pre-processed offline. The pre-processing yields 

the total amplitude of the stator current from its cartesian 

components, in order to find the experimental mapping 

describing the relationship between the direct component of 

the stator current in the rotor reference frame 𝑖𝑠𝑥   versus  the 

total amplitude of the stator current vector |𝐼𝑠| as well as the 

rotor speed 𝜔𝑟. This process results in Fig. 3, which shows 

the steady-state experimental mapping between 𝑖𝑠𝑥  versus 

|Is|and 𝜔𝑟  (black squares), the related interpolating surface 

and the set of neurons generated at the end of the GNG 

training (violet circles). Specifically, 60 neurons have been 

found able to represent the entire set of experimental data. It 

can be observed that the neurons properly cover the entire 

MTPA surface, confirming the correctness of its training 

process. 

 

 
 

Fig. 2.  Flow chart of the GNG training algorithm 

 

 

Fig. 3. Steady-state experimental mapping between 𝑖𝑠𝑥 vs |𝐼𝑠|and 𝜔𝑟 , 

interpolating surface and neuron generated with the GNG training 

 

III. TEST SET-UP 

The employed test set-up consists of a SynRM motor ABB 
3GAL092543-BSB. The SynRM is supplied by a Voltage 
Source Inverter (VSI) with insulated gate bipolar transistor 
(IGBT) modules, Semikron SMK 50 GB 123, driven by a 
space-vector Pulse Width Modulation technique (SV-PWM) 
with PWM frequency set to 5 kHz. 

The SynRM drive has been controlled by adopting a rotor 

oriented control [1]-[4]. The proposed MTPA technique has 

been embedded into this control scheme.  
Both the adopted PWM and the control techniques have been 

implemented on a dSPACE card (DS1103) with a PowerPC 
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604e at 400 MHz and a floating-point DSP TMS320F240. 

The sampling time of the control system has been set to 10 

kHz. The SynRM motor is mechanically coupled to a torque 

controlled PMSM drive working as active load. Fig. 4 shows 

the photo of the SynRM drive test set-up. 

 

 

Fig. 4. Photograph of the Experimental Set-up 

 

IV. EXPERIMENTAL RESULTS 

The proposed GNG-based MTPA technique has been 

implemented on the test set-up described in Section 3, 

integrating it in the rotor-oriented vector control scheme [1]-

[4].  

The proposed MTPA has been also compared experimentally 

with two MTPAs proposed by the scientific literature, namely 

the classic MTPA technique and the MTPA accounting for the 

magnetic saturation in [12]. Two experiments have been 

carried out, whose results are fully described in the following.  

As for the first experiment, a speed step reference of 50 rad/s 

at no load has been provided to the SynRM drive. When the 

drive is at speed steady-state, a step load torque of amplitude 

10 Nm (close to the machine rated torque) has been applied 

and then released. The load torque variation has been 

obtained providing a corresponding reference torque to the 

torque-controlled PMSM drive adopted as active load. Fig. 5 

shows the reference and measured speeds during such a test. 

The measured speed quickly tracks its reference, exhibiting a 

very low rising time. After the application of the step load 

torque as well as after its release, the reaction of the speed 

control loop to the effect of the load is to be observed; as a 

final results, the measured speed is driven by the control 

system towards its reference. Fig. 6 shows the corresponding 

waveforms of  𝑖𝑠𝑥 , 𝑖𝑠𝑦. Specifically,  𝑖𝑠𝑦 presents a stepwise 

waveform, with peaks occurring at each load 

application/release, as expected. At the same time, 𝑖𝑠𝑥 

increases with 𝑖𝑠𝑦, according to the experimental  mapping in 

Fig.3. Finally, Fig. 7 shows the electromagnetic and load 

torques obtained during this test. The electromagnetic torque 

presents a shape similar to that of 𝑖𝑠𝑦, and it highlights the 

same peaks; it tracks the load properly during the load 

application/release.  

As for the second experiment, a speed constant reference of 

50 5rad/s has been provided to the SynRM drive; when the 

drive is working at constant speed, a set of increasing step 

load torques is then applied, ranging from 0 to 10 Nm. Figs. 

8 to 10 show the same kind of waveforms as in test 1. These 

figures show the correct behavior of the control system in 

general, as well as of the proposed MTPA specifically. In 

particular. It is to be noted that the speed control loop reacts 

to each load torque step, with the measured speed properly 

tracking its reference. The current waveforms show an 

increase of 𝑖𝑠𝑦 in response to each increase of the load torque. 

Correspondingly, 𝑖𝑠𝑥  increases with 𝑖𝑠𝑦 , according to the 

experimental mapping in Fig.3. Finally, the electromagnetic 

torque tracks the load one, as expected. Fig. 11 shows two 

surfaces describing the increase of the maximum producible 

torque Δ𝑡𝑒 versus the stator current amplitude |is| and speed 

𝜔𝑟. Δ𝑡𝑒 represents the difference between the real maximum 

torque and the torque obtained with the proposed MTPA, for 

the first surface, or the maximum torque obtainable with the 

classic one, for the second surface. Fig. 11 shows, 

superimposed, the experimental points and the interpolating 

surfaces. It can be observed that, for all the values of the stator 

current amplitudes and rotor speeds, the increase of the 

maximum producible torque with the proposed MTPA is very 

high. In particular, as for the MTPA in [13], this increase is 

relevant only for high values of load torque and speed, getting 

a maximum of approximately 15%. On the contrary, such an 

increase is relevant in the entire range of load torque and 

speed for the classic MTPA, getting a maximum of 

approximately 38.5%. 

 

 

Fig. 5. Reference and measured speed with the GNG-based MTPA during 

the start-up test - experiment 

 

Fig. 6. 𝑖𝑠𝑥 , 𝑖𝑠𝑦  with the GNG-based MTPA during the start-up test - 

experiment 
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Fig. 7. Reference and measured speed with the GNG-based MTPA during 

the step load test - experiment 

 

Fig. 8. Electromagnetic and load torques with the GNG-based MTPA 

during the start-up test - experiment 

 

 

Fig. 9. 𝑖𝑠𝑥 , 𝑖𝑠𝑦  with the GNG-based MTPA during the step load test - 

experiment 

 

Fig. 10. Electromagnetic and load torques with the GNG-based MTPA 

during the step load test  - experiment 

 

Fig. 11. Steady-state increase of maximum producible torque vs rotor speed 

and stator current amplitude 

 

V. CONCLUSIONS 

This paper proposes a maximum torque per ampere (MTPA) 

technique specifically developed for Synchronous 

Reluctance Motors (SynRMs). The proposed MTPA is based 

on a specific self-organizing artificial neural network, called 

Growing Neural Gas (GNG). The proposed MTPA has been 

tested experimentally on a suitably developed test set-up. 

Experimental results clearly show that the proposed MTPA 

technique permits a significant increase of maximum 

producible torque, with respect to a previously developed 

MTPA techniques. 
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