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We develop a set of novel autonomous controllers for multiple point-mass robots or agents in the presence of wall-like rectangular
planes in three-dimensional space. To the authors’ knowledge, this is the first time that such a set of controllers for the avoidance of
rectangular planes has been derived from a single attractive and repulsive potential function that satisfies the conditions of the
Direct Method of Lyapunov. /e potential or Lyapunov function also proves the stability of the system of the first-order ordinary
differential equations governing the motion of the multiple agents as they traverse the three-dimensional space from an initial
position to a target that is the equilibrium point of the system. /e avoidance of the walls is via an approach called the Minimum
Distance Technique that enables a point-mass agent to avoid the wall from the shortest distance away at every unit time. Computer
simulations of the proposed Lyapunov-based controllers for the multiple point-mass agents navigating in a common workspace
are presented to illustrate the effectiveness of the controllers. Simulations include towers and walls of tunnels as obstacles. In the
simulations, the point-mass agents also show typical swarming behaviors such as split-and-rejoin maneuvers when confronted
with multiple tower-like structures. /e successful illustration of the effectiveness of the controllers opens a fertile area of research
in the development and implementation of such controllers for Unmanned Aerial Vehicles such as quadrotors.

1. Introduction

/emotion planning and control (MPC) of mobile robots or
agents is a challenging task and an interesting problem
attracting considerable attention to the robotic community
over the last couple of decades. /e design of a particular
robotic system and motion planning are usually treated
independently [1]. Typically, MPC algorithms are applied to
systems with fully fixed geometric and kinematic features,
while the system design in robotics takes into account ro-
bustness, stiffness, workspace volume, obstacle avoidance
schemes, and other performance features. /e principle goal
for any MPC problem is to find the most optimum design to
optimise the motion between given configurations [2–7]. In
an MPC problem, multiple robots are favoured as they are
able to cooperate for faster and more efficient results
[4, 5, 8–10], including other fields where multiagent oper-
ations are always preferred [11].

Path planning or MPC algorithms for mobile robots
operating in an environment cluttered with obstacles are
usually grouped according to the methodologies used to
generate the geometric path, namely, the road map tech-
niques, cell decomposition algorithms, and artificial po-
tential field (APF) methods [4, 12]. /ese path planning
algorithms have a common objective, which is to find the
shortest and most optimal geometric path taking into ac-
count the moving objects and obstacles in the workspace
[13–15]. While the calculation of a hindrance-free way may
take care of numerous significant issues in industrial settings
where the robot may move cautiously, it is inadequate and
practically futile when the robot needs to move at sensibly
high speeds, for example, multiple mobile robots navigating
through dynamic cluttered situations and autonomous ve-
hicles navigating in a highway traffic situation.

In this research article, we use the Lyapunov controllers,
constructed via the Lyapunov-based Control Scheme

Hindawi
Journal of Advanced Transportation
Volume 2020, Article ID 4723687, 13 pages
https://doi.org/10.1155/2020/4723687

mailto:raghuwaiya_k@usp.ac.fj
https://orcid.org/0000-0002-7349-6866
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4723687


(LbCS), essentially an APF method, for the control and
stability of a system point-mass mobile robots that, in
theory, can take on reasonably high velocities. /e LbCS has
been employed to warrant point and posture stabilities in the
sense of Lyapunov for MPC for various robotic systems,
such as car-like mobile robotic systems [4], mobile ma-
nipulators [16], tractor-trailer systems [12, 17], and
swarming [18]. We utilise the control scheme to derive and
extract centralised velocity-based control laws for point-
mass mobile robots.

1.1. Contributions. /e novelty of this paper is the ease in
developing autonomous controllers for the avoidance of
three-dimensional wall-like rectangular planes by a mobile
robot or agent while it is in motion using a technique known
as the Minimum Distance Technique (MDT). /e ability to
do this opens up many possibilities. Walls can be used to
model buildings and towers, windows, and doors. /ey can
be used to model highways and tunnels. When we deal, for
instance, with autonomous Unmanned Aerial Vehicles
(UAVs), it is now possible to model a drone’s performance
in the face of such obstacles as buildings and tunnel walls,
and its maneuverability inside buildings clustered with
rectangular objects and exited. For disaster surveillance and
in an urban war simulation and situation, this maneuver-
ability is critical [19, 20].

/e MDTwas introduced by Sharma et al. [21] to create
parking bays for the posture control problem of robotic
systems and avoid the sides of a bay, modelled as straight
lines. /e MDTuses APF functions for the avoidance of the
boundaries of the parking bay. In this paper, we extend the
methodology to encompass rectangular planes. /e MDT
involves the computation of the minimum distance from the
centre of the point-mass mobile robot to the surface of the
rectangular plane and the avoidance of the resultant point on
the st≥ 0urface of the rectangular plane. /e avoidance of
the nearest point on the surface of the rectangular plane at
any time t≥ 0 ensures that the point-mass mobile robot
avoids the whole plane. As we shall see, this algorithm helps
in simplifying the navigation laws. Surely, there are other
methods of obstacle avoidance of polygons. /e most recent
one was proposed by Arantes et al. [22] who discussed path
planning approaches for dynamic systems to handle non-
convex constraints to be formulated as model-predictive
control, which planned discrete time control and state se-
quences simultaneously through a constrained optimisation.
/e optimisation problem that needs to be solved in this case
is the mixed-integer linear programming (MILP) when the
dynamics are linear and the obstacles are represented by
combinations of polytopes, with no uncertainty presence.
/e problem that lies in this particular approach is the jumps
between the time steps, which could result in a trajectory
cutting through the obstacle, given that the method is only
concerned with satisfying the constraints at a discrete point
in times, as shown in Figure 1(a). Arantes et al. devised a new
approach to suppress this problem by imposing constraints

that require every pair of adjacent states to be on the same
side of an obstacle, as shown in Figure 1(b) [23].

Furthermore, comparing Arantes et al. approach to the
MDT, the latter results in a smooth, continuous path for the
avoidance of irregular shaped (rectangular plane) obstacles.
An illustration of theMDTfor the avoidance of a rectangular
plane is shown in Figure 1(c).

/e main contributions of this paper are summarised as
follows:

(1) /e design of the velocity algorithm for a point-mass
mobile robot which is based on a Lyapunov function
that acts as an energy function of the system. /e
velocity algorithm ensures safe, collision-free tra-
jectories that converge to the intended target.

(2) /e design of the velocity algorithm for the point-
mass mobile robot which is based on the develop-
ment of a Lyapunov function that acts as an energy
function of the system. /e velocity algorithm ap-
plied here is altogether not quite the same as the ones
in the literature. Consistently enduring velocities are
utilised; nonetheless, the robot needs to stop after it
has accomplished its objective. /is stop should not
be unexpected by a truncation of speed; rather, the
robot should slow down its motion and afterward
come to rest. /e velocity algorithm and the ob-
jective target intended for the robot guarantee a
protected and safe stop at the goal objective and
furthermore guarantee that the robot stays there.

(3) A three-dimensional rectangular-plane obstacle
avoidance scheme using the MDT. While in motion,
the distance between the point-mass robot and the
closest point on the surface of the wall is computed
and the point-mass robot avoids this point on the
surface of the wall, resulting in the avoidance of the
entire wall. In addition, we only consider the wall
closest to the point-mass robot en route to its target.
Subsequently, our obstacle avoidance scheme is
more straightforward contrasted with, for instance,
the avoidance schemes used in the artificial potential
strategies where all of the obstacles are considered in
parallel [4, 17].

(4) Stability analysis pertaining to the kinodynamic
system. We use the Direct Method of Lyapunov to
carry out the stability analysis, proving that the
equilibrium point of the system, representing the
target of a point mass, is stable.

/e paper is organised as follows: In Section 2, we define
the kinematic model of the point-mass robot; in Section 3,
the APF functions are defined; in Section 4, the Lyapunov
function is constructed and the robust nonlinear continuous
control laws for the mobile robot are extracted; in Section 5,
the stability of the system is discussed; in Section 6, the
simulation results are presented to show the robustness and
effectiveness of the proposed control inputs and followed by
conclusion in Section 7.
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2. Modelling a Point-Mass Robot or Agent in 3D

/e modelling process of a robotic system involves the
conceptualisation of the problem, residing on the abstrac-
tion level. Simulation, however, mainly focuses on the
implementation of the execution of the model to study the
behavior and performance of an actual or theoretical system.
/is section proposes a simple kinematic model for the
moving point-mass robot, an abstraction of a simple form of
a robotic system. A two-dimensional schematic represen-
tation of a point-mass robot with and without rectangular
obstacle avoidance is shown in Figure 2. We begin with the
following definition.

Definition 1. A point mass,Pi, is a sphere of radius rpi and
centred at (xi(t), yi(t), zi(t)) ∈ R3 for t≥ 0. /at is, it is the
set

Pi � Z1, Z2, Z3( 􏼁 ∈ R3
: Z1 − xi( 􏼁

2
+ Z2 − yi( 􏼁

2
+ Z3 − zi( 􏼁≤ rp2i􏽮 􏽯.

(1)

At time t≥ 0, the instantaneous velocity of the point
mass will be given as (vi(t), wi(t), ui(t)) � ( _xi(t), _yi

(t), _zi(t)). Assuming the initial conditions, a system of the
first-order ODEs governing Pi is

_xi � vi(t), _yi � wi(t), _zi � ui(t),

xi0: � xi t0( 􏼁, yi0: � yi t0( 􏼁, zi0: � zi t0( 􏼁,

⎫⎬

⎭ (2)

for i � 1, . . . , n. Let xi: � (xi, yi, zi) ∈ R3 and
x: � (x1, . . . , xn) ∈ R3n.

Next, we will formulate the components that form the
Lyapunov function, essentially the attractive and repulsive
potential field functions.

3. Construction of the APF Functions

In this section, we construct the components of the Lya-
punov function. We assume that Pi has a priori knowledge
of the entire workspace. /e principle objective is to con-
struct the Lyapunov function from which we derive the
nonlinear velocity control inputs vi(t), wi(t), and ui(t) for
i � 1, . . . , n such that Pi navigates and reaches its target

configuration, avoiding any obstacle, whether fixed, moving,
or artificial, while it is in motion./e design of the nonlinear
control inputs is captured in Figure 3, clearly illustrating the
roles of the individual components in the design of the
control scheme.

3.1. Attractive Potential Field Functions. We introduce basic
mathematical notions to design and construct attractive
functions for target attraction for Pi.

3.1.1. Attraction to Target Function. To initiate movement
and ensure convergence, we propose to have a target Ti

for each of the point-mass mobile robots Pi. /e con-
vergence of Pi to Ti will be guaranteed by the Lyapunov
function.

Definition 2. /e assigned target for the point-mass mobile
robot of Pi is a sphere with centre (τi1, τi2, τi3) and radius
rτi. /at is, it is the set

Ti � Z1, Z2, Z3( 􏼁 ∈ R3
: Z1 − τi1( 􏼁

2
+ Z2 − τi2( 􏼁

2
+ Z3 − τi3( 􏼁

2 ≤ rτ2i􏽮 􏽯.

(3)

/e next function will measure the Euclidean distance of
Pi from its designated target Ti at time t≥ 0. It will be used
as an attraction function:

Vi(x) �
1
2

xi − τi1( 􏼁
2

+ yi − τi2( 􏼁
2

+ zi − τi3( 􏼁
2

􏽨 􏽩. (4)

An illustration of the total potentials for the target at-
traction function is shown in Figure 4(a), while Figure 4(b)
shows the analogous contour plot generated over a work-
space 0<Z1 < 100 and 0<Z2 < 100 for the point-mass
mobile robot. For simplicity, we consider the target function
in a 2-dimensional environment. /e disk-shaped target for
the point-mass mobile is fixed at (τ01, τ02) � (50, 50) with a
radius of rp0 � 1.

3.1.2. Auxiliary Function. In the MPC problem, Pi starts
from an initial position and navigates towards its target.
While navigating, the motion ofPi is such that it will avoid

x1
x2

x3

x4

Obstacle

(a)

x1
x2

x3

x4

Obstacle

(b)

Obstacle

(c)

Figure 1: (a) Conventional model-predictive control-based path planning requires that states are outside of polygonal obstacles resulting in
the path cutting through the obstacle. (b)/eMILP approach of using a straight-line trajectory between waypoints [22]. (c)/e smooth and
continuous path for MDT demonstration of obstacle avoidance.
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all obstacles, whether it is fixed or moving, with respect to
the kinodynamic constraints that are tagged with the robotic
system including the constraints on velocity and angles
before reaching its objective target. Once it has reached the
target, it essentially means that it has accomplished the task
that was given to the robot, and hence it needs to stop at the
target configuration. Intuitively, this means that the energy
of the robotic system needs to be zero at the target con-
figuration; that is, the nonlinear controllers need to vanish at
the target. Hence, to achieve this and to ensure the con-
vergence of Pi to its target configuration, we consider the
auxiliary function of the form

Gi(x) � Vi(x). (5)

3.2. Repulsive Potential Field Functions

3.2.1. Workspace Boundaries. We shall confine the motion
of Pi in a cuboid constrained by the dimensions
η1 × η2 × η3. Since the motion is confined within these
boundary walls, the walls are hence treated as fixed obstacles.
/erefore, for the avoidance of these walls, the following
functions are proposed:

WSi1(x) � xi − rpi,WSi2(x) � η2 − yi + rpi( 􏼁,

WSi3(x) � η1 − xi + rpi( 􏼁,WSi4(x) � yi − rpi,

WSi5(x) � zi − rpi,WSi6(x) � η3 − zi + rpi( 􏼁,

⎫⎪⎪⎬

⎪⎪⎭
(6)

for i � 1, . . . , n, which are positive within the rectangular
cuboid.

3.2.2. Rectangular-Plane Obstacle Avoidance. Disks in 2D
and spheres in 3D are the simplest models of obstacles.
However, they encompass extraspaces that are not needed
for avoidance. For example, enclosing a rod-like structure
within a sphere introduces spaces that need not be
avoided. As an illustration, Figure 5(a) shows the contour
plot of the total potentials and the corresponding colli-
sion-free path of a point mass over the workspace
0<Z1 < 40 and 0<Z2 < 40 encompassing a rod-shaped
obstacle, while Figure 5(b) showcases the contour plot of
the total potentials and the resulting path if the rod is

replaced by a disk-shaped obstacle. /e initial and final
coordinates of the rod are (10, 20) and (30, 20), respec-
tively. /e disk portrayal of the rod has a diameter of 10,
which matches the length of the rod, and is centred at
(20, 20). /e path generated in the presence of the rod-
shaped obstacle is optimal in terms of the distance tra-
versed since the obstacle space is small in contrast to the
disk portrayal of the rod. /erefore, in this article, we
introduce rectangular obstacles.

To avoid the rectangular obstacles via the MDT, the
surface wall of the rectangular plane is classified as a fixed
obstacle. Let us fix ℓ � 1, . . . , �m, �m ∈ N rectangular-plane-
shaped obstacles within the workspace. An illustration of
a rectangular plane is showcased in Figure 6, which we
shall use to derive the new mathematical equations for its
avoidance. /ree points are sufficient for deriving the
saturation functions and hence designing the rectangular-
plane avoidance functions. We begin with the following
definition.

Definition 3. Assume that the three-dimensional ℓth planar
obstacle has the three coordinates (aℓ1, bℓ1, cℓ1),
(aℓ2, bℓ2, cℓ2), and (aℓ3, bℓ3, cℓ3), ℓ � 1, . . . , �m, �m ∈ N (see
Figure 6). A single point in the plane is defined by

SPiℓ: � Z1, Z2, Z3( 􏼁: � Pxiℓ, Pyiℓ, Pziℓ( 􏼁 ∈ R3
. (7)

/en the plane can be precisely described by the set

Pℓ � SP1ℓ, SP2ℓ, . . . , SPnℓ( 􏼁 ∈ R3n
. (8)

/en the set of ℓ planes, ℓ ∈ �m, is

CP � P1, P2, . . . , P �m􏼈 􏼉 ∈ R
3n �m

, (9)

where Pxiℓ � aℓ1 + λiℓ1(aℓ2 − aℓ1) + λiℓ2(aℓ3 − aℓ1), Pyiℓ �

bℓ1+ λiℓ1(bℓ2 − bℓ1) + λiℓ2(bℓ3 − bℓ1), and Pziℓ � cℓ1 + λiℓ1
(cℓ2 − cℓ1) + λiℓ2(cℓ3 − cℓ1) are the parametric representation
for 0≤ λiℓ1,2 ≤ 1, ℓ � 1, . . . , �m, and i � 1, . . . , n.

/e MDT necessitates that we identify the closest point
on each of ℓ, the rectangular plane measured from the centre
of Pi. We compute the minimum Euclidian distance from
the centre of Pi to the surface of the ℓth rectangular plane.
/e avoidance of the closest point of the surface of the
rectangular plane at any time t≥ 0 results in the avoidance of
the entire plane by Pi. Minimising the Euclidean distance
between the points (xi, yi, zi), which is the centre ofPi and
the ℓth rectangular plane, yields

Z2

Targetof Pi

Initial position of Pi

Z1

Obstacle

Figure 2: 2D schematic representation of Pi with planar obstacle
in Z1 − Z2 plane.

Attractive potential
field functions

Repulsive potential 
field functions
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Control parameters

Convergence 
parameters

Lyapunov-based 
control scheme 

(LbCS) Model (ODEs) of 
robotic system

Velocity-based 
nonlinear continuous 

control inputs
Time derivative

Initial conditions

Figure 3: /e block diagram outlining the LbCS design.
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λiℓ1 � xi − aℓ1( 􏼁�cℓ1 + yi − bℓ1( 􏼁�dℓ1 + zi − cℓ1( 􏼁�hℓ1,

λiℓ2 � xi − aℓ1( 􏼁�cℓ2 + yi − bℓ1( 􏼁�dℓ2 + zi − cℓ1( 􏼁�hℓ2,
(10)

where

�cℓ1 �
aℓ2 − aℓ1( 􏼁

aℓ2 − aℓ1( 􏼁
2

+ bℓ2 − bℓ1( 􏼁
2

+ cℓ2 − cℓ1( 􏼁
2,

�dℓ1 �
bℓ2 − bℓ1( 􏼁

aℓ2 − aℓ1( 􏼁
2

+ bℓ2 − bℓ1( 􏼁
2

+ cℓ2 − cℓ1( 􏼁
2,

�hℓ1 �
cℓ2 − cℓ1( 􏼁

aℓ2 − aℓ1( 􏼁
2

+ bℓ2 − bℓ1( 􏼁
2

+ cℓ2 − cℓ1( 􏼁
2,�cℓ2 �

aℓ3 − aℓ1( 􏼁

aℓ3 − aℓ1( 􏼁
2

+ bℓ3 − bℓ1( 􏼁
2

+ cℓ3 − cℓ1( 􏼁
2,

�dℓ2 �
bℓ3 − bℓ1( 􏼁

aℓ3 − aℓ1( 􏼁
2

+ bℓ3 − bℓ1( 􏼁
2

+ cℓ3 − cℓ1( 􏼁
2,

�hℓ2 �
cℓ3 − cℓ1( 􏼁

aℓ3 − aℓ1( 􏼁
2

+ bℓ3 − bℓ1( 􏼁
2

+ cℓ3 − cℓ1( 􏼁
2.

(11)

/e saturation functions are λiℓ1,2: R
3⟶ [0, 1] ∈ R,

defined as

λiℓ1,2 �cℓ1,2,
�dℓ1,2,

�hℓ1,2􏼐 􏼑 �

0, if λiℓ1,2 < 0,

λiℓ1,2, if 0≤ λiℓ1,2 ≤ 1,

1, if λiℓ1,2 > 1.

⎧⎪⎪⎨

⎪⎪⎩
(12)

/e new obstacle avoidance functions are therefore of
the form

RPiℓ(x) �
1
2

xi − Pxiℓ( 􏼁
2

+ yi − Pyiℓ( 􏼁
2

+ zi − Pziℓ( 􏼁
2

− rpi( 􏼁
2

􏽨 􏽩,

(13)

for i � 1, . . . , n and ℓ � 1, . . . , �m. /e function RPiℓ(x) is the
measure of the distance between the closest point on the
surface of the ℓth rectangular-plane-shaped obstacle and the
centre of Pi.

3.2.3. Moving Obstacles. While in motion, each moving
robot itself becomes a moving obstacle to every other mobile
robot. For Pi to avoid Pj, we consider the following
function:

MOij(x) �
1
2

xi − xj􏼐 􏼑
2

+ yi − yj􏼐 􏼑
2

+ zi − zj􏼐 􏼑
2

− rpi + rpj􏼐 􏼑
2

􏼔 􏼕,

(14)
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Figure 4: /e 3D visualization of the attractive potential fields and the analogous contour plot (50 contours) generated using the target
attractive function, equation (4). (a) 3D visualization. (b) Contour plot.
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for i, j � 1, . . . , n, i≠ j.
In a nutshell, all these components will now be incor-

porated to form a Lyapunov function, which will eventually
lead to the design of the control inputs for the robotic
system.

4. Design of the Control Inputs

In this section, we will first construct the Lyapunov function,
followed by its time derivative from which we will ultimately
extract the nonlinear control inputs for system (2).

4.1. Lyapunov Function. /e Lyapunov function, the total
potentials that guarantee target convergence and obstacle
and collision avoidance, is the sum of the attractive and
repulsive potential fields. We begin first by introducing the
control/tuning parameters:

(i) ℘i�s > 0 and �s � 1, . . . , 6, for the avoidance of the �sth
boundary of the workspace (see Section 3.2.1).

(ii) ςiℓ > 0ςiℓ > 0 and ℓ � 1, . . . , �m, for the avoidance of
the surface wall of the ℓth rectangular plane (see
Section 3.2.2).

(iii) βij > 0 and i, j � 1, . . . , n, i≠ j, for the avoidance of
the jth point-mass mobile robot (see Section 3.2.3).

Suitably combining all the attractive and repulsive po-
tential filed functions using these tuning parameters, we
define a Lyapunov function for system (2) as

L(x): � 􏽘
n

i�1
Vi(x) + Gi(x) 􏽘

6

�s�1

℘i�s
WSi�s(x)

+ 􏽘

�m

ℓ�1

ςiℓ

RPiℓ(x)
+ 􏽘

n

j�1
j≠i

βij

MOij(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)
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Figure 5:/e contour plots of the total potential fields generated in the presence of a rod-shaped and a disk-shaped obstacle. (a) Rod-shaped
obstacle. (b) Disk-shaped obstacle.
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Figure 6: Schematic of a rectangular plane.
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which is positive over the domain
D(L) � x ∈ R3n: WSi�s􏼈 (x)> 0, �s � 1, . . . , 6,RPiℓ (x)> 0,

ℓ � 1, . . . , �m andMOij (x) > 0, j � 1, . . . , n, i≠ j, i � 1,

. . . , n}.

4.2. Control Inputs. Next, we differentiate the various
components of L(x) separately with respect to t to obtain
(on suppressing x) the control inputs for system (2):

fi1 � 1 + 􏽘
6

�s�1

℘i�s
WSi�s

+ 􏽘

�m

ℓ�1

ςiℓ

RPiℓ
+ 􏽘

n

j�1
j≠i

βij

MOij
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(16)

for i � 1, . . . , n. In order to ensure stability in the sense of
Lyapunov of system (2), we define the accompanying
continuous velocity control laws as follows:

vi � −
1
αi1

fi1,

wi � −
1
αi2

fi2,

ui � −
1
αi3

fi3,

(17)

for i � 1, . . . , n. Our main theorem, given next, uses these
laws to prove the stability of our system.

5. Stability Analysis

Using the notations xei
: � (τi1, τi2, τi3) ∈ R3 and

xe: � (xe1
, . . . , xen

) ∈ R3n, we state the following theorem.

Theorem 1. A stable equilibrium point of system (2) is
xe ∈ D(L(x)).
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Proof. Since the Lyapunov function L(x) of system (2) is
defined, continuous and positive over the domain D(L) �

x ∈ R3n: WSi�s(x)> 0, �s � 1, . . . , 6,RPiℓ(x), ℓ � 1, . . . , �m􏼈

and MOij(x)> 0, j � 1, . . . , n, i≠ j, i � 1, . . . , n}, it can
easily be verified that L(x) satisfies the following properties:

(1) L(x) is continuous in the region D in the neigh-
borhood of the point xe of system (2)

(2) L(xe) � 0
(3) L(x)> 0, ∀x ∈ D((L(x))/xe)

/en, along a solution of system (2), we have

_L(1)(x) � 􏽘
n

i�1
fi1 _xi + fi2 _yi + fi3 _zi􏽨 􏽩. (18)

Using (17), we have the following time derivative of L(x)

seminegative definite function for system (2):

_L(1)(x) � − 􏽘
n

i�1
αi1v

2
i + αi2w

2
i + αi3u

2
i􏽨 􏽩≤ 0. (19)

/erefore, _L(1)(x) ≤ 0, ∀x ∈ D(L(x)) and _L(1)(xe) � 0.
Moreover L(x) ∈ C1(D(L(x))); hence, for system (2), L(x)

is classified as its Lyapunov function and xe is a stable
equilibrium point.

Furthermore, with the design of the new controllers and
the stability analysed for the robotic system, the effectiveness
of the control scheme is verified using computer
simulations. □

6. Simulation Results

/e three situations given in this section capture realistic
situations to illustrate the adequacy, effectiveness, and ro-
bustness of the velocity-based controllers and the control
scheme. In the following scenarios, the data use international
units in the sense that parameters are unitless whereas the
times can be treated consistently. For instance, the units of
time can follow the international units like seconds or
minutes and the distance can be in centimeters or meters.

6.1. Scenario 1. In this scenario, we consider a simple setup
where Pi navigates itself from its initial position to its
predefined target in the presence of a fixed rectangular-
plane obstacle. /ere are 3 point-mass mobile robots and a
rectangular-plane obstacle. Each of the point-mass mobile
robots avoids each other as well as the rectangular-plane
obstacle while en route to its target. It is very interesting to
observe the proximity of the point-mass mobile robots to
the wall as it tries to evade it, exerting just enough energy
to move above the wall and converge to its targets. /e
behavior exhibited by Pi is quite intriguing as it mimics a
similar behavior that a swarm of birds exhibits while the
swarm approaches a wall. Figure 7(a) shows the default 3D

view and Figure 7(b) shows the top 3D view while
Figure 7(c) shows the front 3D view of the motion of the
point-mass mobile robots. /e obstacle has transparency
to allow us to view the position and path of Pi. /e blue
sphere represents the motion of Pi at t � 0 unit of time,
red sphere at t � 700 units of time, green sphere at t �

3500 units of time, and purple sphere at t � 15000 units of
time. Table 1 provides all the values of the initial con-
ditions, constraints, and different parameters utilised in
the simulation.

6.2. Scenario 2. Here we model rectangular towers, which
could represent tall buildings in cities. /ese towers, con-
structed with 15 planes, block the path of a swarm of 5 point-
mass mobile robots. /e agents are observed to start from
their initial positions and maneuver themselves to their
predefined targets, while ensuring avoidance of the towers as
well as interindividual collision avoidance. Each Pi com-
putes the shortest and a collision-free path to its destination.
Split maneuvers are observed while the robots are en route
along their paths. Such an example with multiple towers can
be used to model the obstacle avoidance capability of UAVs.
Figure 8(a) shows the default 3D view and Figure 8(b) shows
the top 3D view, while Figure 8(c) shows the front 3D view of
the motion of the point-mass mobile robots./e blue sphere
represents the motion ofPi at t � 0 unit of time, red sphere
at t � 700 units of time, green sphere at t � 3120 units of
time, and purple sphere at t � 8000 units of time. Table 2
provides all the values of the initial conditions, constraints,
and different parameters utilised in the simulation, if dif-
ferent from the previous scenario. For the construction of
the towers, the reader is referred to the figures for the ex-
traction of the coordinates.

6.3. Scenario 3. An interesting research domain involves
tunnel passing maneuvers. In this scenario, there are 3
point-mass mobile robots and we design tunnels using
rectangular planes. We use 8 rectangular planes to con-
struct the tunnel. In addition, the top and one of the side
views have been strategically made transparent to show
the trajectory and the position of Pi as it maneuvers
through the tunnel./e snapshots show the way the point-
mass robots strategize their motion to allow which robot
will pass through the tunnel first and how they will
converge to their respective predefined targets. Drones
could be deployed in areas that are deemed to be “dull,
dirty, and dangerous” as well as “difficult” such as that of
collapsed tunnel passages to capture, store, check, and
send data for analysis. Figure 8(a) shows the default 3D
view and Figure 8(b) shows the top 3D view while
Figure 8(c) shows the front 3D view of the motion of the
point-mass mobile robots. /e blue sphere represents the
motion of Pi at t � 0 unit of time, red sphere at t � 550
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units of time, green sphere at t � 2110 units of time, and
purple sphere at t � 8000 units of time. Table 3 provides all
the values of the initial conditions, constraints, and dif-
ferent parameters utilised in the simulation, if different

from the previous scenario./e evolution of the Lyapunov
function and its time derivative together with its control
inputs along the trajectories are depicted in Figure 9,
respectively.

0
50

50

20

40

60

0

100

100
Z1

Z 2

Z3

150

200

(a)

50

0

100

Z2

Z3

0 50 100
Z1

150 200

(b)

20

0

40

60

Z2

Z3

Z1
0 50 100 150 200

(c)

Figure 7: Scenario 1. /e different viewpoints of Pi while it is in motion to its target with one rectangular-plane obstacle. (a) Default 3D
motion view. (b) Top 3D motion view. (c) Front 3D motion view.

Table 1: Scenario 1. /e parameters utilised in the numerical simulation. /ere are 3 point-mass mobile robots (n � 3) and 1 rectangular-
plane obstacle (m � t1).

Description Value
Initial state of the point-mass mobile robots

Workspace η1 � 200, η2 � 100, η3 � 75

Initial position, radius
(x1, y1, z1) � (10, 80, 20), rp1 � 2
(x2, y2, z2) � (10, 20, 20), rp2 � 2
(x3, y3, z3) � (20, 50, 20), rp3 � 2

Constraints

Target centre, radius
(τ11, τ12, τ13) � (190, 20, 60), rτ1 � 1
(τ21, τ22, τ23) � (190, 80, 60), rτ2 � 1
(τ31, τ32, τ33) � (190, 50, 60), rτ3 � 1

Rectangular plane
(a11, b11, c11) � (100, 0, 0)

(a22, b22, c21) � (100, 0, 55)

(a33, b33, c31) � (100, 100, 0)

Control and convergence parameters
Avoidance of workspace ℘is � 50 for i � 1, 2, 3 and s � 1, . . . , 6
Avoidance of rectangular plane ςiℓ � 0.1 for i � 1, 2, 3i � 1, 2, 3 and ℓ � 1
Interindividual collision avoidance βij � 20 for i � j � 1, 2, 3 and j≠ i

Convergence αi1 � αi2 � αi3 � 0.001 for i � 1, 2, 3
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Figure 8: Scenario 2. /e different viewpoints ofPi while it is in motion to its target with towers constructed from the rectangular planes.
(a) Default 3D motion view. (b) Top 3D motion view. (c) Front 3D motion view.

Table 2: Scenario 2. /e parameters utilised in the numerical simulation, with n � 3 and m � 15.

Description Value
Initial state of the point-mass mobile robots

Initial position, radius
(x3, y3, z3) � (10, 50, 40), rp3 � 2
(x4, y4, z4) � (10, 70, 40), rp3 � 2
((x5, y5, z5) � (10, 30, 40), rp3 � 2

Constraints

Target centre, radius
(τ31, τ32, τ33) � (190, 70, 40), rτ3 � 1
(τ41, τ42, τ43) � (190, 40, 40), rτ3 � 1
(τ51, τ52, τ53) � (190, 50, 40), rτ3 � 1

Control and convergence parameters
Avoidance of workspace ℘is � 20 for i � 1, . . . , 5i � 1, . . . , 5 and s � 1, . . . , 6
Avoidance of rectangular plane ςiℓ � 0.5, for i � 1, . . . , 5 and ℓ � 1, . . . , 15
Interindividual collision avoidance βij � 5 for i � j � 1, . . . , 5 and j≠ i

Table 3: Scenario 3. /e parameters utilised in the numerical simulation, with n � 3 and m � 8.

Description Value
Initial state of the point-mass mobile robots

Initial position, radius
(x1, y1, z1) � (10, 70, 65), rp1 � 2
(x2, y2, z2) � (10, 10, 10), rp2 � 2
(x3, y3, z3) � (10, 50, 40), rp3 � 2

Constraints

Target centre, radius
(τ11, τ12, τ13) � (150, 30, 20), rτ1 � 1
(τ21, τ22, τ23) � (160, 80, 60), rτ2 � 1
(τ31, τ32, τ33) � (180, 50, 40), rτ3 � 1

Control and convergence parameters
Avoidance of workspace ℘is � 10 for i � 1, 2, 3i � 1, 2, 3 and s � 1, . . . , 6
Avoidance of rectangular plane ςiℓ � 5 for i � 1, 2, 3i � 1, 2, 3 and ℓ � 1, . . . , 8
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Figure 9: Scenario 3./e evolutionary behavior of the Lyapunov function, its time derivative, and its control inputs along the trajectories of
Figure 10. (a) Lyapunov function. (b) Lyapunov function time derivative. (c) Controllers.
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Figure 10: Scenario 3./e different viewpoints ofPi while it is in motion to its target with tunnel passingmaneuvers. (a) Default 3Dmotion
view. (b) Top 3D motion view. (c) Front 3D motion view.
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Interestingly, the behavior exhibited in this scenario can
be seen in nature, namely, the leader-follower strategy,
where the leader guides the followers to food sources, safety,
and so on. We note that the leader-follower strategy, co-
operative hunting, and avoidance in the military are drone-
based applications considered common nowadays.

7. Conclusions and Future Work

Mathematical modelling and the design of motion planners
for robotic systems are a complex, computationally ex-
pensive yet a fascinating research area. In this paper, the
LbCS was applied to derive a set of robust, unique con-
tinuous time-invariant velocity-based control inputs that
effectively handle the problem of MPC of point-mass mobile
robots in a dynamic environment that, for the absolute first
time, incorporates rectangular-plane obstacles. /e con-
vergence of the mobile robots to a neighborhood of a
predefined target is ensured by the Lyapunov direct method.
/e effectiveness and robustness of the control scheme were
illustrated via computer simulation of virtual scenarios that
depicts real-life situations.

To the authors’ knowledge, this is the first time in lit-
erature whereby the MDT was used to derive the mathe-
matical functions for the successful avoidance of
rectangular-plane-shaped obstacles. /e introduction of the
rectangular-plane obstacle into the MPC problem has cre-
ated new dimensions and potentials for research. /e ad-
vantages of the MDT are numerous such as making it
possible for plane-shaped (and other irregular) obstacles to
be treated within the motion planners, help in simplifying
collision-avoidance algorithms, and permit maximum free-
space for the robots traversing the workspace.

/is work paves the way for numerous future directions.
Our principal objective is to extend the rectangular-plane
obstacles in a workspace for the MPC of a flock of quad-
rotors performing hovering maneuvers and undergoing
split-and-rejoin maneuvers when encountered with towers
and tunnels.
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