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Abstract—This paper presents a data driven approach where 
at first the most significant features of the three phase current 
signal are analyzed and then a Curvilinear Component based 
analysis (CCA), which is a nonlinear manifold learning technique, 
is performed to compress and interpret the feature behaviour. 
Finally, a multi-layer perceptron network is used to develop a 
classifier. The effectiveness of the developed model is verified 
experimentally with data provided on-line and in real-time. 
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I. INTRODUCTION 
In recent years, research in the area of electrical machines 

and drives maintenance and diagnosis has experienced a breath-
taking dynamism. This has been due to their incorporation into 
an endless number of industrial processes and applications. 
Indeed, extensive use of electrical motors and generators, whose 
possible failures may lead to serious repercussions in monetary 
terms (repair costs and shutdowns) as well as other less tangible 
factors have drawn the attention of industry to this topic.  

Electric motors have been connected to our lives on a daily 
basis. Some examples of these are: manufacturing systems, air 
transportations, ground transportations, building air-conditioner 
systems, home energy conversion systems, various cooling 
systems in electrical devices, and even cell phone vibration 
systems. According to authors of [1-3], the quantity of working 
machines in the world was expected to be around 16.1 billion in 
2011, with a rapid development of 50% in the preceding five 
years.  Among these machines, induction motors (IM) are the 
most common ones and are widely used in the industry. They are 
reliable in operations, yet are liable to various sorts of 
undesirable faults.  

With reference to the statistics available from IEEE and 
EPRI for motor faults [4-6], the majority of faults associated are 
from the IMs. It contributes to 80% of the failed components and 
also tops all the categories under the failed components. This 
also compares with the surveys included in [7-11] and the 
statistics from EPRI [6] (see Table I). 

Correct determination and early identification of incipient 
faults results in quick maintenance and short downtime for the 
process under consideration. It also avoids harmful, yet 
devastating outcomes and reduces financial loss. A perfect 
analytic system must be able to extract minimum amount of 
measurement from a machine and by investigation, extricate a 

correct diagnosis, so that its condition can be inferred to give a 
clear indication of the incipient fault in a short amount of time. 

TABLE I.  FAULT COMPARISON 

IEEE Working Group 
[4] 

EPRI [6] References [7-11] 

44% bearing 41% bearing 40% bearing 
26% winding 37% winding/stator 

related 
38% stator related 

8% rotor/shaft/coupling 10% rotor related 10% rotor related 

 A brief survey of diagnostic systems starts with the prevalent 
motor current signature analysis (MCSA) taking into account the 
spectrum analysis of the stator current, which is effective for 
electrical machines working at both steady speed and rated load. 
Transient conditions are also essential, and a couple of 
methodologies have been proposed to deal with faults in this this 
situation [12-15]. In addition, various MCSA-based 
methodologies have been proposed to detect some types of 
interior mechanical failures like broken rotor bar faults, bearing 
faults, and mechanical unbalanced rotor faults. Identification of 
stator voltage unbalances and other phase impacts utilizing 
digital signal processing strategies haves been described in some 
MCSA-based methodologies. 

 Most of fault diagnosis schemes developed about three 
decades back, utilized the Fast Fourier Transform (FFT) as a 
base technique for the analysis of motor current or vibration 
signature. In any case, FFT presents a few weaknesses like 
masking of characteristic frequencies by supply frequency, 
inaccuracy for transient signals, and so on. To address these 
drawbacks, several new techniques can be utilized. 

 Over the last few years, there has been an ever increasing 
attention to new approaches in the area of FD and Condition 
Monitoring (CM). The majority of these new schemes adopt 
methods which are oriented towards Artificial Intelligence (AI). 
A generic AI scheme is based on a data driven approach which 
involves pre-historic or stored data, feature calculation and 
extraction by means of signal processing and dimensionality 
reduction techniques, respectively, as well as a classification 
system to define the healthy state of the machine under 
consideration.  

 In such cases, feature calculation and extraction play a major 
role in enhancing the overall system accuracy. Various 
characteristic features are used in FD and CM for IMs. Some of 
the important ones are: statistical time and frequency domain 
features [16], envelope of the signal using Hilbert transform 
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[17], harmonic retrieval using non-parametric and parametric 
methods [18], energy and kurtosis  [19] of the signal, and 
cepstrum of the signal [18]. Some of these features can be used 
to denote abrupt changes in the signal. The significance of these 
features entirely depend on the nature of fault incurred in the IM. 
In general, it is not a good practice to use a high number of 
feature set because this often results in overfitting of the 
classifier and may cause serious errors upon identification of 
fault. 

 While it is difficult to point out exactly which feature is 
correctly able to demonstrate anomalies in the signal, a common 
practice is to make use of dimensionality reduction (DR) 
techniques. Principal Component Analysis (PCA) and its neural 
variants are commonly used for DR due to its speed and 
simplicity, however, they are limited by the fact that they are 
linear. Actually, the DR techniques can be divided into two 
groups which are: linear and non-linear. While the latter are in 
general slower, they are much more accurate than the former 
ones in real world applications [20]. The possibility of using DR 
technique working in real time is quite essential due to the fact 
that it not only allows a batch of data to be projected fast, but 
also permits non-stationary data to be tracked. This mechanism 
can be applied to the majority of real time pattern recognition 
applications, where feature reduction plays an important role. 

 In the above paragraphs, the non-linear DR techniques has 
been said to be unsuitable for online applications. While many 
efforts have been made in order to speed up these algorithms: 
which involves updating of graphs, new prediction of data and 
embedding updating, these (e.g. iterative LLE, [21]) have proved 
to be cumbersome from a computational point of view. Thus, 
these limitations exert a demanding burden on the processing 
unit which slows down the entire process and makes the 
algorithm useless for real time applications. However, Neural 
networks (NN) can be also used for data projection. In general, 
they are trained offline and used in real time (recall phase). In 
this case, they work only for stationary data and can be better 
considered as implicit models of the embedding. Example of 
such NN’s are the Self-Organizing Maps (SOM) [22] and their 
variants [23, 24].  

 In this work, two major faults will be studied. These are: 
stator inter-turn fault (SITF) and broken rotor bar fault (BRBF). 
Both of these types of faults are critical and evolve over time 
which gives rise to the non-stationary signals. The FD is carried 
out by analysing only the stator current spectrum and observing 
changes with respect to the spectrum of a healthy IM. The 
proposed scheme (Fig. 1) presents a data driven approach where 
all possibilities of the SITF and BRBF for IM under 
consideration have been studied (possibilities such as varying 
load, speed, slip). A novel real time classification has been 
developed by means of a non-linear fast projection technique 
based on Curvilinear Component Analysis (CCA) [25] and a 
Multi-Layer Perceptron (MLP) network [26]. 

 The rest of the paper is organized as follows: Fault diagnosis 
methodology according to the proposed scheme is discussed in 
Section II, which also outlines the diagnostic features based on 
statistical features of stator current and the key ideas for feature 
calculation and extraction using CCA. A thorough discussion of 

experimental result is carried out in Section III followed by 
concluding remarks in Section IV. 
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Fig.1. Proposed Scheme for fault classification 

II. METHODOLOGY 

A. Feature Set 
After data acquisition of the 3-phase stator current signals of 

IM, significant features are extracted. While a healthy IM is 
designed to operate in symmetrical conditions, where equal 
resistances and inductances are present in each phase winding 
and rotor bar along with the air-gap, any element of non-
uniformity may cause a specific characteristic which will persist 
at every rotation. More specifically, these asymmetry tends to be 
more visible in the frequency domain. Space Vectors [27] can be 
used as they are one of the most reliable approaches used in 
identifying faults in electrical drives. The goal is to acquire the 
direct and quadrature currents  from the 3-phase stator 
currents (  of the IM.  

  (1) 

   (2) 

  (3) 

To this aim, the following features are obtained from      
(Eq. 3), which is the norm of direct and quadrature currents  

 to build the feature-set (FS).  

 Energy of the signal 
 Kurtosis Value of the signal [19] 
 Crest Factor 
 Skewness of the signal 
 Statistical features derived from time and frequency domains 

[16] 
 Magnitudes of the prominent frequency harmonics 

Thereafter, the Curvilinear Component Analysis (CCA) is 
used to reduce the dimensionality of the data to enhance 
generalization and avoid overfitting. 

B. Dimensionality Reduction: The Curvilinear Component 
Analysis (CCA) 
The CCA is one of the most powerful nonlinear DR 

technique. Actually it is derived from Sammon’s mapping [28] 
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which proves its superiority in terms of data unfolding and 
extrapolation. It performs the quantization of the input space 
(training dataset) and projects it nonlinearly into a latent space 
(reduced dimension of the training dataset). Two weights are 
attached to each neuron. The first neuron has the dimensionality 
of the input space (dimension of training data, ) and the second 
one has a reduced dimension (dimensionality of the data in the 
latent space, ). 

The concept is as follows: for every pair of feature vectors in 
the original feature space (input space), an inter-point distance 

 is computed. The prime objective is to preserve 
these distances between the same points in the reduced feature 
space (latent space) which is given by , formed 
by reduced set of features.  

To constraint the distance  of the associated  weights in 
the latent space to be equal to , the CCA defines a distance 
function (4), with a threshold , in order to determine short and 
long distances between feature vectors in the input space. In this 
way CCA allows matching for short distances, in a way 
respecting the local topology. The choice of , which determines 
the radius of the influence depends entirely on the data. In 
general, it is defined as three times the standard deviation of the 
of the feature set.  

 

Equation 4 is a step function which limits only the under 
threshold inter-point distances . For each pair  of  
neurons, the CCA cost function is given by: 

 

 Defining  as the weight of the  projecting neuron, the 
stochastic gradient algorithm for minimizing (5) is given by: 

 

where  is the learning rate. In this case, the longer distances are 
penalized and its asymmetry allows better unfolding of data. The 
global position of the projected map in the latent space will vary 
at every iteration whilst exhibiting the same topology throughout 
the course revealing that the CCA projection is not invariant.  

 Once the intrinsic dimensionality of the feature set has been 
correctly identified, it can be verified to what degree of mapping 
has occurred by using the dy-dx diagram. It is the plot of the 
distances of samples in the latent space (dy) versus the distances 
of corresponding samples in the data space (dx). In this scenario, 
it acts as a tool for the detection and analysis of nonlinearities. If 
the output and input space have the same dimension, then all the 
output inter-point distances,  are equal to input inter-point 
distances, . Therefore, the joint distribution of input and 
output distances will lie along the bisector (dy=dx) as a 
consequence. 

 Generally, CCA is often used as a DR tool, in most cases, the 
output space is lower than that of the input. A “good mapping” 

is when: there is unfolding for large values (points lie on the 
dy>dx side of first diagonal) and a projection for small values 
(when points lie on the dy<dx side of the diagonal) [29]. If the 
distribution lies well on the diagonal, then it is possible to lower 
the dimension of the outer space, however, if the data cloud 
becomes thicker, then it implies the selected dimension size of 
the output space is too small to correctly represent the data. After 
obtaining a satisfactory output dimension value, a good practice 
is to vary the value of  to align the data cloud along the bisector. 

 The CCA proves to be an appropriate method for 
representing non-linear data representation as is the case 
explored in this paper. It proves its superiority in terms of DR in 
comparison with PCA or other linear methods because of its 
revealing curvilinear views of more strongly folded structures. 
For further details regarding CCA projection see [25]. 

C. Classification using Neural Networks 
Nowadays, Neural Networks (NN) have been used in many 

practical applications. In particular, they are more commonly 
used in system identification, prediction and classification. This 
is because they exhibit a property to learn complex non-linear 
models. The NN model is normally represented by the data 
itself. The drawback of the NNs is that it is prone to problems 
like overfitting. This should be avoided, because the NN model 
would have a good behaviours only for the data used under 
training with little generalization capability. A recommended 
practice is to partition the dataset into training, validation and 
test sets. Performing continuous validation checks upon training 
the NN model will ensure that the model does not overfit the 
training data. In this study, a multilayer perceptron (MLP) NN 
has been developed as a classifier to recognize the type of fault 
of the IM under consideration. The input of the NN classifier is 
the reduced set of features given by CCA and the output of the 
NN classifier is the class which gives the fault ID (Table II). 
Only four classes have been considered. 

TABLE II. CLASS AND FAULT ID 

Class Fault ID 
1 Healthy 
2 SITF 
3 BRBF 
4 Combination of SITF and BRBF 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Test Rig 
The experimental test rig (Fig. 2) has been constructed to 

acquire stator current signals from three identical 3-phase 
squirrel cage IMs of 1.1kW. Data is acquired for two 
configurations: a) IM connected to the grid supply and is 
subjected to various loads for the following conditions: healthy, 
SITF, BRBF and combination of SITF and BRBF. b) IM is 
supplied by a SEMIKRON IGBT Voltage Source Inverter 
(VSI) of 12kVA, V/f method is used as a control scheme for the 
same conditions as in a). The stator currents are acquired using 
the LEM (LA 55-P) current transducers coupled to a DS1104 
card (dSPACE). Parameters of the IMs  are identical and are 
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shown in Table III (procedure adopted from [30]). The SITF is 
introduced by employing a variable power resistor connected in 
parallel to one of the stator phases. In this study, it occurs in 
phase C of the IM and the severity of the fault ranges from 0% 
to 10%. For BRBF, a CNC machine has been used to drill holes 
on the rotor bar. 

TABLE III. PARAMETERS OF THE SQUIRREL CAGE IM 

No. poles 4
Supply Frequency 50  
Stator Resistance 3.6760  
Rotor Resistance 3.8270  
Stator Leakage  Inductance 0.0268  
Rotor Leakage Inductance 0.0400  
Magnetizing Inductance 0.4490  
Moment of Inertia 0.0059  

 

 
Fig. 2. Experimental Test Rig 

 
B. Feature Selection and Manifold Analysis 

In order to make up the FS for a four class problem, the 3-
phase stator current signals were divided into equal segments. 
Then, using (1) – (3), Space Vector currents were obtained along 
with its magnitude. For every segment, features described in Part 
A of Section II are calculated. The FS comprised of 5345 
observations with 33 features in total. For both healthy and faulty 
conditions, 70% of the data was used for training and validation, 
and 30% for the test set.  

While too many features would cause overfitting or may 
prove difficulty in learning the data manifold when training the 
classifier, a pre-processing step becomes necessary to reduce 
dimensionality of the FS. The intrinsic dimensionality of the FS 
can be estimated using [31, 32]. From Table IV the estimated 
intrinsic dimensionality of the FS using a comparative approach, 
ranges in between 6 and 7. 

TABLE IV.  INTRINSIC DIMENSIONALITY OF THE FS 

Method [31, 32] Intrinsic 
dimensionality: 
(Healthy, SITF and 
BRBF) 

Intrinsic 
dimensionality: 
(Healthy, SITF and 
BRBF, Combined 
SITF & BRBF) 

Maximum 
Likelihood estimator 
(MLE) 

6 6 

PCA eigenvalues 6 7 
Nearest Neighbour -0.06 -0.06 

 As a result, all the above stated dimensions including 8 are 
studied to confirm the best dimensionality of the FS which 
consists data for healthy and all types of faults for the IM. The 
CCA approach is used in an original way, creating three different 
reduced FS of dimensions: 6,7 and 8. The analysis for each 
reduced FS is carried out by visualizing its corresponding dy-dx 
diagrams. It must be noted that prior to DR using CCA, the FS 
is normalized to retain an overall generalization property. 
Figures 3-5 represent the dy-dx diagrams for each reduced FS 
with their best CCA  parameter.  

 
Fig. 3. dy-dx plot of reduced FS of dimension 6 

 
Fig. 4. dy-dx plot of reduced FS of dimension 7 

 
Fig. 5. dy-dx plot of reduced FS of dimension 8 
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 Upon comparison of the plots above, it can be noticed that 
the dimension of 6 is ranked below others. This is due to the fact 
that it has a thicker cloud of data which moves out towards the 
dx line even at its best value of  (see bending of data cloud in 
Fig. 3). Generally, the more the deviation of data cloud with 
respect to the bisector, the more nonlinear the manifold is, 
implying that the selected dimension is lower and it needs to be 
increased. Hence, it can be inferred that the intrinsic 
dimensionality of the original FS is between 7 and 8.  

 To select appropriate dimension of the original FS, the data 
cloud in the dy-dx diagram for dimensions 7 and 8 is zoomed and 
inspected to see if there are any major deviation from the bisector 
and any differences between the two plots (Figs. 6-7) 

 
Fig. 6. dy-dx plot of reduced FS of dimension 7 (zoomed version) 

 
Fig. 7. dy-dx plot of reduced FS of dimension 8 (zoomed version) 

Considering Table IV, Figs. 3-5 (intra and inter class 
distances) and the zoomed versions of dy-dx plots (Figs. 6-7), the 
best choice for dimensionality of the FS can be stated as 7. This 
is because the dy-dx plots for dimension of 7 and 8 are very much 
similar. Referring to Fig. 4, the dy-dx plot after projecting the 
training set to the reduced dimension space via CCA reveals that 
while the manifold is slightly nonlinear (proportional to the point 
thickness around the bisector near the origin), the cluster of 
points close to origin (intra-class distances) and the presence of 
two distinct clusters (inter-class distances) show the existence of 
at least three manifolds in the feature space, which are related to 
the classes. The same can be said for the reduced FS of 
dimension 8 (Fig. 5 in this case). Thus, this justifies the choice 
of selecting 7 as the final intrinsic dimension of the FS. Figure 8 
gives a 3D interpretation of the first three CCA components of 

the reduced dimension space. Indeed, there’s is not much overlap 
between the clusters. 

 
Fig. 8. Visualization of the first three CCA components of the 7 dimensional 
reduced space 

C. Classification using MLP NN 
After the DR step, a MLP NN is trained. As this is a pattern 

recognition problem, for classification of the type of fault, 
various choices of the number of neurons in the hidden layer 
have been tried. The final MLP model has 141 neurons in the 
hidden layer. The output of the network consists of softmax 
transfer functions [33] which output both class, new 
observations and the corresponding probability. The training 
algorithm for the network is based on the scaled conjugate 
gradient technique [34] and the performance of the network is 
consistently calculated by the cross entropy error function [26]. 
The results in form of the confusion matrix of the training data 
and the test data are given in Figs. 9 and 10, respectively. Note 
the class labels and its corresponding fault ID (Table II). 

 
Fig. 9. Confusion Matrix for the training set 

 It must be noted that the above results have been obtained on 
an online basis. Starting from acquisition of the 3-phase stator 
current signal to calculation of features, the pre-trained CCA 
network is used to project each segmented data (dimensionality 
same as the original FS) to a lower dimension space to make the 
reduced FS classifier compliant. Classification is finally carried 
out by MLP NN. 
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4
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1
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5
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28.1%
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11.0%
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Fig. 10. Confusion matrix for the test set 
 

IV. CONCLUSION 

Using the proposed methodology, classification of stator and 
rotor related faults can be achieved at varying slips on an online 
basis. The 3-phase stator current signal reveals a vast amount of 
information on the performance of the IM. This is useful for 
detecting and classifying different kinds of faults incurred in the 
IM. Using Space Vectors, the 3-phase currents are reduced to 
direct and quadrature currents and finally combined using the 
modulus of both . Then, the features of the signals which 
refer to statistical properties of the time and frequency domains 
are calculated. Thereafter, CCA is used to project the original FS 
into a reduced dimension space (based on the intrinsic 
dimensionality of the original FS). Finally, MLP NNs are trained 
and the best configuration which is based on lower cross entropy 
error and higher validation accuracy is chosen. Following the 
scheme of Fig. 1, the whole process (starting from acquiring 3-
phase current signals to classification) was carried out by using 
the pre-trained sets of CCA projection and the MLP based 
classifier. The overall classification accuracies show 95.2% and 
94.6% for training and test sets, respectively. 
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