
The Art-of-Hyper-Parameter Optimization with

Desirable Feature Selection

Optimizing for Multiple Objectives: Ransomware Anomaly Detection
.

Priynka Sharma, Kaylash Chaudhary, and M.G.M Khan
 School of Computing, Information and Mathematical Sciences,

University of the South Pacific, Suva, Fiji.

priynka.sharma@usp.ac.fj, kaylash.chaudhary@usp.ac.fj, mgm.khan@usp.ac.fj

Abstract. The development of cyber-attacks carried out with ransomware has

become increasingly refined in practically all systems. Attacks with pioneering

ransomware have the best complexities, which makes them considerably harder

to identify. The radical ransomware can obfuscate much of these traces through

mechanisms, such as metamorphic engines. Therefore, predictions and detection

of malware have become a substantial test for ransomware analysis. Numerous

Machine Learning (ML) algorithm exists; considering each algorithm's Hyper-

parameter (HP) just as feature selection strategies, there exist a huge number of

potential options. This way, we deliberate more about the issue of simultaneously

choosing a learning algorithm and setting its HPs, going past work that tends to

address the issues in isolation. We show this issue determined by a completely

automated approach, utilizing ongoing developments in ML optimizations. We

also show that modifying the information preprocessing brings about more sig-

nificant progress towards better classification recalls.

Keywords: HP, Feature Selection, Optimization, Ransomware, ML classifica-

tion algorithms, Data imbalance.

1 Introduction

The earlier decade has seen a detonation of ML exploration besides applications;

particularly, deep learning strategies have empowered key advances in numerous ap-

plication areas, for example, computer vision, speech processing, and game-playing [1].

In any case, the performance of numerous ML strategies is exceptionally delicate to a

plethora of design decisions, which establishes an extensive obstruction for new users.

This is especially valid in the booming field of deep learning, where designers’ requisite

to choose the right models, formulating approaches in addition to tuning HPs of these

segments with sufficient executions [1, 3]. Although, this procedure only needs to re-

hash for individual applications. Even experts are frequently left with monotonous acts

of experimentation until they recognize a decent arrangement of decisions for a specific

dataset. The field of automated ML (AutoML) plans to settle on choices that are based

https://www.usp.ac.fj/index.php?id=scims
mailto:priynka.sharma@usp.ac.fj
mailto:kaylash.chaudhary@usp.ac.fj
mailto:mgm.khan@usp.ac.fj

2

on information-driven and objectives in an automated way [3]. AutoML makes state-

of-the-art ML approaches available to domain researchers who are keen on applying

ML yet do not have enough assets to realize the advancements in detail. However, the

best-performing models for some modern applications of ML are getting bigger and in

this way more computationally costly to organize. Therefore, authorities want to set as

many HPs automatically as expected under any circumstances. A vast assortment of

learning strategies exists, extending from artificially invigorated neural systems [1, 3]

over kernel techniques to ensemble models [1, 11]. A typical attribute in these tech-

niques is parameterization by a lot of HPs λ, which is set appropriately by the user to

intensify the usefulness of the learning approaches. HPs are to design different parts of

the ML learning algorithms and can have uncontrollably fluctuating consequences for

the subsequent model and the situation demo levels [4, 5].

HP combs are usually performed manually, through dependable guidelines, or by

testing sets of HPs on a predefined lattice [6]. Automating HP search is accepting total

measures of consideration in machine learning, for example using benchmarking suites

in addition to different activities. Automated methodologies previously appeared to out-

flank manual searches through authorities on a few subjects [5]. The limitations call for

practical answers for the HPOs enhancement that satisfies numerous desiderata. Con-

sequently, choosing the best arrangement of HP values for an ML model yielding di-

rectly with performance level. Although there exist several automatic optimization

methods, yet these usually take significant resources, increasing the dynamic complex-

ity to obtain a vast level of accuracy rate. HPO finds a tuple of HPs that yields an opti-

mal model that minimizes a predefined loss function on given independent data [5].

The objective function takes a tuple of HPs and returns the associated loss. Cross-

validation is often used to estimate this generalization for performances [5].

Our research displays a review of the quick-moving field of AutoML and precision

optimization in the ML algorithm through HP tuning. This curiosity will, in the long

run, lead to an ideal isolating hyper-plane realistic in both linear and non-linear classi-

fication problems towards ransomware anomaly detection.

1.1 Hyper-parameter Optimization (HPO)

In machine learning, model parameters are the properties of training information that

will learn without a person during training by the classifiers. Model HPs are valued in

ML models that can require various imperatives, loads, or learning rates to produce

various information patterns, for example, the number of neighbors in K-Nearest

Neighbors (KNN). HPs are significant by the fact that they legitimately control the

practices of the training algorithms and influence the presentation of the models pre-

pared. Selecting appropriate HPs undertakes a basic effort in the performance levels of

ML models. HPs improvement is the way forward for a perfect model recognition [7,

8]. Reasonably, HPs tuning is only to streamline over model learning to locate the pro-

cedure in prompting the least error on the approval set. Therefore, HPs are the only

3

knobs that can tune when as-assembling the appropriate ML algorithm model for anom-

aly detection or to any application as in Figure 1.

Figure 1. Highlights the model logic in any ML tuned environment. It shows the

logical scheme and confirms on the calculation that Model design added with HP of

individual parameters results in enhanced model parameters.

Fig 1: Momentary Portrayal of the HP Scheme.

Following [8], HP λp is restrictive on another HP λi, if λp it is dynamic and HP λj

takes in approvals from a given set VP (I) ⊆ ∧i, then we call λi the parent of λp. However,

the restrictive HPs on the other hand can only be guardians of other dependent HPs,

contributing to rising to a tree-organized space otherwise, sometimes, referred to as a

directed acyclic graph (DAG) [2, 9]. The objective of HP improvement is to decide the

HPs λ*optimizing hypothetical execution of Aλ∗ depends on a restricted measure of

training information does = {(x1, y1) . . . (Xn, yn)}. Hypothetical execution is approxi-

mated by parting into split training, and approval sets (Ds (p) train and (p) valid). The learning

volumes can be applied by Aλ∗ to Ds (p) train and assessing the presentation of these vol-

umes on Ds (p) valid. This permits the HPs improvement into subject composed as:

𝐶(𝜆) =
1

𝑘
∑ 𝑙(

𝑘

𝑃=1
 Aλ, Ds (p) train, Ds (p) valid) (1)

𝜆* 𝜖
𝑎𝑟𝑔𝑚𝑖𝑛

𝜆𝜖⋀
 𝑐(𝜆) (2)

1.2 Model Selection

In model selection accountabilities, we attempt to locate the correct coherence

among prediction and estimation of errors. If our learning algorithm ignores to discover

an indicator with a little threat, it is imperative to understand over-fitting or under-fit-

ting.

Under-fitting: The classifier learned on the training set is not sensitive enough to

account for the data provided. In this case, both the training error and the test error will

4

be high, as the classifier does not account for relevant information present in the train-

ing set.

Over-fitting: The classifier learned on the training set is too specific, and cannot be

used to infer anything about unseen data accurately. Although training error continues

to decrease over time, test error will begin to increase again as the classifier begins to

make decisions based on patterns that exist only in the training set and not in the broader

distribution.

The over-fitting and under-fitting will result in poor performance in any given

model. Therefore, to refrain from these problems during an analysis phase of an ML

model it is vital to follow a technique out from the given four techniques as depicted in

Figure 2.

Fig 2. Model Selection Approaches.

K-fold Cross-Validation (Selected Method)

In specific applications, information is rare, and we would prefer not to "misuse"

information on validation. The k-overlap, cross-validation methods intended to give

a precise gauge of the genuine error without squandering an excessive amount of

information. In k-overlap cross-validation, the first training set is parceled into k

subsets (folds) of size m/k (for straightforwardness, expect that m/k is a number).

For each fold, the algorithm prepares for a connection with different overlays thus

the error is achieved through overlays. However, K-overlap, cross-validation is often

applied for model selection (or parameter tuning).

1.3 The Common Optimization Strategy

A typical optimization procedure defines the possible set of hyper-parameters and

the metric to be maximized or minimized for a given problem. Hence, in practice, any

optimization procedure follows these classical steps as depicted in Figure 3.

5

Fig 3: Illustrates an Optimization Strategy.

2 Result and Discussion

The experiment dataset was downloaded from VirusShare4, a website that keeps
up a continuously updated database of malware for a few [10]. Table 1. Below reports
the full list of ransomware families utilized in our research. To analyze the samples, the
initial researches used Cuckoo Sandbox to automate the analysis.

Table 1: Data Description for Experiment Test set.

Data set Selected Attributes

Name: Ransomware Missing: 0% Distinct: 12 Unique: 0%

Type: Nominal

Data set Ransomware Anomaly Detection

Features Instances Class

Selected Attribute 16382 1524 12

After Feature Selection 14631 992 Samples Used

0 942.0 wt. Goodware

1 50.0 wt. Critroni

2 107.0 wt. CryptLocker

3 46.0 wt. CryptoWall

4 25.0 wt. Kollah

5 64.0 wt. Kovter

6 97.0 wt. Locker

6

7 59.0 wt. Matsnu

8 4.0 wt. PGPCoder

9 90.0 wt. Reveton

10 6.0 wt. TeslaCrypt

11 34.0 wt. Trojan-Ransom

To achieve the objective of this research, the classification methods on ransomware

detection datasets were applied, through the WEKA environment. WEKA is an infor-

mation mining structure made by the University of Waikato in New Zealand that exe-

cutes information mining algorithms working on the JAVA language [12]. WEKA is

the best state-of-the-art facility for making, ML systems, and their application to genu-

ine information mining anomalies. It comprises ML algorithms for information mining

assignments [12]. WEKA executes algorithms for information preprocessing, classifi-

cation, regression, clustering, and association rules. The new plans can similarly be

made with this pack. In particular, WEKA is an open-source application given under

General Public License [12]. The information record usually used by Weka is in the

ARFF file-group, which involves labeling to reveal different attributes in the infor-

mation file. It has many areas, all of which can be used to play out a particular work.

At the point when a dataset has been stacked, one of the various panes in the Explorer

can be applied to perform further examination.

Most Relevant Features of Each Class Used

Fig 4. Most Relevant Features of Each Class

We determined the most relevant features through the knowledge based on dataset

observation in comparison with feature evaluator and feature model as below:

Dataset Observations: Percentage of the Most Relevant Features for Each Class

Feature Evaluator (supervised, Class (nominal): 16382 Class): WEKA Information

Gain Ranking Filter

Evaluation Mode: Evaluate all training data

7

We determined from Figure 4. Above that Registry Keys and API Stats are the two

most pertinent sets, yet different sets are also useful depending on the areas in need.

Among every one of these features, several features are for ransomware comportment,

together with different features of malware behavior, prompted with an impressive de-

tection rate.

2.1 Finest Features in Descending Approach - Top Twenty

We then again managed to determine our finest features as depicted in Table 2. Table

2. Highlights, top five features ranked in descending order based on the average

weights. The finest features turn out to be considered essential when the quantity of

features is enormous. From this research, it is evident that the finest feature, giving

preferable outcomes over a complete set of features for a similar algorithm. The finest

features empower the machine learning algorithm to prepare quicker as well as lessens

the complex nature of a model and makes it simpler to interpret.

Search Method: WEKA Feature Ranking

Extracted Features: 14631

Table 2: Top Five Ranked Attributes (Feature Selection)

Ranked Attribute Abbreviation Set Id Avg. Weight

API Stat API 119 0.431262

Directory Operation DIR 14265 0.407925

Dropped File Extensions DROP 330 0.330449

File Extension FILES_EXT 11684 0.327463

API Stats API 167 0.275793

2.2 Method Obtained in Tuning ML Algorithms

There are 14631 extracted features with 1524 instances loaded. Hence, in total for

each ML algorithm, six algorithm configurations were each evaluated 50 times, or 5-

fold cross-validation (CD) multiplied by 10 repeats (R). We are going to compare each

algorithm configuration based on the percentage accuracy. All of the default configura-

tions are adjusted as per below control measures.

2.3 Discussion

The results are impressive. Ten ML algorithms were used for this research. Feature

ranking and file transformations in ARFF file were furthermore performed, with the

WEKA tool. In each model analysis, we set K=10, where K encapsulates the number

8

of base classifiers. Additionally, we took N=5 for the cross-validation and weight as-

signments independently. However, ML algorithms can be intended to motivate partic-

ular behavior. This is important since it allows the behavior of the model to be accli-

mated to the main points of our machine learning problem. In this way, one must tune

the setup of each ML algorithm to a given problem. This is as often called algorithm

tuning or algorithm HPO. For this research, we have chosen the ransomware dataset

used to assess the distinctive algorithm configurations. We have additionally included

frequent events of all ten algorithms (carried out in Weka) and each with an alternate

algorithm arrangement as portrayed in Table 3. To achieve the best outcome. The fea-

ture selection method, along with the tuning methodology, has shown an impact on the

performance level of the learned model as portrayed in Table 3.

Table 3: Tuning Test Control

ML Algorithms Common Parameter Tuning Controls

An Iteration Control Set of 10 Repeats; 5-Fold Cross-Validation

1. IBK

2. J48

3. JRip

4. Naïve Bayes

5. Part

6. Random Tree

7. Random Forest

8. SMO

9. Rep Tree

10. OneR

 Analysis for distance measure: Euclidean or Manhattan

 K-values tested for {1,3,7} for both distance measures

 Iteration control set to 10 repeats

 MinNumObj tested for {2,3,5}

 MinNumObj: 2

 NumFolds tested for {3,5,7}

 Confidence Factor: 0.25

 Optimization 2 and 5

 MinBucketSize = 6

 NumDecimalPlaces = 2

Table 4. Provides a list of WEKA algorithms with the Receiver Operating Charac-

teristic (ROC) area. Each value on ROC highlights the sensitivity in correspondence

with a particular decision threshold. The ROC curve additionally reveals the correctly

classified instances as positive values and incorrectly classified instances as a negative

value. Whereas, Kappa stats provides the correlation coefficient in our performed ex-

periment. Though the value of Kappa squared is responsible for the accurate amount of

data, due to the similarity with our data correctors. Moreover, the False Positive (FP)

in our case is in charge of depicting the number of detected ransomware anomaly values

and the True Positive (TP) reveals the instances that are effectively anticipated as nor-

mal. Finally, after several trials and tuning, we managed to achieve the improved per-

centage model accuracy performance as in Table 4.

9

Table 4: Final Results (With and without HPO)

3 Conclusion

The outcomes just indicated that Auto-WEKA is powerful at advancing it’s given

objective. Though, the amount of HPs of an ML algorithm develops and so does its

potential for overfitting. The use of cross-validation significantly increments Auto-WE-

KA's robustness against overfitting. In this work, we have presented the irresistible is-

sue of simultaneously choosing an algorithm selection in addition to HPOs that can be

settled by a completely automated tool. This is made promising by recent optimization

techniques that iteratively assemble models of the algorithm HP landscape and influ-

ences these models to distinguish new focuses on the space that requires investigation.

Auto-WEKA, which draws on the full scope of learning algorithms in WEKA and

makes it simple for non-specialists to assemble great classifiers for giving application

situations. A broad observational examination of ransomware detection datasets

10

showed that Auto-WEKA regularly beat standard algorithm selection and HPO tech-

niques, particularly on substantial data sets.

4 References

[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, "Algorithms for hyper-parameter opti-
mization," Advances in neural information processing systems, vol. 24, pp. 2546-2554,
2011.

[2] M. Shahhosseini, G. Hu, and H. Pham, "Optimizing ensemble weights and hyperparame-

ters of machine learning models for regression problems," arXiv preprint
arXiv:1908.05287, 2019.

[3] S. Falkner, A. Klein, and F. Hutter, "BOHB: Robust and efficient hyperparameter optimi-

zation at scale," arXiv preprint arXiv:1807.01774, 2018.

[4] M. Claesen, F. De Smet, J. Suykens, and B. De Moor, "EnsembleSVM: a library for en-

semble learning using support vector machines," arXiv preprint arXiv:1403.0745, 2014.

[5] M. Claesen and B. De Moor, "Hyperparameter search in machine learning," arXiv preprint

arXiv:1502.02127, 2015.

[6] F. Pedregosa et al., "Scikit-learn: Machine learning in Python," the Journal of machine
Learning research, vol. 12, pp. 2825-2830, 2011.

[7] R. G. Mantovani, T. Horváth, R. Cerri, J. Vanschoren, and A. C. de Carvalho, "Hyper-

parameter tuning of a decision tree induction algorithm," in 2016 5th Brazilian Conference
on Intelligent Systems (BRACIS), 2016: IEEE, pp. 37-42.

[8] K. Bae, "Bayesian model-based approaches with MCMC computation to some bioinfor-

matics problems," Texas A&M University, 2005.

[9] H. J. Escalante, M. Montes, and L. E. Sucar, "Particle swarm model selection," Journal of

Machine Learning Research, vol. 10, no. 2, 2009.

[10] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, "Automated dynamic anal-

ysis of ransomware: Benefits, limitations and use for detection," arXiv preprint
arXiv:1609.03020, 2016.

[11] L. Breiman, J. Friedman, and R. Olshen, "Classification and regression trees Routledge,"
2017.

[12] S. R. Garner, "Weka: The waikato environment for knowledge analysis," in Proceedings

of the New Zealand computer science research students conference, 1995, vol. 1995, pp.
57-64.

[13] S. Alsoghyer and I. Almomani, "Ransomware Detection System for Android Applica-
tions," Electronics, vol. 8, no. 8, p. 868, 2019.

