2021 International Joint Conference on Neural Networks (IICNN) | 978-1-6654-3900-8/21/$31.00 ©2021 |EEE | DOI: 10.1109/1JCNN52387.2021.9533359

A Strategic Weight Refinement Maneuver for
Convolutional Neural Networks

1% Patrick Sharma

28 Adarsh Karan Sharma

School of Computing,Information and Mathematical Sciences School of Computing, Information and Mathematical Sciences

Faculty of Science, Technology and Environment
The University of the South Pacific
Suva, Fiji
patricksharma610@ gmail.com

3" Dinesh Kumar

Faculty of Science, Technology and Environment
The University of the South Pacific
Suva, Fiji
adarsh.karan18 @ gmail.com

4™ Anuraganand Sharma

School of Computing,Information and Mathematical Sciences School of Computing, Information and Mathematical Sciences

Faculty of Science, Technology and Environment
The University of the South Pacific
Suva, Fiji
kumar_di@usp.ac.fj

Abstract—Stochastic Gradient Descent algorithms (SGD) re-
main a popular optimizer for deep learning networks and have
been increasingly used in applications involving large datasets
producing promising results. SGD approximates the gradient
on a small subset of training examples, randomly selected in
every iteration during network training. This randomness leads
to the selection of an inconsistent order of training examples
resulting in ambiguous values to solve the cost function. This
paper applies Guided Stochastic Gradient Descent (GSGD) —
a variant of SGD in deep learning neural networks. GSGD
minimizes the training loss and maximizes the classification
accuracy by overcoming the inconsistent order of data examples
in SGDs. It temporarily bypasses the inconsistent data instances
during gradient computation and weight update, leading to
better convergence at the rate of ()(ﬁ). Previously, GSGD
has only been used in the shallow learning networks like the
logistic regression. We try to incorporate GSGD in deep learning
neural networks like the Convolutional Neural Networks (CNNs)
and evaluate the classification accuracy in comparison with the
same networks trained with SGDs. We test our approach on
benchmark image datasets. Our baseline results show GSGD
leads to a better convergence rate and improves classification
accuracy by up to 3% of standard CNNs.

Index Terms—Deep Learning, Convolutional Neural Networks,
Stochastic Gradient Descent

I. INTRODUCTION

Deep Learning, an area of high interest in the machine
learning research community, simulates the human brain
mechanism for interpretation of text, voice and visual data. It
broadly encompasses three classes of algorithms, namely deep
Feed-Forward Networks (FFN), Recurrent Neural Networks
(RNN) and Convolutional Neural Networks (CNN) that have
been successfully applied in various domains such as natural
language processing, robotics, health care and computer vision
[13]. Unlike shallow networks, Deep Learning accounts for
the use of multiple layers and hidden neurons. allowing an

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

Faculty of Science, Technology and Environment
The University of the South Pacific
Suva, Fiji
anuraganand.sharma@usp.ac.{j

extensive coverage and higher perceptual level of the data
at hand, resulting in a high-level abstraction of raw data or
images [9].

This paper focuses on the improvement of the classification
accuracy of CNN with a strategic gradient descent approach.
CNN is predominantly used for identification and recognition
of images and is commonly termed as the computer vision. It
is mainly used for optical character recognition, face detection.
smile detection, emotion detection, object recognition, etc
[10]. Optimizers are one of the major attributes of neural
networks, either shallow or deep. Training of such deep neural
networks is a challenging, non-convex and high-dimensional
optimization problem. Accurate classification or prediction in
a neural network is overly reliant on the optimum tuning
of weights in the deep layers of the network [13]. Weights
describe the strength of the connections between the nodes
in a neural network and also signifies the influence of the
previous node on the current node. The generalization capa-
bility of models largely depends on a set of optimized weight
vectors. Therefore, the selection of an appropriate optimizer
is important during the network architectural design.

Gradient Descent Algorithms (GDA) have proven to be
quite an efficient optimization method and has been effectively
used to optimize gradient-based learning systems such as neu-
ral networks [6, 14]. There are three main variants of GDA: the
Batch Gradient Descent, Stochastic Gradient Descent (SGD)
and Mini-Batch Gradient Descent [5]. The utilization of the
three variants of GDA depends on the size of the dataset used
to compute the gradient of the objective function [S]. SGD
proves to be quite popular compared to the other variants as
it is quite easy to implement, fast and efficient for problems
that have many training samples [16].

A drawback of SGD is that it does not address the poor

Authorized licensed use limited to: University of the South Pacific. Downloaded on September 21,2021 at 04:11:19 UTC from IEEE Xplore. Restrictions apply.

convergence or low classification accuracy due to inconsis-
tencies in the dataset [16]. Inconsistencies in the dataset are
caused by training data samples that cause a net error (or cost)
to increase during gradient computation [16]. Inconsistencies
are introduced by the algorithm’s biased selection of random
data instances which causes an increase in the net error during
gradient computation for the current network training iteration.
These inconsistencies in the dataset lead to high variance
resulting in slow convergence with high fluctuations, however,
they also help in jumping out of local optimum solutions.
Employing SGD algorithms can lead to the problem of non-
convergence due to the oscillation of the learning rate in the
later training stages [4].

Furthermore, one of the most successful techniques used in
helping overcome SGD’s weakness in finding global minima
is the usage of Momentum [14]. Momentum is a method that
helps guide SGD in the right direction and reduces oscillation
[3]. It adds a fraction of the updated vector of the previous time
stamps to the current updated vector. Some other techniques
such as AdaGrad adapts the learning rate according to the
value of the existing parameters by controlling its learning
rate and using larger learning rates for parameters that appear
rarely and smaller learning rates for the parameters that appear
quite often [13, 14, 11]. This algorithm is well-suited for
dealing with sparse data but unfortunately, its performance
deteriorates when the loss function is nonconvex and gradients
are dense due to rapid decay of the learning rate, eventually
taking it to O [11, 17]. AdaDelta resolves this issue of
diminishing the learning rate by getting the learning rate for
present gradients based on its history rather than taking the
entire history of the learning rate like AdaGrad [14, 11]. A
similar algorithm, RMSprop solves the issue of AdaGrad’s
diminishing learning rate and calculates its learning rate with
an exponential average of squared gradients [13, 11].

Adaptive Moment Estimation (Adam) is one of the most
commonly used optimizers in neural network models, es-
pecially for large datasets and high dimensional parameters
[11]. It has been derived from two algorithms: RMSprop and
AdaGrad [6]. Adam can adapt its learning rate according to its
parameters rather than storing exponentially decaying average
of past squared gradients like AdaDelta and RMSprop, Adam,
similar to momentum, also keeps an exponentially decaying
average of past gradients [14, 11].

The focus of this paper is the application of Guided Stochas-
tic Gradient Descent (GSGD) based optimer with CNNs. The
GSGD optimer identifies the inconsistencies in the dataset and
uses it strategically to produce a better convergence rate [16].
GSGD realizes the significance of inconsistencies on gradient
computation and aims to perform gradient computation and
weight update only on consistent data. The algorithm hides
the inconsistencies present in the training dataset “for a
while” considering that it may become consistent over the
next few iterations. Noise is never removed permanently but

bypassed until they become consistent enough to be included
in the gradient computation. GSGD is compatible with all the
popular variations of SGD discussed above, however, it has
been applied to logistic regression only.

In this paper, we will apply GSGD to a deep learning
network, CNN, and address the improvement of the conver-
gence rate and accuracy on benchmark image datasets. We also
provide the convergence analysis of the GSGD algorithm.

II. GUIDED STOCHASTIC GRADIENT DESCENT FOR CNN

The original GSGD algorithm was developed to collect both
the consistent and inconsistent datasets in shallow machine
learning algorithms such as logistic regression [16]. Incon-
sistent data instances are simply the data instances within
the neighborhood of instance j; which individually performs
better, while the average error value E, performs worse than
the average error of the previous iteration E;_4. and vice-
versa.

The GSGD for CNN (CNN-GSGD) exclusively identifies
and collects the consistent data instances only during the train-
ing iterations. It performs the gradient computation on these
consistent data and updates the weights of the entire network.
These data instances are pushed back into the training data
samples after the weights have been updated in anticipation
that the remaining inconsistent data instances will gradually
become consistent as the model ages. It was reported in
[16] that this strategic maneuver of the weights results in
improved classification accuracy by approximately 3 % for
the benchmark datasets from UCI Library .

The original GSGD uses the entire training dataset as
Verification Data to compute the error of the training data
instance at every iteration, which is not applicable for deep
learning as this would have very high overhead cost of
computing, therefore, this research proposes the use of only
a portion of the training dataset as verification data. This
effectively reduces the performance overhead cost and enables
the algorithm to execute more expeditiously. The proposed
idea is to hide a random portion of the training dataset at the
beginning of every epoch and use it as verification data. The
portion is returned to the training data pool at the end of the
epoch, and a new portion is selected randomly.

As described earlier, inconsistent data instances are simply
data points that lie in the neighborhood (proximity) of a data
instance within the neighborhood allocation (p) window; and
has an average error value £ that is greater than the average
error of the previous data instance E,_;. This has been [urther
detailed in the pseudo-code of the algorithm (see Algorithm
1).

The algorithm initiates execution with gradient computation
and weight update with the learning rate 7 in a typical
manner for the first p iterations. Average error for the data
batch at each iteration (E,) is computed, and compared
with the average error of the previous data batches (Et_l,
Et,g,...Ft,p). These preceding data instances are re-run

Authorized licensed use limited to: University of the South Pacific. Downloaded on September 21,2021 at 04:11:19 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Pseudocode for Guided SGD for CNN

1: while t =1:7 do

2: Computer gradient v(d;)

3 Wy =Wy — nu(d;)

4 E; = approximate AvgError()

50 1p = collectConsistent Batches(dy, di—y, ...di—p)
6

.

8

if neighborhood allocation (p) Eached then
1 = getConsistentBatches(y), E})
for i = 1:[| ¢ || do

9: Wi = Wi — no(i;)
10: end for
11: end if

12: end while

» individual errors

average error

»
>

W, w

Fig. 1: Behavior of Individual Instances

on the current weights (117;) to evaluate the consistency of
the current data instance with regards to its preceding data
instances, and to eventually realize the true behavior of the
current data instance (see Fig. 1). At the end of p iterations,
all data batches performing consistently on W;_, to W, is kept
in the consistent image datastore ¢. Finally, the entire weight
vectors are updated with the consistent data batches in /. The
algorithm proposes to process all the data instances (batches)
regularly for p instances, then redo this for the consistent data
instances identified.

Its flowchart is given in Fig. 2 where the algorithm starts
with a random selection of a data instance whose gradient is
computed to update the weight vector. After p iterations, the
weight vector is further refined with consistent neighboring
data instances. It is important to note that the value of p
must be chosen wisely, as a very large value would result
in the algorithm executing in its original form with typical
gradient computation and weight update, and GSGD algorithm
having very little to no effect in improving its efficiency.
For this paper, the value of p was selected with Bayesian
Hyperparameter Optimization.

GSGD works with the same gradient computation formula
set for the network, and thus, can be easily incorporated with
any variant of the commonly used optimization techniques.

The typical Mini-batch gradient descent algorithm in CNN
uses B data samples at time ¢ to compute the gradient VE;
of the objective function at W, ; as shown in Eq. (1)[6].

A

Continue?

Yes
v
Gradient
Computation (VE)

Weight Update
AW=-nVE

r 9

No ‘

Extract promising consistent data
points for current iteration ()

T

Yes No

All consistent data
processed?

Yes

v

Collect inconsistent data points for
current iteration ()

Time for weight refinement?

Fig. 2: Flowchart of GSGD

1 ,
- ﬁzva(u 1) (1

Given the learning rate 7, > (0, the current mini-batch
computes the independent value W; as shown in Eq (2) below:

VEt — VEt(I'ﬂ,l)

W, « W, 1 —n,VE, (2)

The cost of computing gradient with mini-batches at each
iteration is O(B). It is important to note that when the mini-
batch size is 1, the algorithm is the typical SGD, whereas,
with the batch size equal to the size of training data, the
algorithm is gradient descent. The GSGD algorithm, incorpo-
rated with CNN, has the same cost of gradient computation,
and continues to execute SGD, performing archetypal gradient
computation and weight update, while progressively analyzing
and collecting consistent samples for p training iterations and
places them in ¢ as discussed earlier [16]. The 1 dataset
is sorted, and at most p/2 samples are applied for weight
refinement and update.

GSGD is now capable of handling big data. As mentioned
earlier, the original GSGD was used only with logistic re-
gression and small benchmark datasets. This paper focuses
mainly on CNN-GSGD, i.e., incorporating GSGD in CNN as
an optimizer and comparing it with other variants of SGD.
The code is available at https://github.com/anuraganands.

III. CONVERGENCE ANALYSIS FOR GSGD

Basically, the SGD algorithm is an optimization problem
that can be represented as:

N
. 1
W = argi/ll/niu ~ Zl E(d,, W) (3)

4

Authorized licensed use limited to: University of the South Pacific. Downloaded on September 21,2021 at 04:11:19 UTC from IEEE Xplore. Restrictions apply.

where E(d,,, W) is an error or cost function that takes weight
vector W and N mini-batches of training examples of size
m from dy ...dy. The gradient computation can be shown as
nug(dy), ne(ds), . .., nu(dy), ... m(dy) where v(d;) is a
partial gradient function for a mini-batch d; at iteration ¢.

GSGD re-computes the gradients for the || ¥ ||< p con-
sistent mini-batches after p iterations, that can be represented
as:

Wier = Wi —nui(digq) — nue(dige) —
Wi —n 35 vildigg)

= Wi —npr, where E(7;)
true gradient for W;.

To prove the convergence rate for a simplistic case, the error
function E is considered to be convex and Lipschitz S-smooth
[8. 2] as shown in Eq. 4:

Proof.

—nu(digp) =

= VE(W;). VE(W;) shows the

E(Wi1) < E(W) + (VE(W,), Wi — W)

& . .
5 W =W " @)

=FE(W,)+{(VEW,), W, —W,) — r]p(VE(I-’V), (7))

32022
+ L | |2
where
Wy = arg min E(W)
This can be resolved to:
B(E Vi) < E(EV) + (VE(K), W= W)

—np* || VE(W) || + |\ VE(W),) ||* +Var(7)

where Var refers to variance. Here we assume 3 < Tp and
Var() < f; V=0 (12, 1. V) 2= E(E(]|
v ||?)) — Var(i7); the Cauchy Swar[z inequality [2] for the
summation of ¢ = 0...7"—1 results in the following equation:

.
> E(W,) < TE(W,)+
i=1
1 . , , ,
(I Wo =W |2 = | Wr — W ||?) + Tyo?
2np

rearranging the variables would finally provide the conver-
gence term for GSGD given in Eq. 5 below:

E(E(W) — II%IIE(I’L'Y)) <
2
+ 7}02 (5)

argmax F(W) — argmin F(W)
w w

2npT
O

Therefore, the convergence of GSGD is of the order O(%

T
%) which is slightly better than SGD’s order of O(7 +).
Nevertheless, asymptotically both orders are same.

Dataset-1: Digit Dataset-2: MNIST
Input image data Input data image
Conv2D(3,1*numF); stride=1; padding=1;
ReLU (nonlinearity function)
Pooling Layer: MaxPooling 2x2; stride=2
Conv2D(3,2*numF); stride=1; padding=1;
ReLU (nonlinearity function)
Pooling Layer: MaxPooling 2x2; stride=2
Conv2D(3,4*numF}); stride=1; padding=1;
RelLU (nonlinearity function)
Pooling Layer: MaxPooling 2x2; stride=2
Flattening (Input Layer of Neural Network)
Optimizer
Softmax Layer

Fig. 3: CNN Architecture

IV. EXPERIMENT SETUP

In this section, we evaluate our model by comparing it
with other optimization models. We start off by introducing
the datasets we used, experimental setup, and reporting the
analysis of the experimental results.

A. Dataset

To evaluate the effectiveness of the CNN-GSGD, we have
performed experiments using the three benchmark datasets:
MNIST [9], USPS Digit [4] and CIFAR-10 [7].

MNIST dataset consists of greyscale images of handwritten
single digits between 0 and 9. The size of the images are 28 x
28 pixels and comprises of 60000 training set data and 10000
test set data. USPS Digit Dataset has a total of 10000 greyscale
images of handwritten digits out of which 7291 images are
used as the training dataset and 2007 test set. The image
size is 16 x 16 pixels. After performing the experiments on
the MNIST and USPS Digit Datasets, we ran experiments on
the CIFAR-10 dataset. CIFAR-10 dataset has 32 x 32 pixels
color images containing 10 different classes of data. The total
number of images in this dataset is 60000, divided into 50000
images of the training set and 10000 of the test set.

B. Network Architecture

The architecture of the CNN used in this research is
described in Fig. 3. The feature extraction part comprises of
standard convolution and pooling layers. However, the fully
connected layers that are normally present in the classifier
layer are replaced by the proposed optimizer. Therefore the
network learns through different levels of abstraction of the
images over the different layers in the network. The network
uses softmax to produce final classification results. Matlab’s
in-built CNN libraries are used to develop the CNN-GSGD
model.

C. Training Process

The CNN-GSGD model was trained using GSGD, SGD,
ADAM and guided-ADAM (G-ADAM) optimizers on the
datasets. A total of 30 successive runs were made for each

Authorized licensed use limited to: University of the South Pacific. Downloaded on September 21,2021 at 04:11:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Bayesian parameter values for different datasets where SectionDepth indicates the depth of the network, n and p

are the the learning rate and momentum respectively.

Dataset SectionDepth filterSize n p Momentum L2Regularization
Digit (GSGD) 2 3x3 0.00086 10 0.95327 0.00012631
Digit (SGD) 1 2x2 0.00081 - 0.96732 0.00081662
MNIST (GSGD) 1 2x2 0.00099 9 0.92358 0.00137410
MNIST (SGD) 1 2x2 0.00066 - 0.97960 0.00315110
CIFAR-10 (GSGD) 1 2x2 0.00093 8 0.89219 0.0060794
CIFAR-10 (SGD) 1 2x2 0.00025 - 0.9755 0.0000000002
Digit (ADAM) 1 3x3 0.00092 - 0.98133 0.00132240
Digit (G-ADAM) 1 2x2 0.00088 - 0.98952 0.0007137x1
MNIST (ADAM) 1 2x2 0.00099 - 0.98412 0.00004373
MNIST (G-ADAM) 1 3x3 0.00085 7 0.98976 0.00000032
CIFAR-10 (ADAM) 1 3x3 0.00095 - 0.98771 0.0098458
CIFAR-10 (G-ADAM) 1 3x3 0.00098 10 0.98842 0.0000031299

dataset with each combination of optimizers mentioned above.
The combinations can be seen in Table. 1. To obtain the
best hyper-parameters for CNN with GSGD, SGD, G-ADAM
and ADAM, the Bayesian optimization algorithm was used.
Table. I highlights all the hyper-parameters obtained from
training the model on the datasets with the other variants of
SGD. All experiments were conducted on a Windows-based
desktop PC with an i7-9th Gen processor, 16 GB of RAM and
RTX 2060 GPU.

V. RESULTS AND DISCUSSION

The networks have been trained on three datasets with
GSGD, SGD, G-ADAM and ADAM optimizers. The main
objective was to determine how the guided variant performs
with the deep learning algorithm. Identical scenarios were used
for all the datasets so that a better comparison could be made.
A total of 30 runs were executed per dataset for the different
variations of SGD and the results were recorded. Fig. 4, Fig. 5
and Fig. 6 gives a comparative visualization between the two
variations of the SGD and ADAM used in three different
dataset and the results it produces.

The maximum, minimum and mean test accuracy results for
each dataset and optimizer are shown in Table II. The bold font
indicates better solution. For the MNIST dataset, the results
of the SGD are nearer to the GSGD, however, evaluating
the overall graphs concludes that the GSGD outperforms
SGD even at such high accuracy results yielding a maximum
accuracy of 99.85% for GSGD and 99.60% for SGD with a
difference of 0.25%. The results for ADAM and G-ADAM
are quite close. Even though ADAM yields high accuracy
results of 99.85%, G-ADAM gives 99.90% of accuracy and
outperforms it by 0.05%.

For the USPS Digit Dataset, GSGD produced a maximum
accuracy of 98.85% while SGD produced 98.74%. On the
other hand, G-ADAM yielded a maximum accuracy of 99.91%
while ADAM produced a maximum accuracy of 98.94%.
Evidently, the results show that the guided version of the op-
timizers performs better. GSGD outperformed SGD by 0.11%
while G-ADAM outperformed vanilla ADAM by 0.97%. Even
the mean values for each optimizer shows that the guided
version of optimizers performed quite well. The figures Fig.

4 and Fig. 5 shows that the guided variants are either quite
nearer or above the vanilla variants.

Furthermore, we trained and tested the model with the
CIFAR-10 dataset. Despite the overall result being a letdown,
the Guided variant still managed to outperform the vanilla
variants. GSGD had the maximum test accuracy of 69.66%
while SGD had 68.8%. G-ADAM had 69.36% while ADAM
had 67.09%. On average, the guided variants for SGD and
ADAM were better than the vanillar variants by about 2-3%.

GSGD outperforms its canonical counterpart in limited
time constraints. The algorithm acts as a guide to the SGD
when dealing with inconsistent datasets, showing notable
improvement in classification accuracies of CNN models, and
is easily incorporable with other variants of SGD such as
Adam, Momentum and RMSprop [16]. The neighborhood
allocation value (p) obtained from the Bayesian optimizing
algorithm ensured efficiency of the algorithm with timely
weight refinement, and avoids the consistent samples from
becoming inconsistent by being left out for too long before it
gets included in the gradient computation. The improvement
in classification accuracy comes at a small cost of performance
for average error calculation with verification data, while the
time complexity remains the same for both the guided and
canonical variant of SGD. To keep the overhead performance
cost low, only a portion of the training dataset was utilized as
verification data to calculate the average error of each batch
during training.

A better depiction of the average error would be obtained
by utilizing the entire training dataset, however, its overhead
cost of performance can be resolved by parallelizing GSGD’s
average error calculation on multiple processors or executing
it on multiple threads.

VI. CONCLUSION

Guided Stochastic Gradient Descent has proven to be quite
useful in terms of improving the accuracy of the CNN for
the benchmark datasets: USPS Digit, CIFAR-10 and MNIST
datasets. Our experimental results show that GSGD has per-
formed better when incorporated with CNN. Its convergence
rate is slightly better than SGD with the order of ()(ﬁ +a?).
ADAM with the guided approach has also shown improvement

Authorized licensed use limited to: University of the South Pacific. Downloaded on September 21,2021 at 04:11:19 UTC from IEEE Xplore. Restrictions apply.

Test Accuracy - Digit Dataset
100.5

100

99.5 . T TS
L groseeneennt
98.5

98

Test Accuracy %
-

97.5
97

96.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Test Runs

— GSGD sssess SGD = « G-ADAM ADAM

Fig. 4: Accuracy Results of the Digit Dataset with GSGD, SGD, G-ADAM and ADAM

Test Accuracy - MNIST Dataset

o
o
[N}

%]
v

w
e
o

w
g
-3

Test Accuracy %
3
-y

98.2
98
97.8
97.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 15 20 21 22 23 24 25 26 27 28 29 30
Test Runs
GSGD sseses SGD == : GADAM ADAM

Fig. 5: Accuracy Results of the MNIST Dataset with GSGD, SGD, G-ADAM and ADAM

Test Accuracy - CIFAR-10 Dataset

71
70
69
68

67
66

65

Test Accuracy %

64
63

62
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Test Runs

— GSGD sssses SGD == -« G-ADAM ADAM

Fig. 6: Accuracy Results of the CIFAR-10 Dataset with GSGD, SGD, G-ADAM and ADAM

Authorized licensed use limited to: University of the South Pacific. Downloaded on September 21,2021 at 04:11:19 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Maximum, Minimum and Mean Test Accuracy for each Dataset and Optimizer

Dataset Maximum Minimum Mean
GSGD-DIGIT 99.85 99.30 99.55
SGD - DIGIT 99.60 98.90 99.31
G-ADAM - DIGIT 99.90 97.75 99.48
ADAM - DIGIT 99.85 98.00 99.40
GSGD - MNIST 98.85 98.25 98.62
SGD — MNIST 98.74 98.12 98.41
G-ADAM — MNIST 99.91 98.73 98.95
ADAM - MNIST 98.94 98.47 98.75
GSGD - CIFAR-10 69.66 66.65 67.91
SGD - CIFAR-10 68.80 65.18 66.74
G-ADAM - CIFAR-10 69.36 65.6 68.13
ADAM - CIFAR-10 67.09 64.71 65.94

in the accuracy of CNN at an average of around 1% for
MNIST and USPS datasets, and around 3% for CIFAR-
10 dataset. These experiments prove the usability of GSGD
with large datasets in deep learning networks. The future
work would be to apply this guided approach on parallel
environment to improve its performance further for deep
learning algorithms such as Convolutional Neural Networks
and Recurrent Neural Network. Parallel GSGD [15] with
shallow network already provides promising results.

(1]

[3]

[4]

REFERENCES

Dan Alistarh, Christopher De Sa, and Nikola Konstanti-
nov. “The Convergence of Stochastic Gradient Descent
in Asynchronous Shared Memory™. In: Proceedings of
the 2018 ACM Symposium on Principles of Distributed
Computing. PODC ’18. event-place: Egham, United
Kingdom. New York, NY, USA: ACM, 2018, pp. 169-
178. 1SBN: 978-1-4503-5795-1. poI: 10.1145/3212734.
3212763. URL: http://doi.acm.org/10.1145/3212734.
3212763 (visited on 12/21/2019).

Sébastien Bubeck. “Convex Optimization: Algorithms
and Complexity”. In: arXiv:1405.4980 [cs, math, stat]
(Nov. 2015). arXiv: 1405.4980. URL: http://arxiv.org/
abs/1405.4980 (visited on 12/21/2019).

Imen Chakroun, Tom Haber, and Thomas J Ashby.
“SW-SGD: the sliding window stochastic gradient de-
scent algorithm”. In: Procedia Computer Science 108
(2017), pp. 2318-2322.

CC Chang and CJ Lin. LIBSVM data: classification
(Multi Class). 2006.

EM Dogo et al. “A comparative analysis of gradient
descent-based optimization algorithms on convolutional
neural networks”. In: 2018 International Conference on
Computational Techniques, Electronics and Mechanical
Systems (CTEMS). 1IEEE. 2018, pp. 92-99.

Diederik P Kingma and Jimmy Ba. “Adam: A
method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

Alex Krizhevsky. The CIFARIO-dataset. https://www.
cs.toronto.edu/~kriz/cifar.html. [Online; accessed 16-
Aug-2016]. 2009. (Visited on 08/16/2016).

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

L17]

Simon Lacoste-Julien, Mark Schmidt, and Francis Bach.
“A simpler approach to obtaining an O(1/t) convergence
rate for the projected stochastic subgradient method™.
In: arXiv:1212.2002 [cs, math, stat] (Dec. 2012). arXiv:
1212.2002. URL: http://arxiv.org/abs/1212.2002 (visited
on 07/11/2020).

Yann LeCun, Corinna Cortes, and Christopher JC
Burges. “The MNIST database of handwritten digits,
1998”. In: http.//yann.lecun.com/ exdb/mnist/ 10.34
(1998), p. 14.

Keiron O’Shea and Ryan Nash. “An introduction
to convolutional neural networks”. In: arXiv preprint
arXiv:1511.08458 (2015).

Ning Qian. “On the momentum term in gradient descent
learning algorithms”. In: Neural networks 12.1 (1999),
pp. 145-151.

Raghu Meka. CS289ML: Notes on convergence of
gradient descent. github. Dec. 2019. URL: https://
raghumeka.github.io/CS289ML/gdnotes.pdf.

SV Reddy, K Thammi Reddy, and V ValliKumari. “Op-
timization of Deep Learning Using Various Optimizers,
Loss Functions and Dropout”. In: Int. J. Recent Technol.
Eng 7 (2018), pp. 448-455.

Sebastian Ruder. “An overview of gradient de-
scent optimization algorithms”. In: arXiv preprint
arXiv:1609.04747 (2016).

Anuraganand Sharma. “Guided parallelized stochastic
gradient descent for delay compensation”. In: Applied
Soft Computing 102 (2021), p. 107084.

Anuraganand Sharma. “Guided stochastic gradient de-
scent algorithm for inconsistent datasets™. In: Applied
Soft Computing 73 (2018), pp. 1068-1080.

A Wibowo, PW Wiryawan, and NI Nuqoyati. “Op-
timization of neural network for cancer microRNA
biomarkers classification™. In: Journal of Physics:
Conference Series. Vol. 1217. 10P Publishing. 2019,
p. 012124,

Authorized licensed use limited to: University of the South Pacific. Downloaded on September 21,2021 at 04:11:19 UTC from IEEE Xplore. Restrictions apply.

