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a b s t r a c t

In this paper, we present simulated diffusion-limited time-variant currents at conical-tip microelec-
trodes fabricated by depositing a carbon film in and on pulled quartz capillaries. These mechanically
strong microelectrodes are suitable probes for detecting neurotransmitters in vivo. The simulated results
show that the currents obtained at conical-tip microelectrodes are larger than those at finite conical
microelectrodes (e.g. etched carbon fibres protruding from an insulating plane) of comparable dimen-
sions. The currents at conical-tip microelectrodes and finite conical microelectrodes both converge to
that of a microdisk electrode at small cone heights and large cone angles, and to that of a cylindrical
onical-tip microelectrodes electrode portion of equal length and half the radius at large cone heights and small cone angles. At short
times (scaled by the electrode dimensions), Cottrellian current is achieved at conical-tip microelectrodes
and the current densities collapse to the expected chronoamperometric response at a microdisk elec-
trode, subject to some simulation errors. Comparison between a simulated chronoamperogram and an
experimental chronoamperogram then allows an estimate of parameters (such as electrode surface area
and dimensions) that define the electrode geometry. Steady-state currents based on empirical functions

for c
have also been computed

. Introduction

Coupled with anatomical, physiological and pharmacological
vidence, tremendous advances have been made in applying elec-
rochemical techniques to the rapid, real-time in vivo analysis of
eurotransmitters in specific brain regions [1–5]. This partly arises

rom the ease of oxidation of several neurotransmitters (dopamine,
oradrenaline, serotonin, etc.) at an electrode surface. Another con-
ributing factor stems from significant developments of physically
mall electrodes that are suitable for implantation into living tis-
ues with minimal physical damage. For example, by recording
yclic voltammograms of dopamine at carbon fibre microelectrodes
mplanted in the brain of freely moving rats, Hermans et al. demon-
trated that cocaine causes significant fluctuations in dopamine
oncentration in the brain [1]. Following the electrophoretic sep-

rations of cytoplasmic samples, Woods et al. relied on the
mperometric detection of dopamine at a 2.5 �m diameter car-
on fibre electrode to estimate an average cytoplasmic dopamine
oncentration of 240 �M in rat pheochromocytoma cells [2].
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E-mail addresses: britz@chem.au.dk (D. Britz), schandra@cbms.mq.edu.au
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Our laboratory [6] has previously reported the fabrication of
physically small carbon electrodes by pyrolysing acetylene gas on
quartz capillaries that had been pulled down to a typical 2–5 �m tip
diameter. Compared to carbon fibre electrodes of a similar dimen-
sion, physically small carbon electrodes were found to show an
improved signal-to-noise ratio in detecting dopamine in vivo [7].
More recently, after hydrogenating these carbon electrodes, they
showed similar effectiveness against electrode fouling to diamond
electrodes in detecting dopamine [8].

In this paper, we will focus on a study of the response of
physically small carbon electrodes to a potential pulse and the
resulting steady-state current. As presented below, fitting simu-
lated chronoamperometric signals to those obtained at physically
small carbon electrodes has enabled better estimates of such
parameters as the radius and the axial length to define them as
electrodes with a conical tip. Therefore, we will hereafter refer to
them as conical-tip microelectrodes (CTME). As shown in Fig. 1A, a
CTME is characterised by the radius a of the carbon deposit at the
electrode base, and the base-to-tip length h measured along the
axis of the cone. This yields an angle ˛, which denotes the incli-
nation of the wall to the axis of the cone. This inclination angle is

given by

˛ = tan−1
(

a

h

)
. (1)
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ig. 1. Schematic of the present conical-tip electrode (CTME) (A) and the similar
lectrode of Zoski and Mirkin’s finite conical electrode (B).

hese electrodes are modelled based on an idealised geometry con-
isting of sharp cones with negligible disk area at the tip. This is an
cceptable assumption as the disks are small in comparison to the
ength of the carbon film along the cone walls.

Previously, Zoski and Mirkin reported a simulation study of
nite conical microelectrodes fabricated by sealing an etched car-
on fibre in an insulator such that a defined length of the fibre
rotrudes from the insulating plane [9], as depicted in Fig. 1B. We
ave defined ˛ in Fig. 1B in a manner that is consistent with that
hown in Fig. 1A, whereas in [9], the angle was defined as that of the
all to the base. Dickinson et al. have presented some additional

imulation results of these finite conical electrodes, extending the
tudy to include simulation of linear and cyclic voltammetry [10].
otably, the insulating plane at a finite conical microelectrode lim-

ts mass transport to the base edge of the electrode, whereas the
ase edge on a CTME is more accessible. Both types of conical elec-
rodes become identical to an ultramicrodisk electrode (UMDE)
hen h → 0, and this is a useful verification of the simulations

hown later in this paper. At the other extreme, CTME with a
arge h/a ratio (i.e. a very sharp cone) will have a response sim-
lar to that of a cylindrical electrode of radius 0.5a and length h,
gnoring edge effects. Overall, the circular disk and cylinder rep-
esent extreme cases of a very low (h/a → 0) and a very tall cone
h/a → ∞), respectively. As will be seen below, the CTME deviates
ignificantly in its chronoamperometric response from the finite
onical electrode.

The present work aims to present simulation results, both time-
ependent and steady state, for the current at a CTME under
iffusion limiting conditions. We will then compare these results
o those of finite conical microelectrodes. In addition, simulated
esults will also be compared to experimental results for the reduc-
ion of Ru(NH3)6

3+ at CTMEs.

. Theory

The diffusion equation for our system is

∂c

∂t
= D

(
∂2c

∂z2
+ 1

r

∂c

∂r
+ ∂2c

∂r2

)
(2)

n which c is concentration, t the time, D the diffusion coefficient, z
he vertical axis in the direction of the central axis of the cone and
is the radial coordinate. We define a maximum distance L from
oints on the electrode, over which there are significant changes in
oncentration during a given time, given by [11],

= 6
√

T (3)
T is defined in (4d)), so that L depends on the largest value of T
o which the simulation is driven. The quantity L will be used in
onstructing a suitable spatial grid for the simulation, as further
xplained below.
ta 55 (2010) 1272–1277 1273

It is convenient to normalise (2) using the following dimension-
less symbols:

C = c

c∗ (4a)

Z = z

a
(4b)

R = r

a
(4c)

T = Dt

a2
(4d)

H = h

a
, (4e)

where c∗ is the initial bulk concentration of the electroactive
species. With these normalisations, the electrode has unity radius
R at its base and a height H. Then, (2) becomes

∂C

∂T
= ∂2C

∂Z2
+ 1

R

∂C

∂R
+ ∂2C

∂R2
. (5)

2.1. Cylinder approximation

In what follows, the term “cylinder” refers to a portion of a given
length of an infinitely long cylinder, for which there is some the-
ory. As mentioned above, there are approximate solutions for the
extreme cases. For very small ˛, where the cone approximates a
cylinder of length h and radius 0.5a, Szabo et al. [12] provide a
solution for the current holding within 1.3% for all times,

icyl = 2�nFDc∗hf (�) (6)

with

f (�) = exp(−0.1
√

��)√
��

+ 1

ln(
√

4 exp(−��) + exp(5/3))
(7)

in which � is Euler’s constant (0.5772156. . .), n is the number of
electrons transferred, F is the Faraday constant, D the diffusion coef-
ficient and c∗ the bulk concentration of the electroactive substance,
and � is the normalised time defined by � = Dt/a2, where a is the
radius of the cylinder. This is equivalent to definition (4d), but a dif-
ferent symbol is used to highlight the fact that the cone and cylinder
have different radii when being compared (see below). The factor 2
in (6) is based on the assumption of a whole cylinder, rather than a
hemicylinder, as was the case in Szabo et al. As shown below, for a
CTME with large H, this equation fits the simulated currents rather
well. At short times, Szabo et al. have

f (�) = 0.5 + 1√
��

. (8)

The actual current in amperes for this case is

i = 2�nFDcbh
(

1
2

+ a√
�Dt

)
. (9)

Hence, based on a linear plot of current against t−1/2, the y-intercept
will provide an estimate of h, and the slope will yield the radius
a of a CTME in the solution of an electroactive species of known
concentration.

Note that if a cone current is to be compared to that at a cylinder,
then the above equations must be evaluated setting the radius to
half that of the cone base. This results in the relation � = 4T .
2.2. Disk approximation

For a disk electrode, we have the approximation formulae by
Mahon and Oldham [13] which, using our present normalisations
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Fig. 2. Example simulation grid.

re, for T ≤ 0.53,

= �

4

(
(�T)−1/2 + 1 + 1

2

(
T

�

)1/2
− 0.12003 T + 0.013273 T3/2

)

(10)

nd for T > 0.53

= 1 + �

4
(8�−5/2 T−1/2 + 8.9542 × 10−3 T−3/2 − 2.5664

× 10−4 T−5/2 − 2.2312 × 10−4 T−7/2 + 2.7628 × 10−5 T−9/2).

(11)

his pair of equations was found [14] to be accurate to approxi-
ately 0.03% over the whole T range, using the branching point in
as above, sufficient for present purposes. The current in actual

imensions can be obtained by multiplying by the Saito steady-
tate value for a disk electrode [15],

= 4nFc∗Da. (12)

s with the cylinder, there is a limiting form at small T,

= �

4

(
1 + 1√

�T

)
(13)

hich has the same slope as the equivalent form for the cylinder.

.3. The simulation
A grid as shown in Fig. 2 (coarsely spaced for visibility) was gen-
rated in the form of a series of points along R and another of points
long Z. This is an adaptation of the grids used previously for other
eometries [16,17] to the present electrode. As in those works, grid
eneration was found to be the major problem in the simulation. To
cta 55 (2010) 1272–1277

satisfy the spatial extent L, apart from points along that part of the
cone wall covered by the carbon film, the grid must include an extra
height L above the cone tip and a length L down along the insulating
cone wall below the carbon base, meeting the grid floor at R = R2
and Z = −Lb = L cos ˛, Z being defined as zero at the electrode base.
The left hand boundary of the grid is the axis of the cone, and the
right-hand boundary at R = R3 = 1 + L. The insulating part of the
cone wall is thus marked as the region 1 < R ≤ R2, shown in Fig. 2.
Along this distance and along the electrode, we have Z = (1 − R)H.
These specifications are needed for the boundary conditions, which
are

T < 0, all R, Z : C = 1

T > 0 :

0 ≤ R ≤ 1, Z = (1 − R)H : C = 0

1 < R ≤ R2, Z = (1 − R)H :
∂C

∂w
= 0

Z = −Lb, R2 < R < R3 :
∂C

∂Z
= 0

R = 0, Z > H :
∂C

∂R
= 0

R ≥ R3, all Z : C = 1

Z ≥ H + L, all R : C = 1.

(14)

Here, w is the direction normal to the cone wall.
After normalising the current I by the Saito steady-state value

at a UMDE (12)[15], we obtain

I = �

2 cos ˛

∫ 1

0

R
∂C

∂w
dR. (15)

The derivative ∂C/∂w is given by

∂C

∂w
= ∂C

∂Z
sin ˛ + ∂C

∂R
cos ˛. (16)

Computed currents are compared with those at the disk electrode
as seen above in (10) and (11), and with currents at a cylinder, set-
ting the cylinder radius at 0.5 and the length equal to H. As discussed
below, these two models produce results very close to simulated
CTME currents at, respectively, very low and high H.

3. Computational

Owing to a lack of analytical solutions, separate computations
using two completely different methods, the commercial program
COMSOL which uses finite elements, and a simulation program
written in Intel Fortran 95, both implementing the above theory,
were used to ensure the validity of the results. Both were carried
out on a PC running under Linux and IEEE 754 standard double
precision, giving approximately 16-decimal precision.

For the Fortran program, the integration in (15) was done using
three-point gradient approximations in both the Z and R directions
and the trapezium integration rule. The grid, a coarsely divided
example of which is illustrated in Fig. 2, was generated so that
there was an exponential expansion of the grid point intervals
starting with a minimum distance of normally 0.0001 at both the
electrode tip and base, expanding away from these points. Expo-
nentially expanding intervals were first suggested by Seeber and

Stefani [18] and Feldberg [19]. The main parameter in the Fortran
simulation was N, the number of points for the radial and Z-lines
along the electrode wall. The same number of Z-lines was generated
above the cone tip, and down along the insulating wall. Along the
grid floor, R lines generated along the insulating wall were allowed
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o continue expanding to the right of R2 until a point was reached
here R exceeded R3, which became the right-hand limit where

ulk concentration was assumed. The top of the grid always lies
t Z = H + L. An additional single line of points was placed above
his line, and to the right of the farthest right-hand R, because
iscretisation was expressed using four-point approximations, to
chieve discretisation errors of O(ıX2), where ıX is the interval size
n R or Z [11,20]. These outlying points were placed so that there

ere three equally spaced points at the top and right-hand side of
he grid.

The problem of the 1/R term in (5) on the cone axis above the
one tip was circumvented in the manner detailed by Britz [11]
page 217) and described previously by Gavaghan [16] and Crank
nd Furzeland [21]. It uses the McLaurin expansion, reducing the
quation to one without the offending term. Then symmetry was
ssumed at the axis, by setting a fictitious point to the left of the
xis, with concentration values equal to those immediately to the
ight of the axis and using a simple three-point approximation for
he derivatives there.

Coefficients for the four-point approximations were computed
sing the Fornberg algorithm [22]. The temporal first derivative, the

eft-hand side of (5), was discretised as the three-point backward
ifferentiation formula (BDF) [23,24], introduced in electrochem-

stry by Mocak and Feldberg [25]. The startup problem [26] was
liminated by starting each simulation with a single backwards
mplicit step [27]. Three-point BDF has discretisation errors of
(ıT2), matching the order of the spatial approximations. The gen-
rated grid, as described above, contained approximately 3N × 2N
oints, and thus that number of unknowns to be solved for, and
omputations were limited by memory constraints to N = 90, lead-
ng to a sparse system of about 300,000 entries, hence the limit.
his was sufficient however, and results matched those from the
OMSOL simulations to approximately 3 decimals. The grid points
ere numbered and the discretised equations for all points cast

nto a large sparse system, which was solved by the suite of routines
A28[28], available at the Harwell site [29]. MA28 is a sparse solver
llowing LU decomposition [30], which was useful here, since the
ystem consisted of constant coefficients for a given H. A typical
imulation required a few minutes of computing time.

Simulations were also performed using the commercial finite
lement program package COMSOL Multiphysics (version 3.5,
OMSOL Ltd., Hertfordshire, UK). Meshes were generated from tri-
ngular elements. At the points of the electrode edges and along the
ine of the electrode surface, free mesh parameters were used with

maximal element size between 0.00001 and 0.002 and an ele-
ent growth rate of 1.1. The mesh refinement resulted in 20,000

o 100,000 elements. In the software package, the built-in direct
parse matrix solver UMFPACK [31] was used to solve the system
f equations. Both approaches led to the same results within the
umber of decimals presented here, confirming the validity of the
rograms.

Both COMSOL model reports and Fortran programs can be
btained on application to the authors, respectively JS and DB.

Steady-state currents were also simulated for both the CTME
nd the finite conical electrode. This was solved after setting the
eft-hand side of (5) to zero. For these, a problem was to determine
he diffusion space limits (the observation time is infinite). This was
one by experimenting with some L, and it was found that setting
to about 600 was sufficient. A larger L value did not significantly
hange the steady-state current. For the finite conical electrode, the
adius of the insulating plane was also set at L, effectively infinite. A

et of steady-state currents for both electrodes were then approxi-
ated by a curve of the form I = 1 + pHq, as was done by Zoski and
irkin [9] and the parameters determined by using the “fit” proce-

ure built into gnuplot [32]; the procedure is based on a nonlinear
east-square Marquardt–Levenberg algorithm.
Fig. 3. Current curves. Top to bottom: H = 30, 10, 3, 1 and UMDE, respectively.

4. Experimental

CTMEs were fabricated using a previously reported procedure
[6]. Briefly, quartz capillaries were initially pulled down to a fine
tip. Each capillary was then housed in a larger quartz capillary.
Acetylene gas flowing through the pulled capillary was then ther-
mally pyrolysed in the presence of a counter stream of nitrogen gas
flowing through the larger capillary. This process resulted in a car-
bon deposit both at the tip of the pulled capillary and on its shank.
Graphite powder and a conducting wire were introduced through
the larger end of the pulled capillary to accomplish electrical con-
nection with the carbon deposit. All electrodes were initially tested
by cyclic voltammetry of 1.0 mM Ru(NH3)6

3+ (purchased from
Strem Chemical Inc., MA, USA) in 0.1 M KCl (Univar) as support-
ing electrolyte. The solution was degassed with nitrogen for 5 min
prior to voltammetric experiments. All electrochemical measure-
ments were carried out using a potentiostat capable of measuring
down to picoampere levels (eDAQ Pty Ltd., Sydney, Australia). The
potentiostat was operated using version 2.0.14 Echem software on
a PC via a 2-channel E-corder interface (eDAQ Pty Ltd.) with 16-
bit a/d conversion. A conventional three-electrode cell consisting
of a Ag/AgCl reference electrode, a Pt coil auxiliary electrode and a
CTME working electrode was used. All measurements were carried
out in an aluminium Faraday cage to isolate interferences from the
mains and other sources. Chronoamperometry of Ru(NH3)6

3+ at a
CTME was performed by applying a resting potential of 300 mV for
2 s, followed by a cathodic potential pulse of −350 mV for 20 s.

5. Results and discussion

Fig. 3 shows simulated chronoamperometric CTME currents for
stated H values and, the lowest curve, the current at a microdisk. It
is seen that for small H, CTME currents are close to those at a disk,
and become larger as H increases. For large H, the current is closer to
that at a cylinder of length H and radius 0.5. There is some inherent
inaccuracy at small T (that is, after just a few simulation steps), giv-
ing rise to an apparent corner in the curve for H = 1, which appears
to dip below that for the disk electrode at that point. Table 1 shows
the ratios of CTME and finite cone electrode currents to currents
at a UMDE and cylinder for some H, and the table shows the effect
clearly, for both electrodes. Therefore, for a sharply pointed CTME
or finite conical electrode (H ≥ 20), the equation of Szabo et al. [12]
adequately describes the CTME current within a few percent.
Steady-state currents for selected H are tabulated in Table 2.
Here, currents at the CTME are larger than those at the finite conical
electrode, because at the latter, the insulating base that the elec-
trode protrudes from limits the current to some extent. The values
we obtained for the finite conical electrode are somewhat smaller
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Table 1
Relation of currents I to to those at an UMDE (IUMDE) and cylinder currents (Icyl) at
T = 1 and various H.

H Present study Zoski et al.

I/IUMDE I/Icyl I/IUMDE I/Icyl

0.03 1.01 44 1.00 43
0.10 1.05 14 1.02 13
0.30 1.2 5.0 1.08 4.7
1.00 1.6 2.1 1.38 1.8
3.00 3.0 1.3 2.6 1.11

10.00 8.1 1.05 7.5 0.98
30.00 23 0.98 22 0.96

Table 2
Steady-state currents at the CTME and Zoski and Mirkin’s finite conical electrode.

H CTME Finite conical electrode

0.03 1.014 1.002
0.10 1.058 1.017
0.30 1.186 1.066
1.00 1.656 1.289
3.00 2.745 2.029
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Fig. 4. Current density curves. Top to bottom: H = 30, 10, 3, 1. The dashed curve is
the Cottrellian response at a shrouded disk.
10.00 5.621 4.360
20.00 9.010 7.262
30.00 12.08 9.940

t larger H than reported by Zoski and Mirkin. Dickinson et al. [10]
lso obtained slightly smaller values. The difference between our
alues and those reported by Zoski and Mirkin is however only a
ew percent. The function of steady-state current against H is not
inear on a log–log scale, so that a simple power function will not
t very well. However, reasonable fits within some percent can be
btained. Simulations for H values up to 30 were fitted and for the
TME this was found to be

= 1 + 0.7156H0.8062 (17)

hich produces a curve matching the simulated values with a max-
mum error of approximately 7% at small H, decreasing to less than
% for H > 6. For the finite conical electrode, the fit was

= 1 + 0.4058H0.9112 (18)

hich deviates somewhat from Zoski and Mirkin’s fit, and the maxi-
um error is 9%. Zoski and Mirkin only fitted to simulated values up

o H = 3. If we restrict ours to H = 4, then the fitted curve becomes

= 1 + 0.2976H1.114, (19)

uch closer to their parameters (0.3066, 1.144), and the maximum
rror is now 1.1%. In practice, use of these formulae will depend on
he H values used. It is possible that the electrodes of Zoski and

irkin are less sharp (have smaller H) than the CTME discussed
ere, which will tend to rather large H.

Dickinson et al. [10] pointed out that a current–time curve at
uch an electrode should, at short times, behave in a Cottrellian
anner, and demonstrate this by using a log–log plot, which has

he required slope of −0.5 at small T for some H. Not only should this
e the case, but also, if the current is normalised by the electrode
rea, the resulting current densities J for all H should collapse to
he same curve at small H, as is the case for electrodes of all shapes
33]. This is observed in Fig. 4. The small differences between the
urves at small T can be attributed to only a few time steps having
een taken in the simulation, and there is always a larger error in
hese initial steps, which then becomes smaller as the simulation

onverges. But the effect appears to be reasonably demonstrated,
nd the slope is the same as that of a true Cottrellian curve, as is
lso shown in Fig. 4. This was effectively the current at a “shrouded
isk” [34] of unity radius and normalised by its area, �. It lies slightly
elow the CTME curves, because there is better diffusional access
Fig. 5. Simulated current and experimental values. Fitted values were a = 9.5 �m,
h = 190 �m (i.e. H = 20).

to the CTME than to a flat disk. The near-Cottrellian behaviour of
the electrodes at short times can be used to estimate electrode area,
from which the dimensions may be obtained, if the angle ˛ is known
(for example, from a scanning electron micrograph). The curves
show that Cottrellian behaviour is seen at around T ≤ 0.01, which
can be translated into actual times using (4a).

Finally, a comparison between the experimental curve with a
simulated one is presented in Fig. 5. The experimental curve was
obtained by sampling the current at 4000 Hz. The fit was obtained
by setting the base radius of the cone to 9.5 �m and h to 190 �m (i.e.
H = 20) and setting the diffusion coefficient of Ru(NH3)6

3+ to the
known value 7.7 × 10−10 m2 s−1[35]. For the experimental curve,
only every 30th point is shown. The agreement between simulated
and experimental points is reasonable. Therefore, fitting of the sim-
ulated chronoamperogram to an experimental chronoamperogram
may aid in estimating the radius and the axial length of the cone of
a freshly constructed CTME.

6. Conclusions

We have shown how to simulate chronoamperometic currents
at a CTME to obtain results for varying H. For H close to zero, sim-
ulated currents converge to those at a disk electrode. For larger

H, currents are larger, and for H greater than approximately 20,
they approach those at a cylinder of length H and half the radius
of the CTME. At short times, all currents are close to Cottrellian,
which can be used to estimate electrode area and its dimen-
sions. A reasonable simulation fit was obtained for an experimental
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urve and can be used to determine electrode dimensions, if the
iffusion coefficient and concentration of the electroactive sub-
tance are known. The CTME is rather easily prepared and may
rove useful for electroanalysis in biological matrices. Further work
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