Sharma, Alokanand and Paliwal, K.K.
(2006)
Rotational linear discriminant analysis using Bayes Rule for dimensionality reduction.
Journal of Computer Science, 2
(9).
pp. 754-757.
ISSN 1549-3636
Abstract
Linear discriminant analysis (LDA) finds an orientation that projects high dimensional feature vectors to reduced dimensional feature space in such a way that the overlapping between the classes in this feature space is minimum. This overlapping is usually finite and produces finite classification error which is further minimized by
rotational LDA technique. This rotational LDA technique rotates the classes individually in the original feature
space in a manner that enables further reduction of error. In this paper we present an extension of the rotational
LDA technique by utilizing Bayes decision theory for class separation which improves the classification performance even further.
UNSPECIFIED
Actions (login required)
 |
View Item |