A Feature Selection Method using Fixed-Point Algorithm for DNA microarray gene expression data

Alok Sharma¹,²,³, Kuldip K. Paliwal², Seiya Imoto¹, Satoru Miyano¹, Vandana Sharma⁴, Rajeshkannan Ananthanarayanan³

¹Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Tel. +81-3-5449-5615; Fax +81-3-5449-5442
Email: aloks@ims.u-tokyo.ac.jp
²School of Engineering, Griffith University
³School of Engineering and Physics, University of the South Pacific
⁴Fiji School of Medicine, University of the South Pacific

Abstract

As the performance of hardware is limited, the focus has been to develop objective, optimized and computationally efficient algorithms for a given task. To this extent, fixed-point and approximate algorithms have been developed and successfully applied in many areas of research. In this paper we propose a feature selection method based on fixed-point algorithm and show its application in the field of human cancer classification using DNA microarray gene expression data. In the fixed-point algorithm, we utilize between-class scatter matrix to compute the leading eigenvector. This eigenvector has been used to select genes. In the computation of the eigenvector, the eigenvalue decomposition of the scatter matrix is not required which significantly reduces its computational complexity and memory requirement.

Introduction

Fixed-point algorithms have been recently applied to do many important applications such as independent component analysis (ICA) (Hyvärinen and Oja, 1997) and principal component analysis (PCA) (Sharma and Paliwal, 2007). Their popularity (Sajid et al., 2008; Hazem, 2009; Ramesha and Raja, 2011; Qiu et al., 2010; Zhang et al., 2011; Chen et al., 2008; 2009; 2010; Yang et al., 2009; Shi and Guo, 2009; Lai and Huang, 2010; Wang et al., 2011; Albanese et al., 2012) is due to many reasons like low cost hardware implementation, low memory requirement, less processing time and less computational complexity.

In this paper, we propose a feature selection method using fixed-point algorithm of PCA (Sharma and Paliwal, 2007). The fixed-point algorithm of PCA is also known as fast PCA (FPCA) algorithm. The FPCA algorithm has been recently extended and applied in face recognition (Sajid et al., 2008; Hazem, 2009; Ramesha and Raja, 2011), communication (Qiu et al., 2010; Zhang et al., 2011), VLSI architecture design (Chen et
al., 2008; 2009; 2010) and in other areas or applications like in Yang et al., 2009; Shi and Guo, 2009; Lai and Huang, 2010; Wang et al., 2011; Albanese et al., 2012. The feature selection method plays a significant role in identifying crucial genes related to human cancers. It helps in understanding the gene regulation mechanism of cancer heterogeneity. We have carried out gene selection on DNA microarray gene expression datasets. These datasets, consisting of several thousands of gene expression profiles, have been widely used in the past for cancer classification problem. The fixed-point algorithm for feature selection has been proposed for lower computational time and memory requirement.

FPCA algorithm works on training data \(\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n] \in \mathbb{R}^{d \times n} \) in a non-supervised manner. It does not require class labels for individual feature vectors \(\mathbf{x}_j \). In FPCA algorithm, an eigenvector is computed by iteratively multiplying a covariance matrix \(\Sigma_x = \mathbf{H} \mathbf{H}^T \) (where \(\mathbf{H} = \frac{1}{\sqrt{n}} [(\mathbf{x}_1 - \mu),(\mathbf{x}_2 - \mu),\ldots,(\mathbf{x}_n - \mu)] \) and \(\mu = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_j \) is the centroid of training data) with a random vector \(\mathbf{\Phi} \in \mathbb{R}^{d \times 1} \) and updating \(\mathbf{\Phi} \) as \(\mathbf{\Phi} \leftarrow \Sigma_x \mathbf{\Phi} \). The iteration process is terminated if some error criterion is below the threshold value.

The computational complexity of computing covariance matrix \(\Sigma_x \) is \(O(d^2 n) \). If the size of data dimensionality is very large then explicitly computing the covariance matrix \(\Sigma_x \) would be expensive. In that case, the updating can be done in the following manner: instead of computing \(\Sigma_x \) explicitly, a vector \(\mathbf{g} = \mathbf{H}^T \mathbf{\Phi} \) can be computed first, and then \(\mathbf{\Phi} \) can be updated as \(\mathbf{\Phi} \leftarrow \mathbf{H} \mathbf{g} \). The computation of vector \(\mathbf{g} \) would require \(2dn \) flops and the computation of \(\mathbf{\Phi} \) using the product \(\mathbf{H} \mathbf{g} \) would require \(2dn \) flops. Therefore, the total flops to compute \(\mathbf{\Phi} \) is \(4dn \) per iteration.

It is known that both the range space and null space of between-class scatter matrix, \(\mathbf{S}_B \), contain significant discriminant information (Paliwal and Sharma, 2010). Therefore, we use \(\mathbf{S}_B \) matrix by replacing \(\Sigma_x \) in the FPCA algorithm. We compute the leading eigenvector recursively until the desired number of genes is selected. We have compared the proposed method with other feature selection methods and promising results have been obtained. Since FPCA algorithm has been used in our strategy, we do not require to perform EVD of a matrix. This reduces the computational complexity and memory requirement significantly. Our method is, therefore, suited for a low cost hardware system.
Basic descriptions
In this section we describe the basic notations used in the paper. Let \(X = [x_1, x_2, \ldots, x_n] \) denote \(n \) training samples (or feature vectors) in a \(d \)-dimensional space having class labels \(\Omega = \{\omega_1, \omega_2, \ldots, \omega_c\} \), where \(\omega \in \{1, 2, \ldots, c\} \) and \(c \) are the number of classes. The dataset \(X \) can be subdivided into \(c \) subsets \(X_1, X_2, \ldots, X_c \), where \(X_j \) belongs to class \(j \) and consists of \(n_j \) number of samples such that \(\sum_{j=1}^{c} n_j = n \). The data subset \(X_j \) and \(X \) and \(X_1 \cup X_2 \cup \ldots \cup X_c = X \). If \(\mu_j \) is the centroid of \(X_j \) and \(\mu \) is the centroid of \(X \), then the between-class scatter matrix \(S_B \) is defined as (Duda and Hart, 1973; Sharma and Paliwal, 2008)

\[
S_B = \sum_{j=1}^{c} n_j (\mu_j - \mu)(\mu_j - \mu)^T,
\]

where \(\mu_j = \frac{1}{n_j} \sum_{x \in X_j} x \) and \(\mu = \frac{1}{n} \sum_{x \in X} x \).

The between-class scatter matrix is a positive-semidefinite symmetric matrix which can be formed by using rectangular matrix; i.e., \(S_B = BB^T \), where rectangular matrix \(B \in \mathbb{R}^{d \times c} \) can be defined as (Sharma and Paliwal, 2012)

\[
B = \left[\sqrt{n_1}(\mu_1 - \mu), \sqrt{n_2}(\mu_2 - \mu), \ldots, \sqrt{n_c}(\mu_c - \mu) \right].
\] (1)

The fixed-point algorithm for gene selection
The between-class scatter matrix \(S_B \) contains significant discriminant information for classification (Paliwal and Sharma, 2010). We utilize \(S_B \) and apply it in the framework of FPCA. The obtained orientation matrix \(W \) from this procedure will be orthogonal. However, we are interested only in the leading eigenvector for gene selection. We modify the step of \(\Phi \leftarrow \Sigma_{\chi} \Phi \) of FPCA procedure as follows:

\[
w \leftarrow S_B w, \quad (2)
\]

\[
w \leftarrow \text{orthonormalize}(w). \quad (3)
\]

Since for DNA microarray gene expression data, the size of \(S_B \) matrix will be too large (as \(d >> n \)), we can update equation 2 into two steps as:

\[
w \leftarrow B^T w, \quad (4)
\]

\[
w \leftarrow B w. \quad (5)
\]

If we define the fixed-point algorithm of Sharma and Paliwal (2007) as \(\Phi_j \leftarrow \text{FPA}(H,h) \) (where \(\Sigma_{\chi} = HH^T \) and \(h \) is the number of eigenvectors required) then the above
The vector \(\mathbf{w} \in \mathbb{R}^d \) is, therefore, used to transform \(d \)-dimensional space to 1-dimensional space. Let \(\mathbf{x} \in \mathbf{X} \) be any feature vector, we have
\[
y = \mathbf{w}^T \mathbf{x},
\]
or
\[
y = \sum_{i=1}^{d} w_i x_i,
\]
where \(w_i \) and \(x_i \) are the elements of \(\mathbf{w} \) and \(\mathbf{x} \), respectively. It can be envisaged that if \(|w_i x_i| \approx 0 \) (where \(|.| \) is the absolute value), then \(i \) th element is not contributing for the value of \(y \) in equation 6; i.e., it can be discarded without sacrificing much information. Therefore, we have
\[
z_i = \sum_{j=1}^{n} |w_j x_j|
\]
where \(i = 1,2,\ldots,d \). If \(z_i \approx 0 \), then \(i \) th feature can be discarded. Equation 7 can be applied recursively to discard unimportant features. The procedure is depicted in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Gene selection procedure using fixed-point algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 0. Define (q) the number of genes required and set (l = d).</td>
</tr>
<tr>
<td>Step 1. Compute (\mathbf{w} \in \mathbb{R}^l) using fixed-point algorithm (\mathbf{w} \leftarrow \text{FPA}(\mathbf{B})).</td>
</tr>
<tr>
<td>Step 2. Compute (z_i) using equation 7 for (i = 1,2,\ldots,l).</td>
</tr>
<tr>
<td>Step 3. Sort (z_i) in descending order; i.e., if (s = \text{sort}(z_i)) then (s_1 > s_2 > \ldots > s_l).</td>
</tr>
<tr>
<td>Step 4. Discard least important feature corresponding to (s_j). Let the cardinality of the remaining feature set be (l-1) and data subset be (\mathbf{X}_{l-1} \in \mathbb{R}^{l \times n}).</td>
</tr>
<tr>
<td>Step 5. Conduct (\mathbf{X} \leftarrow \mathbf{X}_{l-1}) and (l \leftarrow l-1).</td>
</tr>
<tr>
<td>Step 6. Continue Steps 1-5 until (l = q).</td>
</tr>
</tbody>
</table>

The above process will give \(q \) genes with the data subset \(\mathbf{X}_q \in \mathbb{R}^{q \times n} \), which can be used by a classifier to obtain classification performance.
Experimentation

In this experiment we have utilized three DNA microarray gene expression datasets\(^1\). The description of these datasets is given as follows:

ALL dataset (Golub et al., 1999): this dataset consists of DNA microarray gene expression data of human acute leukemia for cancer classification. Two types of acute leukemia data are provided for classification namely acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The dataset is subdivided into 38 training samples and 34 test samples. The training set consists of 38 bone marrow samples (27 ALL and 11 AML) over 7129 probes. The test set consists of 34 samples with 20 ALL and 14 AML, prepared under different experimental conditions. All the samples have 7129 dimensions and all are numeric.

SRBCT dataset (Khan et al., 2001): the small round blue-cell tumor dataset consists of 83 samples, each having 2308 genes. This is a four class classification problem. The tumors are Burkitt lymphoma (BL), the Ewing family of tumors (EWS), Neuroblastoma (NB) and Rhabdomyosarcoma (RMS). There are 63 samples for training and 20 samples for testing. The training set consists of 8, 23, 12 and 20 samples of BL, EWS, NB and RMS respectively. The test set consists of 3, 6, 6 and 5 samples of BL, EWS, NB and RMS respectively.

MLL Leukemia dataset (Armstrong et al., 2002): this dataset has 3 classes namely ALL, MLL and AML. The training set contains 57 leukemia samples (20 ALL, 17 MLL and 20 AML) whereas the test set contains 15 samples (4 ALL, 3 MLL and 8 AML). The dimension of MLL dataset is 12582.

The classification performance of the proposed feature selection method has been measured on these three DNA microarray gene expression datasets. Table 2 and Table 3 show classification accuracy of the proposed method compared with several other existing feature selection methods. We use J4.8 and Naïve Bayes classifiers from WEKA\(^2\). The classification accuracy for SRBCT and MLL datasets is obtained from Tao

\(^1\) Most of the datasets are downloaded from the Kent Ridge Bio-medical Dataset (KRBD) (http://datam.i2r.a-star.edu.sg/datasets/krbd/). The datasets are transformed or reformatted and made available by KRBD repository and we have used them without any further preprocessing. Some datasets which are not available on KRBD repository are downloaded and directly used from respective authors’ supplement link. The URL addresses for all the datasets are given in the Reference Section.

\(^2\) http://www.cs.waikato.ac.nz/ml/weka/
et al. 2004. For Acute Leukemia dataset, the features are ranked by Rankgene program (Su et al., 2003). For all the datasets, we select 150 genes as done by Tao et al., 2004.

It can be observed from Table 2 that the proposed method achieves highest classification accuracy (70%) on SRBCT dataset, MLL dataset (93%) and ALL dataset (94%). The average classification accuracy of fixed-point algorithm is 85.7% which is higher than the other techniques. Furthermore, from Table 3, we can observe that average classification accuracy of fixed-point algorithm is 87% which is also higher than the other techniques. It can be concluded that the fixed-point algorithm can be applied on human cancer classification problem.

Table 2: Classification accuracy with 150 selected genes obtained by using various feature selection methods and with J4.8 classifier on SRBCT, MLL and ALL datasets.

<table>
<thead>
<tr>
<th>Feature selection methods</th>
<th>SRBCT (Classification accuracy)</th>
<th>MLL (Classification accuracy)</th>
<th>ALL (Classification accuracy)</th>
<th>Average classification accuracy (over all the 3 datasets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twoing rule</td>
<td>64%</td>
<td>60%</td>
<td>91%</td>
<td>71.7</td>
</tr>
<tr>
<td>Sum minority</td>
<td>68%</td>
<td>68%</td>
<td>91%</td>
<td>75.7</td>
</tr>
<tr>
<td>Gini index</td>
<td>64%</td>
<td>60%</td>
<td>91%</td>
<td>71.7</td>
</tr>
<tr>
<td>Sum of variances</td>
<td>54%</td>
<td>60%</td>
<td>91%</td>
<td>68.3</td>
</tr>
<tr>
<td>One dimensional SVM</td>
<td>54%</td>
<td>60%</td>
<td>91%</td>
<td>68.3</td>
</tr>
<tr>
<td>Fixed-point algorithm</td>
<td>70%</td>
<td>93%</td>
<td>94%</td>
<td>85.7</td>
</tr>
</tbody>
</table>

Table 3: Classification accuracy with 150 selected genes obtained by using various feature selection methods and with Naïve Bayes classifier on SRBCT, MLL and ALL datasets.

<table>
<thead>
<tr>
<th>Feature selection methods</th>
<th>SRBCT (Classification accuracy)</th>
<th>MLL (Classification accuracy)</th>
<th>ALL (Classification accuracy)</th>
<th>Average classification accuracy (over all the 3 datasets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twoing rule</td>
<td>73%</td>
<td>86%</td>
<td>97%</td>
<td>85.3</td>
</tr>
<tr>
<td>Sum minority</td>
<td>68%</td>
<td>26%</td>
<td>97%</td>
<td>63.7</td>
</tr>
<tr>
<td>Gini index</td>
<td>78%</td>
<td>68%</td>
<td>97%</td>
<td>81.0</td>
</tr>
<tr>
<td>Sum of variances</td>
<td>64%</td>
<td>54%</td>
<td>97%</td>
<td>71.7</td>
</tr>
<tr>
<td>One dimensional SVM</td>
<td>64%</td>
<td>54%</td>
<td>85%</td>
<td>67.7</td>
</tr>
<tr>
<td>Fixed-point algorithm</td>
<td>70%</td>
<td>100%</td>
<td>91%</td>
<td>87.0</td>
</tr>
</tbody>
</table>

We also conducted experiments to see the biological significance of the selected features by the proposed feature selection method based on fixed-point algorithm. In order to see this, we use SRBCT data as a prototype using Ingenuity Pathway Analysis3. The

3 IPA, http://www.ingenuity.com
selected 150 features from the algorithm are used for this purpose. The top five high level biological functions obtained are shown in Figure 1. In the figure, the y-axis denotes the negative of logarithm of p-values and x-axis denotes the high level functions. Since the cancer function is of paramount interest, we investigated them further. There are 72 cancer functions obtained from the experiment. Top 20 cancer functions with significant p-values are shown in Table 4. In the table, the p-values and the number of selected genes are depicted corresponding to the selected functions. The selected genes by the proposed method provide significant p-values above the threshold (as specified in IPA). This shows that the features selected by the proposed method contain useful information for discriminatory purpose as well as have biological significance.

Figure 1: Top five high level biological function on selected 150 genes of SRBCT by feature selection method based on fixed-point algorithm.

<table>
<thead>
<tr>
<th>Functions</th>
<th>p-Value</th>
<th># Selected Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>leukemia</td>
<td>3.46E-05</td>
<td>13</td>
</tr>
<tr>
<td>chronic leukemia</td>
<td>8.62E-05</td>
<td>8</td>
</tr>
<tr>
<td>myeloproliferative disorder</td>
<td>1.51E-04</td>
<td>9</td>
</tr>
<tr>
<td>myeloid leukemia</td>
<td>1.64E-04</td>
<td>8</td>
</tr>
<tr>
<td>hematologic cancer</td>
<td>4.98E-04</td>
<td>14</td>
</tr>
<tr>
<td>hematological neoplasia</td>
<td>5.05E-04</td>
<td>16</td>
</tr>
<tr>
<td>neuroblastoma</td>
<td>1.02E-03</td>
<td>5</td>
</tr>
<tr>
<td>B-cell leukemia</td>
<td>1.22E-03</td>
<td>6</td>
</tr>
<tr>
<td>tumorigenesis of carcinoma</td>
<td>1.32E-03</td>
<td>2</td>
</tr>
<tr>
<td>genital tumor</td>
<td>1.52E-03</td>
<td>18</td>
</tr>
<tr>
<td>B-cell non-Hodgkin's disease</td>
<td>1.88E-03</td>
<td>6</td>
</tr>
<tr>
<td>diffuse B-cell lymphoma</td>
<td>1.97E-03</td>
<td>4</td>
</tr>
<tr>
<td>prostate cancer</td>
<td>2.17E-03</td>
<td>13</td>
</tr>
</tbody>
</table>
chronic myeloid leukemia 2.45E-03 4
lymphocytic leukemia 2.75E-03 7
leiomyomatosis 2.81E-03 8
lymphatic node tumor 2.99E-03 8
cancer 3.86E-03 45
uterine leiomyoma 3.89E-03 7
gliosarcoma 4.04E-03 2

Conclusion
In this paper, we have presented a feature selection algorithm using fixed-point algorithm. We have shown its application in the field of human cancer classification. Three DNA microarray gene expression datasets have been utilized to see the performance of the proposed method. It was observed that the method is giving promising results. In addition, the genes selected are biologically significant as demonstrated by performing functional analysis of the genes.

Reference

[Data Source1: http://sdmc.lit.org.sg/GEDatasets/Datasets.html]
[Data Source2: http://www.broad.mit.edu/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=63]

[Data Source: http://research.nhgri.nih.gov/microarray/Supplement/]

