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Abstract .  The 'jindpath problem ', a well-known problem in robotics, is the problem of 
finding a path for a moving solid among other solid obstacles. In this paper, a solution is 
proposed for the two-dimensional case where two point masses are required to move to 
designated areas or targets located in the horizontal plane while avoiding moving or 
stationary planar objects. The main tool used to solve the problem is the 'second or direct 
method of Liapunov', a powerful mathematical tool usually associated with the stability 
analysis of nonlinear systems. The theory developed from solving the two-dimensional 
findpath problem is then applied to the problem of cooperation between two planar robot 
arms. Computer simulations show the eflectiveness of the proposed method. 

1 General  in t roduc t ion  

One of the most interesting theoretical undertakings in robotics research is the 
quest for solutions to a seemingly simple two-dimensional space geometric problem: 
'given a robot and a description of its working space or workspace, propose a path 
that the robot can follow. In particular, if the workspace is cluttered with solid 
objects or obstacles, propose a collision-free path that can lead the mobile robot 
from the desired starting point to the desired location or target'. A complete 
solution to this problem must also take into account the generation of the shortest, 
smoothest and safest path among all the collision-free paths between the initial 
position and the target. 

Researchers, over the years, have come up with several sophisticated algorithms 
for tackling this problem, appropriately called the 'robot path planning problem' 
or the 'findpath problem'. Applicable to mobile robots that, in theory, could be 
considered as solid objects such as circles or polygons in two-dimensional space, 
these algorithms can be grouped into two major categories (Giinther & Azarm, 
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374 J. VANUALAILAI ET AL. 

1993; Sheu & Xue, 1993): (1) those that employ some kind of graph search 
techniques, and (2) those that employ some kind of physical analogy. 

Basically, in a graph search technique, a collision-free path is generated through 
searching a graph formed out of straight lines that connect the origin and destination 
via the vertices of solid obstacles, or via patches of free space that have been 
decomposed into geometric primitives such as cones and cylinders. Theoretically, 
graph search techniques are elegant. However, in practice, they tend to be computa- 
tionally intensive. 

In the second category, various types of physical analogies are employed. An 
example involves the placing of position-dependent artificial potential fields with 
repulsive and attractive poles around obstacles and targets, and a collision-free 
path is determined by how much the robot is attracted to or repelled by the poles. 
The Laplace equation and a hydrodynamic analogy, which utilizes harmonic 
functions, have been used to establish the artificial potential fields. Another example 
utilizes the idea of following a 'scent' to the target. Mathematically, the scent could 
be represented by an unsteady diffusion equation. 

Physical analogy-based methods have several advantages over the graph-based 
approaches, the most important being the easier implementation of the former in 
practice. However, one of the major drawbacks of the potential fields methods is 
the possibility of having a collision-free path leading not to the target but to 'traps' 
outside the target. These traps, like the target, are in fact local minima or points 
of zero potential and kinetic energy. 

In this paper, we develop a technique that falls into the second category. In 
essence, a potential field method, the technique uses a method traditionally 
associated with nonlinear dynamical systems. It is called the 'second or direct 
method of Liapunov' and considered a powerful mathematical tool that can be 
used to analyze the stability properties of nonlinear systems. Outlined in the 
classical memoir ''The general problem of the stability of motion" by A. M. 
Liapunov (or Lyapunov) in 1892 (Lyapunov Centenary Issue, 1992), the method 
is now also used in relatively new fields of research such as chaos, neurodynamics, 
and parallel computing (Skowronski, 1990). 

In this paper, we tentatively follow a school of thought, initiated by Stonier 
(1990), that promotes the Liapunov method as a viable alternative to the available 
methods that solve the findpath problem. 

2 Introduction 

The 'second or direct method of Liapunov' or simply the 'Liapunov method or 
technique' (Lyapunov, 1892), is a generalization of two physical principles for 
conservative systems (Boyce & DiPrima, 1992), namely, (a) a rest position is stable 
if the potential energy is local minimum, otherwise it is unstable, and (b) the total 
energy is a constant during any motion. The method is central to understanding 
concepts that could reveal the stability nature of a nonlinear system. Traditionally 
associated with control theory, the method is now also used in relatively new 
domains such as chaos, neurodynamics, and parallel computing (Skowronski, 
1990). 

A recent application of the method is one that deals with the geometric problem 
of finding a collision-free path for a moving solid object among other solid objects. 
This problem, which is called the 'findpath problem', is well known in robotics 
and several ways of generating solutions have been proposed. Among the more 
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TWO-DIMENSIONAL FINDPATH PROBLEM 375 

theoretically elegant but computationally intensive algorithms are those that are 
based on some kind of graph search methods or geometric search algorithms such 
as the Voronoi polygon approach to the closest-point problems considered by 
Shamos and Hoey (1975), the piano movers' problem proposed by Schwartz and 
Sharir (1983), the configuration space method by Lozano-Perez (1983), the free 
space decomposition approach by Brooks (1983), and the octree representation by 
Herman (1986). Basically, graph search methods seek to establish straight lines or 
connectivity graphs that allow obstacles to 'see' each other's position, shape, and 
orientation. 

Simpler algorithms tend to use physical analogies. In 1986, a potential field 
method was proposed by Khatib. In his approach, position-dependent artificial 
potential fields are placed around obstacles and collision-free can be generated by 
determining the number of repulsive and attractive poles. Improvements to Khatib's 
method have been proposed by Connolly et al. (1990) who used the Laplace 
equation as a potential function which does not exhibit local minima, Tarassenko 
and Blake (1991) who treated the Laplace equation under Neumann boundary 
conditions, and Kim and Khosla (1991) who used a hydrodynamic analogy to 
establish an artifical potential field. Another physical analogy-based approach 
suggested by Giinther and h a r m  (1993) involves the use of unsteady diffusion 
equations to represent a gaseous substance that can be seeped into the environment. 
The level of concentration of the gaseous substance can then be used to determine 
the existence of obstacles and targets. 

Although troubled with the existence of local minima traps, the speed and 
extensibility of the physical analogy-based algorithms (to higher dimensions) make 
them an excellent alternative approach to the findpath problem. 

On a more practical side involving multiple robots working in a coordinated 
fashion, hierarchical strategies, such as those proposed by Chien et al. (1988) and 
Freund and Hoyer (1 988), appear to offer an easy transition from the mathematical 
complexities usually associated with nonlinear systems to application. 

In this paper, we develop the Liapunov method for the two-dimensional findpath 
problem involving the collision avoidance of two 'point masses' or 'point objects', 
and show that the physical analogy-based technique can provide a viable alternative 
to the available theoretical methods. Indeed, as first demonstrated by Stonier 
(1990) and then by Vanualailai et al. (1995), the method has been shown to 
provide, via 'Liapunov-like functions', nonlinear analytic forms of control laws for 
the planar movement of two point objects, moving to designated areas or 'targets' 
located in the horizontal plane among mobile and stationary solid objects. Stonier 
(1992) went further and applied his method to the problem of control of two 
planar robot arms. 

We begin our discussion by briefly stating the Liapunov method and then using 
the notations and basic methods of constructing targets and obstacles devised by 
Stonier (1990), we provide a simple dynamical model of the two point masses 
moving in two-dimensional space. 

There are two major differences between this paper and those of Stonier. The 
first is that our approach throughout this paper is more rigorous in that a single 
'Liapunov function' is precisely developed for the entire system, a departure 
from Stonier's intuitive approach which uses different Liapunov-like functions for 
different components of the system. The second major difference concerns Stonier's 
use of the so-called 'right-of-way' assumption, which allows one object to register 
the position of the other as a constant in a sufficiently small time interval before 
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376 J. VANUALAILAI ET AL. 

making a move. The assumption has two shortcomings. The first is the difficulty 
one may have in justifying the use of the components of the position vector at time 
t of the system trajectory as constants in the Liapunov-like function. The second 
is the difficulty in the use of the assumption in a multi-point system where the 
assumption poses the problem of deciding which object or objects should be held 
in a given time interval. These problems were overcome in Vanualailai et al. (1 995) 
where a single Liapunov-like function for the entire system, instead of a Liapunov- 
like function for each point mass, is constructed. 

The two papers however have a common drawback. The Liapunov-like functions 
defined in them do not satisfy the Liapunov stability condition that they should be 
precisely zero at stable equilibrium points of the system. The attempt to satisfy this 
condition in both papers saw a restriction placed on one of the two types of 
parameters associated with the Liapunov method for the findpath problem. The 
two parameters are the 'control' and 'convergence parameters', and the restriction 
is in the requirement that the control parameters, which help in obtaining the 
desired trajectory, be sufficiently small so that the existence of a stable equilibrium 
state of the system in a neighborhood of the center of a target could be guaranteed. 
In other words, with this restriction, we get the best possible result at the end of a 
trajectory, and that is, an object ceases motion very close to the center of its target. 
Indeed, in applying his technique to the control of two manipulators, Stonier 
(1992) requires another method of trajectory planning to place the gripper of a 
manipulator precisely at the center of its target. 

In the first part of this paper (Section 3), this problem of not reaching the center 
of a target is solved once and for all by the use of a function that satisfies the 
sufficient conditions of Liapunov's stability theorem. This Liapunov function can 
be easily extended to encompass multi-point systems, and it requires the control 
parameters only for the purpose of controlling the direction of the trajectory. 
Moreover, the proposed function need not be generalized, as in the case in 
Vanualailai et al. (1995), to obtain safe and smooth trajectories. 

In the second part (Section 4), we apply our method to the problem of 
coordination between two planar robot arms. 

3 A two-point system 

3.1 Stability via the Liapunov function 

Consider the autonomous nonlinear system 

in which f : R  c R"+W is assumed to be smooth enough to guarantee existence, 
uniqueness, and continuous dependence of solutions x(t) = x(t, to, x,) of (1) in !2, 
an open set in Rn. 

For the purpose of considering stability concepts in the sense of Liapunov, we 
assume that f(0) = 0 so that x(t) = 0 is the 'equilibrium state' of (1) through 0 in 
R for all t 2  to. 

Definition 1. The equilibrium state is stable if, for each E > 0 and to 2 0, there is a 
6 > 0 such that 1 1  x, 1 1  < 6 and t 2 to imply ( 1  x(t, to, xo) 11 < E .  
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TWO-DIMENSIONAL FINDPATH PROBLEM 377 

The direct method of Liapunov states that this equilibrium state is stable if, in a 
neighborhood D of the equilibrium state, there exists a real scalar function V 
such that: 

( 4  v(o> = 0, 
(b) V(x) > 0 for all x # 0, and 
(c) 8,) (x) = C:=, (a VlaxJf, (x) < 0 for all x E D, where xi and j, i = 1,2,3, . . . , n, are 

respectively the components of x and f. 

When V successfully meets the above conditions, it is called the 'Liapunov 
function' for system (I). 

3.2 Dynamics of two-point objects 

Consider the system of ordinary differential equations (ODES) 

In the 2,-2, plane, we refer to the point (x,, x,) as 'Object 1' and (y,,y,) as 
'Object 2'. System (2) is therefore a description of the instantaneous velocities 
(x, , x,) = (x2, x4) and (y, , y,) = (y,, y,) and the instantaneous accelerations 
(a2, x4) = (u], 24,) and (y,, y,) = (v,, v,) of the point objects. 

We shall use the vector notations 

to refer to the position and velocity components of Object 1 and Object 2, 
respectively. 

Let us assume that we can transfer the point objects from one point to another 
in the 27-2, plane by adjusting the accelerations appropriately. That is, via (u,, u,) 
and (v,, v,), we have the ability to control the direction and speed of the point 
objects to their respective targets. 

The targets are defined as circular regions in the z,-z, plane enclosing a set of 
fixed points. Thus, if we let (p, c, ,pi c,) and (p,c,,p,c,) be the centers, and rp, and 
rp, be the radii of the targets, then the sets 

T2 = ((21, 23) €R2: (21 - P ~ c I ) ~  + (23 - ~ 2 ~ 2 ) ~  < ~PZ) 

become the 'fixed target sets', with TI being the target set of Object 1 and T2, the 
target set of Object 2. The targets can also become 'fixed antitarget sets' in the 
sense that TI is the fixed obstacle of Object 2, and T, is the fixed obstacle of Object 
1. To express this mathematically, we write 

AT: = TI and AT; = T2 

where the superscript indicates which point object is being considered, and the 
subscript indicates which obstacle it is. Hence, AT: is antitarget number 1 of 
Object 2, and AT; is antitarget number 1 of Object 1. 
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378 J. VANUALAILAI ET AL. 

Next, we place two point objects in circular 'secure avoidance regions' centered 
at the point objects themselves with radii rap, and rap,. Thus, the sets 

AT; ( t )  = {(z, , z,) E R2: [z1 - xl (t)] + [z3 - x3 (t)] < rap?} 

are the 'moving antitarget sets' of Object 1 and Object 2, respectively. 
We can now state the control objectives as follows: 

[Ol] To control the movement of Object 1 to its fixed target TI while ensuring it 
avoids the fixed antitarget AT! = T2 and the moving antitarget AT:(t). 

[02] To control the movement of Object 2 to its fixed target T2 while ensuring it 
avoids fixed antitarget AT: = TI and the moving antitarget ATi(t). 

3.3 Obstacle avoidance and target attraction 

Geometrically, in three-dimensional space, the Liapunov function V looks like a 
parabolic 'mirror' pointing upward or a 'cup' on a table (LaSalle & Lefschetz, 
1961). In two-dimensional space, the cup's circular level curves represent loci for 
constant energy, which as time passes, must shrink to, but not necessarily reach, 
the point representing the bottom of the cup or the minimum value of the Liapunov 
function K Thus, the motion along the phase trajectory takes place in the direction 
of decreasing V loci. 

In our scheme, for a point object, we consider a cup-shaped surface and let the 
bottom of the cup be the center of the target. 

3.3.1 Object I. 
Attraction w target. For the attraction to the target 

we consider the function 

which is a measure of the distance from Object 1 to the target and the speed of 
Object 1. Once we have established an appropriate Liapunov function for system 
(2), Vo would act as an attractor by having Object 1 move down its decreasing 
closed surfaces of constants to the target centered at (p,cl,plc2). As we shall see 
later, the inclusion of the velocity components will help in the formulation of a 
control law that provides for a 'damping' capability that determines the rate of 
convergence of Object 1 to its target TI. 

Note that Vo(p,c,, O,p,c,, 0) = 0 and V,(x) > 0 for all x # (pic,, 0,p,c2, 0). 

Avoidance of theJixed obstacle. For the avoidance of the fixed obstacle 

we consider the function 
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Liapunov potential Cylindrical obstacles 

1 
3 Obstacle Avoidance 

- deceleration on 
Target Attraction approach to obstacle 
- deceleration on 

approach to target 

Acceleration in 
absence of obstacle 

Fig. 1. Obstacle avoidance scheme via the Liapunov function. 

a measure of the distance from Object 1 to the target T2 of Object 2, with VI(x) > 0 
over the domain {xeR4:  (x, -p2c1)' + (x3 - p 2 ~ 2 ) 2  > rp:). 

In three-dimensional space, the surface 

C 
sI = c = constant > 0 

( ~ 1 - ~ 2 ~ 1 ) ~  + (x3 - ~ 2 c 2 ) ~  - rp: ' 

is a right circular cylinder with radius rp,. If this cylinder is a part of the Liapunov 
potential energy cup as illustrated in Fig. 1, then Object 1, in an intuitive sense, 
will naturally slow down as it reaches the saddle-like base of this structure and 
then avoid the structure as it sinks to the bottom of the cup. Since the point object 
must inevitably be attracted to the target set (this is the inherent advantage of the 
Liapunov function) and (x, - p , ~ , ) ~  + (x3 - p 2 ~ 2 ) 2  + rpi would imply an increase in 
energy (that is, Isl 1 -) + a), we cannot have the situation where (x, - P ~ c , ) ~  + 
(x, - p , ~ , ) ~  = rp:. Hence, in a term in the Liapunov function to be proposed, we 
can have Vl appear in the denominator. 

Avoidance of the moving obstacle. For the avoidance of the moving obstacle 

we consider the function 

1 
V~(X,Y) = - 2 [(XI - Y ~ ) ~  + (x3 -yg)2 - rap:] 

a measure of the distance from Object 1 to the secure avoidance region ATi(t) 
about Object 2. We note that V2(x, y) > 0 over the domain {(x, y) E R4 x R4 : 
( ~ 1  -y1I2 + (x3 -y3I2 > rap:}. 
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380 J. VANUALAILAI ET AL. 

If we let y,  and y, be some constants, say k, and k,, respectively, then in three- 
dimensional space, the surface 

C 
S, = c = constant > 0 

(x, - k,)' + (x3 - k3)2 - rap; ' 

is also a right circular cylindrical body with radius rap,. Thus, in the Liapunov 
function to be proposed, we want V2 to appear in the denominator as well. 

Obstacle avoidance and target attraction. A Liapunov function for system (2) 
must become zero once the last remaining object reaches the center of its target. 
For this purpose, we introduce, for Object 1, the function 

with F(pIcly 0,plc2, 0) = 0. 
Now, for the intention of satisfying the above intuitive arguments that require 

Vl and V2 to be in the denominator in the Liapunov function to be proposed, we 
introduce constants PI, > 0 and PI, > 0. Using these constants, we can thus define 

for attraction and obstacle avoidance for Object 1. The function V is defined, 
continuous and positive over the domain 

We can make a similar intuitive argument for Object 2. 

3.3.2 Object 2. For Object 2, we consider the functions 

for the attraction to the center of target T,, the avoidance of the fixed antitarget 
AT? = TI and the avoidance of the moving antitarget ATi(t), respectively. To ensure 
that the Liapunov function to be proposed next will be zero at the center of targets, 
we consider, for Object 2 

Then, introducing the constants P,, > 0 and P,, > 0, we form 
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TWO-DIMENSIONAL FINDPATH PROBLEM 381 

for target attraction and obstacle avoidance for Object 2. This function is defined, 
continuous and positive over the domain 

3.4 Liapunov function 

Consider as a tentative Liapunov function for system (2) 

which is defined, continuous and positive on the open domain D(V) n D(W), with 

where (picl, 0,plc2, 0,p2cl, 0,p2c2, 0) E D(V) nD(W). Along a solution of system 
(2), we have 
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382 J. VANUALAILAI ET AL. 

Let there be constants ply, > 0, ply2 > 0, p2y, > 0, and p,y, > 0, such that 

- P I Y ~ ~ ~ = ~ I + ~ ~ ( x Y Y ) Y  - p 1 ~ 4 x 4 = ~ 2 + h ( x , ~ )  

- PzYzYz = Vl  + gz(x,y), - p2y4y4 = v2 + g4(x, y) 

Then 

and 

giving the control laws u = (u,, u,) and v = (v,, v2) for the planar movement of 
Object 1 and Object 2, respectively. 

Finally, if we let 

then we have (x, y) = (x,, ye) E D(V) f l  D(W) as an equilibrium state of system (2). 
We have thus the following properties of L: 

(i) L(x, y) is continuous and has first partial derivatives in the region D(V) n D( W) 
in the ncighborhood of the stable equilibrium state (x,, ye), 

(ii) Uxe, Ye) = 0, 
(iii) L(x, Y) > 0 v (x, Y) D(V) n D(W>\(x,, Ye), 
(iv) &(x,Y) ~ O V ( ~ , Y ) E D ( V ) ~ D ( W ) .  

Hence, L is a Liapunov function for system (2). 
The following theorem summarizes the above discussions: 

Theorem 1. The equilibrium state (x,, ye) of system (2) is stable provided u,, u,, 
v , ,  and v, are defined as (3), (4), (5), and (6), respectively. 

Geometrically, if we take all variables except xl and x2 as some constants, and 
plot z = L(x, y) as a function of (x , ,~ , ) ,  say z = L(x,,x3), then we have Fig. 2, 
which shows clearly the two obstacles that Object 1 has to avoid. Similarly, 
z = LCy,,y,) will show the two obstacles that Object 2 has to avoid. 
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The two antitargets 
of Object 1 

Fig. 2. The two obstacles of Object 1. 

3.5 Control and convergence parameters 

3.5.1 Control parameters. Because 

is a Liapunov function, we are at liberty to increase or decrease the parameters a,, 
and PZk as much as we please to obtain a desired trajectory without worrying 
whether an object will reach the center of its target. In Stonier (1990) and 
Vanualailai et al. (1995), there is no function that does the work of F or G and 
therefore one must rely solely on the sizes of a,, and a,, to ensure that an object 
approaches the center of its target. That is, the absence of these functions causes 
the objects to cease motion near to, but not at the center of their targets, requiring 
therefore the condition that PI, and P,, be sufficiently small. In our case, a change 
in the values of P,, and jZk simply affects the shape of the cup L to give the 
appropriate trajectories. 

For example, if Object 1 starts closer to an obstacle, say T,, then V, is larger, 
and hence L is at a larger locus for constant energy. This means Object 1 is 
subjected to a larger repulsive force which can cause it to initially repel violently 
from T,. Decreasing PI, will reduce the effect of this repulsion. If, on the other 
hand, Object 1 barely avoids the stationary obstacle T,, then an increase in a,, 
enhances the effect of Vl, resulting in Object 1 avoiding T, relatively earlier. 

Other examples are if we need more leeway between the moving point objects, 
then we can increase either PI,  or /J,,, or both, and if Object 2 avoids the stationary 
obstacle T, from too large a distance, then a decrease in P,, is required (this could 
also reduce the time of arrival). 
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384 J. VANUALAILAI ETAL. 

Whichever the situation, and barring the existence of stable critical points or 
saddle points outside the targets, the trajectories lead to the centers precisely. 

Hence, in our method, the parameters P1, and P2ky which we may call control 
parameters, are the major factors in determining the amounts of u and v needed 
to give us a satisfactory 'trajectory control' of the objects to the center of their 
targets. 

3.5.2. Convergence parameters. The controllers u and v can provide us with the 
information on the rate of convergence of the objects to their targets. For on letting 

we have, given the initial states at time to >, 0 

Yo = bl (to),~2(t0),~3(to),y4 (to)) 

and knowing that 

the instantaneous velocity components 

J 
r,, 

J 
t,, 

f 

y4 (t) = e-f32"('-') y2 (to) + [e-"21'4(r-" p4 (s, xl, x3,yl ,y3) d~ 

which clearly show that large values of p,y,, ply4, p2y2, and p2y4 will decrease the 
rate of convergence of an object to its target. Unsuitable choices of ply2, ply4, p2y2, 
and p2y4, which we may call convergence parameters, can give us a rate of 
convergence that could result in an object converging too soon to its target, thus 
making it difficult to avoid an obstacle, or a rate of convergence that could be too 
slow to be of practical use. 

In Section 3.3, we mentioned damping. Clearly, the convergence parameters are 
indeed the damping required to increase or reduce the speed of an object to its 
target. 
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Table 1. Example 1 

Time interval [o, 301 
RK4 step size 0.03 
Target centers ( P I C I , P I C Z )  = (12.0,0.0), ( P Z C I , P Z C ~  = (- 12.0,O.O) 
Targettantitarget radii rp, =rp ,=6 .0 ,  rap, =rap2=6.0  
Initial states x,= ( -25 .0 ,  1.0, 0.0,  5.0),  yo= (25.0, 1.0, 0.0, 5.0) 
Control parameters P I ,  =812=5.0, Pa =,%2=5.0 
Convergence parameters ply2 =p ly ,  = 5.0, p2y2 = P2Y4 = 5.0 

Remark. We have shown that, through the implementation of the control func- 
tions, system (2) is only stable. Therefore, we should expect that for some initial 
conditions, Object 1 and Object 2 will cease motion at other stable critical points 
or saddle points before they reach their targets. The easiest way to overcome this 
problem is to try out different values of the convergence and control parameters. 
A much more difficult assignment is to construct a Liapunov function that 
guarantees asymptotic stability, or better still, global asymptotic stability. This is 
an open problem. 

3.6 Simulations 

Example 1 .  In this example (see Table I), the shortest path leading Object 1 to 
TI is blocked by T2, and the shortest path leading Object 2 to T2 is blocked by TI. 
To illustrate collision avoidance between the moving obstacles, the control and 
convergence parameters are chosen such that the moving point objects are forced 
to approach each other. 

Figure 3 clearly shows smooth, collision-free paths. 

Fig. 3. For each point object, the shortest path leading to the target is blocked by an obstacle 
(Example I) .  

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
a
n
u
a
l
a
i
l
a
i
,
 
J
i
t
o
]
 
A
t
:
 
0
1
:
3
3
 
2
1
 
N
o
v
e
m
b
e
r
 
2
0
0
8



386 J. VANUALAILAI ETAL. 

-5 0 5 10 15 20 25 30 

t units of time 

Fig. 4. The Liapunov function and its rate of change can tell how the point objects approach obstacles 
and targets (Example 1). 

To see the nature of the Liapunov function L(x, y) and its effects on the point 
objects, we refer to Fig. 4. There, we can see clearly the decreasing nature of the 
function (hence, the cup in three-dimensional space). The almost flat regions 
indicate the period of collision avoidance. The instantaneous rates of change of L 
clearly indicate where the obstacles have accelerated or decelerated. 

Finally, Fig. 5 shows the asymptotic behavior of the controllers. Note that Object 
1 reaches its target in 22.6 units of time and Object 2 does so in 24.6 units of time. 

Example 2. This example (see Fig. 6 and Table 2) illustrates the effectiveness of 
the control and convergence parameters. Starting from the same initial states as in 
Example 1, we force Object 1 to move 'below' its obstacles by having Object 2 
converging faster (make p2y,, p2y4 relatively smaller than ply2, ply,) and increasing 
the repulsive forces from the antitargets (make /?,1,/?,2 relatively bigger than 
P I , ,  Pl2). 

4 Application to two planar robot arms 

In a robotic path planning system, a mobile robot or a robot manipulator and 
obstacles in a work environment are represented as fixed-shape objects, say, circles 
or polygons, or shape-changeable objects such as a set of cuboids with different 
sizes (Sheu & Xue, 1993). The central idea of doing such representations is to 
replace a complex-shaped robot or obstacle by a simpler figure that captures the 
morphological features of the complex shape. Since the simplified figure will often 
be used to approximate the clearance of a complex-shape robot amidst obstacles, it 
will be assumed to enclose the robot, so as to provide a conservative approximation. 
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-5 0 5 10 15 20 25 30 

t units of time 
Fig. 5. Asymptotic behavior of the controllers (Example 1). 

Target T, Target T, 

Fig. 6. Appropriate choices of the control and convergence parameters give collision-free smooth paths 
(Example 2). 
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Table 2. Example 2 

Time interval [o, 1001 
Control parameters P l l  = PI, = 5.0, PzI = /Izz = 20.0 
Convergence parameters ply, = ply, = 20.0, pzy, = pzy, = 10.0 

The above observations fit well into the proposed Liapunov method, which 
works suitably with circular figures or ellipses. In our approach, therefore, we will 
place all moving or stationary objects in circles, and then trace a path for the 
desired object. 

In our example, we will look at the simple planar robot arm described in Stonier 
(1990). However, instead of one, we will consider two robot arms working 
cooperatively in a common working environment. Moreover, we will use one 
Liapunov function for the entire system instead of two different Liapunov-like 
functions-one function for each arm as proposed in Stonier (1992). 

The description of the robot arm conforms with those described in Freund and 
Hoyer (1988), namely, the robot arm has a translational joint and a rotational joint 
in the horizontal 2,-z, plane, and another translational joint vertical to the plane. 
The vertical movement is not considered in the avoidance strategies since in most 
practical cases it is restricted by such things as conveyer belts and assembly stands. 

The arm consists of two links made up of uniform slender rods; the revolute 
first link with fixed length, and the prismatic second link which carries the payload 
at the gripper. It is assumed that the sliding motion of the second link relative to 
the first link is due to a linear torque (there is no rotation of the second link relative 
to the first). It is also assumed that the rotation of the manipulator is caused solely 
by an applied actuator torque and is parallel to the earth's surface so that gravity 
is not a factor. 

As roughly shown in Fig. 7, the objective is to move the gripper from an initial 
position to a target, T,, in the workspace, the accepted paths being, for example, 
smooth paths, Path 1 and Path 2. 

With the help of Fig. 8 which shows a schematic representation of the arm in 
the horizontal z l z 3  plane, we assume that: 

(a) the first link has a fixed length r,, 
(b) the manipulator has length r(t) at time t, 
(c) the manipulator has angular position O(t) at time t, 
(d) the manipulator has mass m, located at point A which is the center of mass, 
(e) the payload of mass m2 is located at the gripper at point By 
(f) the linear torque is f,(t) at time t, and 
(g) the actuator torque is z,(t) at time t. 

Using Lagrange's equations, it is easy to show that the equations of motion of 
the arm are 

[m, r; + m,r2(t)] e(t) + m,r(t)+(t)e(t) = z,(t) 

The Liapunov method requires a state-space description of the equations of 
motion. Accordingly, let 

x ,  = the angular position, O(t), of the arm 
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_---- . -. , . 
/ 

. 
/ 

\ 

/ 
\ 

/ 
/ 

/ 

/ centered at (a, b) . - - _ _ _ + /  extension 
with radius rl 

Fig. 7. A planar manipulator. 

Fig. 8. A schematic representation of the planar manipulator. 
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390 J. VANUALAILAI ET AL. 

x, = the angular speed, &t), of the arm 
x3 = the translational position, r(t), of the mass m, 
x4 = the translational speed, +(t),  of the mass m, 
u, = the actuator torque, ~" ( t )  
u, = the linear torque, f,(t) 

These yield 

x, = x, 
x2 = (u, - 2m2x2x3x4)l(m,~ + m2x:) 
x3 = X4 

x4 = (u2 + m2x&) lm, 

If we position the base of the robot arm at the point (b,c,, b,c,) in the horizontal 
2,-2, plane, then the point 

(x, cos x, f b, c, , X, sin x, + b, c,) 

represents the position of the gripper at time t. We shall refer to this point as 
'Robot 1'. 

For the second robot arm, if we assume that 

y, = the angular position, 02(t), of the arm 
y, = the angular speed, d,(t), of the arm 
y, = the translational position, s(t), of the mass m4 
y4 = the translational speed, S(t), of the mass m, 
v, = the actuator torque, ro2 (t) 
v, = the linear torque, f,(t) 

then we will have a similar system of differential equations which will govern the 
arm's motion in the 2,-2, plane. If we let (b,c,, b2c2) be the base of the arm, then 
the point 

represents the position of the arm's gripper at time t. We shall refer to this point 
as 'Robot 2'. 

We have thus the state-space equations 

to describe the angular and translational velocities (I,, x,) = (x,, x,) and 
(y1)y3) = (y2>y4) and the associated accelerations (x2x4)  = ( u  u )  and 
( j2,y4) = (v,, v2) of the grippers. Let us use the vector notations 

to refer to the angular and translational position and velocity components of Robot 
1 and Robot 2, respectively. 
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TWO-DIMENSIONAL FINDPATH PROBLEM 39 1 

We assume that the controllers u = (u,, u2) and v = (v,, v,)  can move the grippers 
to their respective targets, which are defined as 

Thus, a fixed antitarget of Robot 2 is AT: = TI.  Another fixed antitarget of Robot 
2 is the base of Robot 1 where the first link is. The link is of fixed length r, and 
therefore the base can be given as the obstacle 

Now, the second link of the arm of length x3(t) = r(t) varies in length as the gripper 
moves about the workspace. Thus, Robot 2 will encounter its third obstacle, the 
moving object 

where the 'safety parameter' > 0 is necessary to protect the gripper of Robot 1. 
Similarly, Robot 1 will encounter three obstacles. These are 

AT; = T2 

AT: = {(z, , z,) E R2: (2, - b 2 ~ 1 ) 2  + (z3 - b2c2)' < r;) 

We can now state the control objectives as follows (see Fig. 9): 

[Rl] To control the movement of Robot 1 to its fixed target TI while ensuring it 
avoids the fixed antitargets AT; = T, and AT:, and the moving antitarget 
AT: (t) . 

[R2] To control the movement of Robot 2 to its fixed target T2 while ensuring it 
avoids fixed antitargets AT: = TI and AT;, and the moving antitarget AT;(t). 

4.1 System constraints as fixed antitargets 

Let us assume the following: 

Minimum extension of the arms 

r, = r2 = 1 (m) 
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.s (x3 cos xl+blcl, x3 sin xl+blc2) 

=1 
Fig. 9. Cooperation between two planar manipulators. 

Maximum extension of the arms 

x3 = y3 = 2 (m) 

Further, we assume that 

- 1 < x 4 <  1, - 1 < y 4 <  1 (ms-') 

We now represent the above constraints as fixed antitargets. 
For Robot 1, we have 

A T ~ = { x ~ R ~ : x ~ + 1 < 0 } ,  A T ; = { x ~ R ~ : x ~ - 1 > 0 )  

A T ~ = { X E R ~ : X ~ - ~ < O ) ,  A T ~ = { X E R ~ : X ~ - ~ > O }  

A T ~ = { x ~ R ~ : x ~ + 1 < 0 ) ,  A T f , = { x ~ R ~ : x ~ - 1 > 0 }  

and for Robot 2 

4.2 Obstacle avoidance and attraction to target 

In this section, we simply list the functions that dictate collision avoidance and 
those that dictate target attraction. Beside each function, we use the symbols ' + ' 
to indicate attraction and 'tt' to indicate avoidance. 
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4.2.1 Robot 1. 
Attraction 

1 
Vo (XI = - [(x3 cos XI  + bl cl - pl cl)' + (x3 sin x, + b, c, -plc2)2 + xi + xi] -+ Tl 

2 

Avoidance 

1 v, (XI = - [(x3 COSXI + blcl - P ~ C , ) ~  + (x3 sinx, + b,c, - p , ~ , ) ~  - rp;] -AT; 
2 

1 v2 (XI = - [(x3 cos XI + bl cl - b , ~ , ) ~  + (x3 sinx, + b, c, - b,c,)' - ri] ++AT; 
2 

1 V4 (x) = - (x, + 1) (1 - x,) -AT: and AT: 
2 

1 V, (x) = - (x3 - 1)(2 - x3) -AT: and AT: 
2 

1 V6 (x) = - (x4 + 1) (1 - x,) ++ATE, and AT; 
2 

To ensure that the Liapunov function to be proposed is zero at the center of the 
targets, we use the function, for Robot 1 

1 
F(x) = - [(x3 cos x1 + b, C, - pl el)' + (x3 sin x, + b, c, - pl c,)'] 

2 

Introduce control parameters PI, > 0, k = 1,. . . ,6. Then for attraction and collision 
avoidance, we consider 

which is defined, continuous and positive on the domain 

D(V) = ((x, y) E R ~  x R4: Vk > 0, k = 1, . . . ,6} 

4.2.2 Robot 2. Similarly, for Robot 2, we consider the functions 

1 
W O ( Y ) = ~ [ ( Y ~  cosy, + b2cl -p,c,)' + Cy, siny, + b,c,--p2c2)' +yi+y:] -+T2 

1 
wl (Y) = 5 [Cv, cosy, + b2c, -picl)' + (y3 siny, + b2c2 -p,c2)2 - rp:] -AT: 
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394 J. VANUALAILAI ETAL. 

1 
W,(y) = [& cosy, + b2cl - b,c,)' + Cy, siny, + b2c2 - b,c2)' - r:] -AT: 

W6(y) = Cy4 + l ) ( l  -y4) -AT: and AT: 

For the Liapunov function to be zero at the center of the targets, we use, for Robot 2 

1 
G(Y) = 5 [Cv, cosy, + b2c, -P,C,)~ + Cy, siny, + b,c, - p , ~ , ) ~ ]  

Then, for a collision-free path, we consider 

This function is defined, continuous and positive on the domain 

D(W)= { ( x Y y ) ~ R 4 x R 4 : W k > O , k = 1  ,..., 6) 

4.3 Liapunov function 

Introduce as a tentative Liapunov function for system (7) 

L(x, Y) = V(x, Y) + W(x, Y) 

which is defined, continuous and positive on the open domain D(V)nD(W). 
Along a solution of system (7), we have 

Treating the velocity components separately, we have 
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where 

fi = x3 ([cos x ,  (x ,  sin x ,  + b, c, - p, c,) 

-s inx , (x ,cosx ,  +b,c, -p ,c , )]  x 

PllF - [cos x ,  ( x ,  s inx ,  + b,c, -p,c,) - sinx,  ( x ,  cosx ,  + b,c, -p2c l ) ]  x -- v : 
P12F - [ c o s x , ( x , s i n x , + b , c , - b , c , ) - s i n x , ( x , c o s x , + b , c , - b , c , ) ]  x-- v; 

C O S Y ,  + b2cl x - )I} 
~ 2 r 1 s i n x , + b , c 2  - )I/ 2 

- sinx,  y ,  cosy ,  + b2cI - + b , ~ , ) ]  1 2 1  x @ I w : 

+ sinx,(x3 sinx,  + blc2 -pIc2)1 x 1 + 1 - ( k) 
PllF - [cosx,  (x ,  cos x ,  + b,cl - p 2 c I )  + s inx ,  (x ,  s inx ,  + b, c, -p,c,)] x - v: 
P1zF - [ C O S X ,  (x3 C O S X ,  + blcl - bzc,) + s inx ,  (x ,  s inx ,  + b,c, - b,c,)] x - v; 
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- siny, b3 cosy, + b2cl -p2cl)l x 1 + - ( k:l &) 
P 2 l  G - [ C O S Y I ~ ~  sinyl + b2c2-plc2) -siny,b3 cosy, + b2cl -p,c,)] x -- 
WT 

8 2 2  G - [cosylb3 siny, + b2c2 - blc2) - siny,b,  cosy, + b,c, - b,c,)] x - 
w : 

cosy, y3 s h y l  + b2c2 - ( y s i n x l  + b i z  - i  I 

+ b 3 - " )  cosy x 3 s i n x l + b l c 2 - ~ ~ s i n y l + b 2 c 2 ) ] / 2  i I 
q COSX, +blcl  - + bzCl)]/2} x !@ v; 

cos x, + b, cl 
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Then using the convergence parameters plyl > 0,  ply2 > 0 ,  p2yl > 0, p2y2 > 0,  
such that 

we have 

4 7 )  = - P I Y Z X ;  - p1y4x: - P ~ Y ~ Y ;  - P ~ Y ~ Y :  

and 

the nonlinear analytic forms of control laws for the planar movement of Robot 1 
and Robot 2. 
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Let us restrict the linear accelerations r(t) and s(t), and angular accelerations d ( t )  
and e2(t), as follows: 

max Iy,l = 1, rnax Iy41 = 1 

and let 

@ I ,  C2) = ( ~ 1 ,  ~ 2 1 ,  (519 52) = (74, v2) 
Then our trajectory control scheme becomes, for Robot 1 

If x2 > 1.0 then ul = (mi$ + m2& + 2m2x,x,x2 
If x2 < - 1.0 then u, = - (m16 + m&) + 2m2x3x4x2 
Else u, = 6, 
If x4 > 1.0 then u, = m2 - m,x3xi 
If x4 < - 1.0 then u2 = - m2 - m2x3xi 
Else 24, = 22, 

and a similar one for Robot 2. 
Finally, we know that in the z,-z3 plane, the centers of the targets are (z,, 2,) = 

(plcl,plc2) and (zl,z3) = (p2cl,p2c2) for TI and T2, respectively. When the grippers 
- - -  

reach the centers of these targets, the length of the arm of Robot 1 becomes 
J(pl cl - bl c,)' + (pl c2 - bl c2 - bl c ~ ) ~  and the length of the arm of Robot 2 becomes 
J(p2cl - b , ~ , ) ~  + (p2c2 - b2~2)2.  Thus, solving for x, and y, in the equations 

respectively, and letting 

where p,c, # b,cl and n = 0 or n = 1 or n = 2, depending on the sign of (plcl - b,cl) 
and (p,q - blcz), and 

where p,c, # bzcl and n = 0 or n = 1 or 2, depending on thc sign of (p2c, - b2c1) 
and (p2c2 - b2c2), we easily have 

as an equilibrium state of system (7), the state that represents the centers of the 
targets where the kinetic energy is zero. 

We can thus declare the properties of L as follows: 
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Hence, L is a Liapunov function for system (7). 
The following theorem summarizes the above discussions: 

Theorem 2. The equilibrium state (x,, ye)  of system (7) is stable provided u,, u,, 
v,, and v, are defined as (8), (9), (lo), and (1 l), respectively. 

4.4 Simulations 

Example 3 .  This example simply illustrates the collision-avoidance capabilities of 
the robot arms, with no effort made to obtain good trajectories in terms of 
smoothness and time. Table 3 gives the details and Fig. 10 shows the collision-free 
paths. Both robots reach their targets in 29.4 units of time. 

Table 3. Example 3 

Time interval, RK4 step size 
Masses 
Base centers 

Targets centers 

Targets radii 
Initial states 

Safety parameters 
Control parameters 

Convergence parameters 

Fig. 10. Collision avoidance between the planar manipulators (Example 3). 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
a
n
u
a
l
a
i
l
a
i
,
 
J
i
t
o
]
 
A
t
:
 
0
1
:
3
3
 
2
1
 
N
o
v
e
m
b
e
r
 
2
0
0
8



400 J. VANUALAILAI ET AL. 

Table 4. Example 4 

Time interval, RK4 step size [O, 501, 0.017 
Masses ml=m,=7kg,mz=m,= 1kg 
Base centers (blcl, blcz) = (- 1.0, 0.0) 

(b2cl, b2c2) = (1.0, 0.0) 
Targets centers (PZCI,PICZ) = (0.0,0.6) 

(PZcl JpZc2) = (O.0, - 0.6) 
Targets radii rpl =rp2 =0.1 m 
Initial states % = (4.0, - 0.2, 1.5, - 0.1) 

yo = (2.0, 0.1, 1.3, 0.1) 
Safety parameters ~ ~ = ~ ~ = 0 . 0 1 r n  
Control parameters PII = P12 = PI3 = 5.0, PI4 =PI6  = 0.05, /Il5 = 1.0 

fiI2 = 8 2 2  = /?21 = 2.0, /I24 = 8 2 6  = 0.01, PZ5 = 0.05 
Convergence parameters PIYZ = ~ 1 ~ 4  = 40.0 

PZYZ = PzYa = 30.0 

Fig. 11. For each manipulator, the shortest path leading to the target is blocked by the base of the 
other manipulator (Example 4). 

Example 4. A difficult situation arises when the bases of the robots prevent the 
shortest access to the targets. However, with appropriate control parameters (Table 
4), chosen along the lines stated in Section 3.5, it is easy to redirect the robots 
(Fig. 11). In this example, Robot 1 reaches its target in 36.3 units of time, and 
Robot 2 does so in 46.9 units of time. 

5 Conclusion 

The direct method of Liapunov is a promising tool in solving the findpath problem. 
In this paper, we have shown how the method could be applied to the two- 
dimensional case. An application involving the cooperation of two planar robot 
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arms was considered. The method is easy to apply and offers a viable alternative 
to the available theoretical methods. 

The next major issues are the search for a Liapunov function that guarantees at 
least asymptotic stability and hence solve the problem of local minima traps that 
plagues many of the physical analogy-based algorithms, and whether the method 
could be extended to the more realistic three dimensions. 
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