
M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 242–253, 2012.
© Springer-Verlag Berlin Heidelberg 2012

ICHEA for Discrete Constraint Satisfaction Problems

Anurag Sharma and Dharmendra Sharma

Faculty of Information Sciences and Engineering
University of Canberra, ACT, Australia

{Anurag.Sharma,Dharmendra.Sharma}@canberra.edu.au

Abstract. Constraint satisfaction problem (CSP) is a subset of optimization
problem where at least one solution is sought that satisfies all the given con-
straints. Presently, evolutionary algorithms (EAs) have become standard opti-
mization techniques for solving unconstrained optimization problems where the
problem is formalized for discrete or continuous domains. However, traditional
EAs are considered ‘blind’ to constraint as they do not extract and exploit in-
formation from the constraints. A variation of EA – intelligent constraint
handling for EA (ICHEA) proposed earlier models constraints to guide the evo-
lutionary search to get improved and efficient solutions for continuous CSPs.
As many real world CSPs have constraints defined in the form of discrete func-
tions, this paper serves as an extension to ICHEA that reports its applicability
for solving discrete CSPs. The experiment has been carried on a classic discrete
CSP – the N-Queens problem. The experimental results show that extracting in-
formation from constraints and exploiting it in the evolutionary search makes
the search more efficient. This provision is a problem independent formulation
in ICHEA.

Keywords: Constraints, constraint satisfaction problem (CSP), optimization
problem, evolutionary algorithm (EA), intelligent constraint handling evolutio-
nary algorithm (ICHEA), N-Queens problem.

1 Introduction

Many engineering problems ranging from resource allocation and scheduling to fault
diagnosis and design involve constraint satisfaction as an essential component that
require finding solutions to satisfy a set of constraints over real numbers or discrete
representation of constraints [4, 5, 21]. EAs are used to solve optimization problem
from 1960s. It produces very efficient and robust solutions for unconstrained optimi-
zation problems. Even though CSPs are integral part of computer science, little re-
search have been reported on the development of efficient and effective constraint-
handling techniques – as compared with a plethora of new methods developed for
unconstrained optimization [12]. Traditional EAs are ‘blind’ towards CSPs as they do
not take into account the information from constraints which can reduce the search
space; but only heuristically search for the solution in the vast search space. Generally
objective functions are designed to use problem dependent penalty functions but some
uses error measurements like distance from constraint regions that is applicable to

 ICHEA for Discrete Constraint Satisfaction Problems 243

continuous CSPs only. This has been a motivating factor in developing a novel varia-
tion of EAs that can extract and exploit information from constraints to produce more
efficient solutions for CSPs irrespective of their problem domains. Intelligent con-
straint handling for EA (ICHEA) has been introduced in [24] to solve continuous CSP
that shows promising results when information from constraints are extracted and
exploited. In this paper ICHEA is enhanced to solve discrete CSP. Constraint prob-
lems are divided into two classes: Constrained Optimizing Problems (COPs) and con-
straint satisfaction problems (CSPs). The difference between these classes is that in
COPs an optimal solution that satisfies all constraints should be found, while for
CSPs any solution as long as all the constraints are satisfied is acceptable [9]. This
paper has been confined to CSPs only.

Characteristically, CSPs solved by EAs use penalty based functions. A penalty
function updates the fitness of chromosomes in EA. A penalty term is used in general
for reward and punishment for satisfying and/or violating the constraints [3]. Howev-
er, its main shortcoming is that penalty factors which determine the severity of the
punishment, must be set by the user and their values are problem dependent [16].
Some other constraint handling approaches include expensive repair algorithms that
promote the local search to transform infeasible solutions to feasible solutions be-
cause the feasible parents not necessarily produce feasible progenies [3]. In multi-
objective optimization (MOO) constraints are transformed into multiple objectives.
Pareto-based selection approaches are currently the most popular multi-objective
evolutionary algorithm (MOEA) solution technique. In a typical MOO problem there
exists a set of solutions which are superior to the rest of the solution in the search
space when all objectives are considered but are inferior to other solutions in the
space in one or more objectives. These solutions are known as pareto-optimal solu-
tions or non-dominated solutions [25]. (Definition of pareto concepts can be found in
[26]). There are many established MOO algorithms like MOGA [10], VEGA [20],
NSGA and NSGAII [6]. Generally, this type of algorithm requires inequality con-
straints that can be transformed into many objective functions to be optimized simul-
taneously. Paredis in [18] has used co-evolution strategies that utilizes predator-prey
model to keep two populations – one population represents solutions that satisfies
many constraints while other population represents those individuals whose con-
straint(s) is violated by lots of individuals in the first population. This strategy re-
quires extra computational effort to find the intersection of a line with the boundary of
the feasible region

The main focus of this paper is to enhance ICHEA to solve CSPs for discrete do-
mains by exploiting information from constraints without making the algorithm prob-
lem dependent. The paper is organized as follows: Section 2 briefly discusses the EA
techniques used in handling constraints and formalization of discrete CSPs. Section 3
describes changes made in ICHEA to make it compatible for discrete CSPs. Section 4
shows experimental results on N-Queens problems followed by discussion on
Section 5. Section 6 concludes the paper by summarizing the results and proposing
some further extensions to the research.

244 A. Sharma and D. Sharma

2 Constraint Handling through EAs

Traditional EAs are ‘blind’ to constraint as they do not extract the information from
the constraints but search the solution through random heuristic greedy approach [4,
9]. This causes the search engine to spent extra computational effort in searching for
the solution into the wider search space without only concentrating in the restricted
smaller feasible search space. Constraints can reduce the search space and it can make
the heuristic search more efficient by harnessing information from constraint to guide
the search engine, search in feasible search space only.

Generally violation count is used as a fitness function for CSPs for discrete do-
mains. Depending on the strengths of constraints, individual weights can be assigned
to constraints in a penalty function to calculate the fitness value. To avoid problem
dependent penalty functions and to utilize some information from constraints to guide
the evolutionary search a distance function is used instead of violation count to indi-
cate how far an individual is from the feasible regions [17]. However this is generally
limited to continuous domain only. The main motivation behind developing a novel
variation of EA is to avoid using problem dependent penalty based functions for CSPs
that can be used for both continuous and discrete domains utilizing only the informa-
tion from constraints.

ICHEA attempts to solve CSPs by utilizing information from constraints to guide
the evolutionary search whether the constraints are given in the form of continuous or
discrete functions. It does not use penalty functions, problem dependent formulations
or error functions which all of the current EAs do. It does not disregard the informa-
tion from constraints to produce more efficient results. ICHEA also does not require
initial feasible solution and it is also not restricted to produce feasible progenies from
feasible parents.

CSP is defined by an input vector ݔԦ ൌ ሼݔଵ, ,ଶݔ ௡ሽ of size ݊ in a finite space Sݔ …
where each variable ݔ௜ has a finite domain ܦ௜ . A set of ݉ constraints ሼܿଵ, ܿଶ, … ܿ௠ሽ
is defined in the form of functions:

 ܿ௜ሺݔଵ, ,ଶݔ ௡ሻݔ … ൌ ൜1 , , 0݂݀݁݅ݏ݅ݐܽݏ ݂݅ ݀݁ݐ݈ܽ݋݅ݒ ݂݅ (1)

Constraint satisfaction sets or feasible regions ሼ ଵܵ, ܵଶ, . . ܵ௠ሽ can also be defined
where:

 ௜ܵ ൌ ሼ ݔԦ א ܵ | ܿ௜ሺݔԦሻ ൌ 1, 1 ൑ ݅ ൑ ݉, ݅ א ܼሺ݅݊ݐ݁ݏ ݎ݁݃݁ݐሻሽ (2)

The fitness function of any CSP can be given as:

 ݂ሺݔԦሻ ൌ ∑ ܿ௜ሺݔԦሻ௠௜ୀଵ (3)

To incorporate the weighted penalty function Eq. (3) can be redefined as:

 ݂ሺݔԦሻ ൌ ∑ Ԧሻ௠௜ୀଵݔ௜ܿ௜ሺݓ (4)

where ݓ௜ ൒ 0 are the weighted coefficients representing the relative importance of
the constraints. Its main weakness is the difficulty to determine the appropriate
weights when there is not enough information about the problem [2]. The solution of
a CSP is ݏ א ܵ when all the constraints ܿ௜ are satisfied.

 ICHEA for Discrete Constraint Satisfaction Problems 245

Constraint
Region 1

Constraint
Region 2

Parent P1

Parent P2Offspring O1

Offspring O2

Fig. 2. Intermarriage crossover for discrete CSPs

Fig. 1. Intermarriage crossover for continuous CSPs

3 ICHEA for Discrete Data

ICHEA is a variation of EA that solves CSPs by extracting information from con-
straints as described in [24] for continuous domain by realizing intermarriage cros-
sover. Intermarriage crossover
selects two parents from different
constraint satisfaction sets to make
them come closer iteratively to-
wards their corresponding feasible
boundary because the CSP solu-
tions lie in the overlapping bound-
ary region of feasible regions that
satisfy different constraints. The
iterative move for parent ௜ܲ and ௝ܲ to produce offspring ܱ݅ is given as:

 ௜ܱ ൌ ௜ሺݎ ௝ܲ െ ௜ܲሻ (5)

where ݎ is a coefficient in the range ሺ0,1ሻ which is generally 0.5. Variable ݅ gets
incremented from 1 to a threshold value ܶ in the sequence 1ۃ, 2, … , -The inter .ۄܶ
marriage crossover process is
shown in the Fig. 1 where  mark
indicates possible placement for
an offspring and × mark indicate
the offspring vector is unaccepta-
ble in that particular position. An
offspring is accepted if it satisfies
equal or more constraints than its
corresponding parent. Correspond-
ing parent for offspring ଵܱ is ଵܲ .
So using the Eq. (5) the next ݅
value is used until the offspring
finds an acceptable place or a threshold value ܶ is reached. This greedy approach of
crossover might result in generating no offspring at all.

Favouring individuals that satisfy higher number of constraints and the use of fea-
sible regions in intermarriage crossover guides the evolutionary search in finding the
solution space quickly [24]. When constraint regions are discrete then the intermar-
riage crossover for continuous CSP cannot be used directly to generate progenies as
its formulation is based on real numbers for continuous domain. The concept of in-
termarriage crossover is to fuse feasible solutions from two different constraint satis-
faction sets together that makes the offspring “generic” that satisfy more constraints
because its parents are from two different constraint satisfaction sets. If the fusion of
two discrete feasible solutions is represented by ۩ then the intermarriage crossover
of two parents for discrete CSP transformed from Eq. (5) can be given as:

 ௜ܱ ൌ ௜൫ݎ ௝ܲ۩ ௜ܲ൯ ൌ ሺ ௝ܲ۩ ௜ܲሻ (6)

246 A. Sharma and D. Sharma

Fig. 3. Variable length intermarriage crossover

For discrete intermarriage crossover value of ݎ and ݅ is 1 because fusion is non-
iterative as shown in Fig. 2 where offspring are accepted if fusion results better chro-
mosome(s). ICHEA uses variable length chromosomes (partial solutions) to accom-
plish discrete valued intermarriage crossover where genotype is used as phenotypes.
Variable length chromosome has been used in many applications like [1, 23, 27].
Partial solutions ݌Ԧ ൌ ሼݔଵ, ,ଶݔ ݇ ௞ሽ whereݔ … ൑ ݊ are chromosomes that satisfy all
the constraints partially i.e. ∑ ܿ௜ሺ݌Ԧሻ ൌ ݉௠௜ୀଵ . Its fitness can be given as:

Ԧሻ݌ሺݏݏ݁݊ݐ݂݅ ൌ ݊ െ Ԧ| (7)݌|

The partial solutions are fused incrementally considering all constraints at once. For
example a CSP problem of size ݊ has parents ଵܲ and ଶܲ with partial solutions ሼ1, 2ሽ
and ሼ1, 5, 6ሽ respectively. The generated offspring from these parents either satisfy
equal or more constraints as shown in Fig. 3. Each offspring has traits from both par-
ents. The intermarriage crossover only tries to append the allele values of other
chromosome as shown in Fig. 3. All the allele values that violate the constraints are
dropped so the offspring are also feasible chromosomes. An advantage of using varia-
ble length chromosome in this manner is reduction in computational time. Intermar-
riage crossover avoids recalculation of objective function because it only requires
allele values to be appended. For example an N-Queens problem on chess board of
size ܰ requires ܰሺܰ ൅ 1ሻ 2⁄ operations on a single function call and for one com-
plete crossover it requires ܰሺܰ ൅ 1ሻ operations every time. Its time complexity of
Big-O order is ܱሺܰଶሻ. On the other hand, the intermarriage crossover only checks
the violation of appended allele value with all other existing feasible values that re-
quires ሺ݈ଵ ൅ ݈ଶ ൅ ܰሻ ൅ 2݈ଵᇱ ݈ଶᇱ operations where ݈ଵ and ݈ଶ are the lengths of partial
solutions of the parents and ݈Ԣଵ and ݈Ԣଶ are length of their non-duplicate allele values.
The first expression of time complexity ሺ݈ଵ ൅ ݈ଶ ൅ ܰሻ indicates number of operations
required to find the duplicate values. The second expression 2݈ଵᇱ ݈ଶᇱ indicates the op-
erations required to append the non-duplicate allele values to each other parents. The
best time complexity is 2 ൅ ܰ ൅ 2 ൌ ܰ ൅ 4 operations when lengths of both parents
are 1 and the worst time complexity is ሺܰ 2⁄ ൅ ܰ 2⁄ ൅ ܰሻ ൅ 2ሺܰ/2 ሻሺܰ/2ሻ ൌ0.5ܰଶ ൅ 2ܰ. It is observed that ICHEA’s partial solutions quickly attain the size of ܰ െ 1 or close to it. So two parents with chromosomes of length ܰ െ 1 is taken for
average time complexity which can be calculated as ሺሺܰ െ 1ሻ ൅ ሺܰ െ 1ሻ ൅ ܰሻ ൅2ሺ1 ൈ 1ሻ ൌ 3ܰ. Hence the average time complexity has the Big-O order of O(N). The
algorithmic description of ICHEA is given in Appendix (A).

 ICHEA for Discrete Constraint Satisfaction Problems 247

4 Experiments

The motivation behind this research is to show the information extraction and exploi-
tation from constraints can produce the evolutionary solutions more efficiently. We
used a toy problem namely N-Queens problem that serves as a classic CSP. Basically,
the N-Queens problem can be expressed as placing N queens on N x N chessboard
such that no queen is attacked by one another [13]. The first part of the experiment
tries to solve N-Queens problem without using any sort of constraints related informa-
tion/heuristics from the problem. The second part of the experiment does the prepro-
cessing of the chromosomes to work on unique allele values only because same allele
value refers to the queens that are in the same row which is a violation of one of the
constraints. The idea is to provide as much information about the constraints as possi-
ble to the evolutionary search.

4.1 No Exploitation of Information from the Problem

For this test case we compared ICHEA with Differential Evolution (DE), Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), standard Genetic Algorithms
(GAs) and Non-dominated Sorting GA-II (NSGA-II) [6] that do not use any sort of
information from the problem domain. GA is taken from Genetic Algorithms toolbox

Table 1. Comparative test results on no problem specific information extraction

N CMA-ES [25] DE [25] GA NSGA II ICHEA
4 456 NFC

(SR = 1.00)
134 NFC

(SR = 1.00)
367 NFC

(SR = 1.00)
93 NFC

(SR= 1.00)
39 NFC

(SR = 1.00)
5 656 NFC

(SR = 1.00)
254 NFC

(SR = 1.00)
750 NFC

(SR = 1.00)
217 NFC

(SR = 1.00)
37 NFC

(SR = 1.00)
6 22,013 NFC

(SR = 1.00)
1,11,136 NFC
(SR = 0.65)

30,086 NFC
(SR = 0.75)

694 NFC
(SR = 1.00)

51 NFC
(SR = 1.00)

7 9,964 NFC
(SR = 1.00)

24,338 NFC
(SR = 0.95)

1,400 NFC
(SR = 1.00)

2631 NFC
(SR = 1.00)

34 NFC
(SR = 1.00)

8 84,962 NFC
(SR = 1.00)

7,576 NFC
(SR = 0.75)

3,786 NFC
(SR = 0.80)

1273 NFC
(SR = 1.00)

41 NFC
(SR = 1.00)

9 133,628 NFC
(SR = 1.00)

19,296 NFC
(SR = 0.50)

18,333 NFC
(SR = 0.80)

27,852 NFC
(SR = 1.00)

72 NFC
(SR = 1.00)

10 263,572 NFC
(SR = 0.95)

286,208 NFC
(SR = 0.30)

3,300 NFC
(SR = 0.30)

1,737 NFC
(SR = 1.00)

83 NFC
(SR = 1.00)

11 284,382 NFC
(SR = 0.95)

68,255 NFC
(SR = 0.10)

15,550 NFC
(SR = 0.40)

SR = 0.00 132 NFC
(SR = 1.00)

12 295,740 NFC
(SR = 0.75)

99,120 NFC
(SR = 0.25)

23,000 NFC
(SR = 0.70)

SR = 0.00 122 NFC
(SR = 1.00)

13 376,631 NFC
(SR = 0.85)

95,485 NFC
(SR = 0.15)

3,400 NFC
(SR = 0.10)

SR = 0.00 293 NFC
(SR = 1.00)

14 450,654 NFC
(SR = 0.85)

160,475 NFC
(SR = 0.10)

47,350 NFC
(SR = 0.40)

SR = 0.00 308 NFC
(SR = 1.00)

15 627,391 NFC
(SR = 0.50)

223,425 NFC
(SR = 0.10)

95,625 NFC
(SR = 0.40)

SR = 0.00 381 NFC
(SR = 1.00)

248 A. Sharma and D. Sharma

Revision: 1.1.4.2, 2004 available in Matlab 7.0.1 and NSGA II written in C language
is taken from [7]. ICHEA has been developed in Java language. The test results for
DE and CMA-ES have been taken from [19] where 20 trials for each problem have
been taken into account. The test results are based on number of function calls (NFC)
and success rate (SR). If the NFC ≥ 2x106 then it is considered that the solution is not
found. The experimental set up is discussed below.

─ Fitness Function: the fitness function is the total violation count and the chromo-
somes are ranked based on this fitness function. The solution for CSP is to find at
least one chromosome with no violation i.e. ݂݅ݏݏ݁݊ݐሺݔԦሻ ൌ 0.

─ Allele Values: DE, CMA-ES and GA generate real numbers for allele values but in
case of N-queens problem the real numbers are converted into integer values by
taking the round off value to calculate the fitness. NSGA II uses binary string re-
presentation and ICHEA uses integer values. Candidates can have duplicate allele
values.

─ Efficiency Measures: NFC and SR are used to compare the performance of differ-
ent algorithms. NFC is simply the total count of objective function invoked by the
algorithm. SR is the rate of successful trials for each problem i.e. ܴܵ ൌ ݏ݈ܽ݅ݎݐ ݈ݑ݂ݏݏ݁ܿܿݑݏ ⁄ݏ݈ܽ݅ݎݐ ݈ܽݐ݋ݐ .

─ Parameters: for all the algorithms population size of 100 is used. Scattered cros-
sover is used for GAs. Mutation rate of 0.1 is used for ICHEA and GAs. All de-
fault parametric values are used for NSGA-II.

Table 1 shows the comparative results based on NFC and SR to solve N-queens prob-
lem. N denotes the size of the chessboard. It can be observed as the problem size in-
creases the solution quality decreases for all the algorithms except ICHEA. The out-
come of the test results clearly shows that ICHEA produces consistent results and
dominates other EAs. ICHEA is the most efficient algorithm by getting the lowest
NFC and highest success rate (SR = 1.00) for all the problems. GA shows unpredicta-
ble results where it usually finds the solution in very few evaluations but if it is stuck
in local minima then it is generally not able to find the optimum solution.

Table 2. Comparative test results on after information extraction from the problem

N
SA [19] TS [19] GA [19] GA [10] PSO

[14]
ICHEA
(best)

ICHEA
(median)

ICHEA
(mean)

8 493 182 400 100 - 84 119 115

10 948 472 4910 266 - 97 162 176
20 - - - 2000 5669.7 279 698 898
30 2160 4655 91790 2300 - 301 538 970
50 2849 22663 1759230 5660 14991.4 729 1190 2257
75 6091 81030 571170 6300 - 380 2568 3393

100 7873 206910 887770 15600 36199.4 1977 3702 7595
200 21708 2399940 2287960 460475 934399 7360 14533 15489
300 24636 9382620 2774820 - - 6767 34043 37730

 ICHEA for Discrete Constraint Satisfaction Problems 249

4.2 Information Extraction and Exploitation

The second test case involves utilization of information extraction and exploitation
from the N-Queens problem in evolutionary search. Here problem specific chromo-
somes have been used where only unique integer values are taken into account for
chromosomes’ allele values. Unique integers ensure that queens are at least in differ-
ent rows which satisfy a part of constraint for this problem. All the parameter remains
same as of the previous experiment. We used Simulated Annealing (SA), Tabu Search
(TS), Particle Swarm Optimization (PSO) and GA along with ICHEA for the experi-
ment. The test results of SA, TS and GA is taken from [15] and test results for PSO is
taken from [11]. ICHEA does not need to be modified as it has problem independent
formulation for its intermarriage crossover. Appended allele values are not necessari-
ly unique.

Table 2 shows the comparative test results based on NFC only when some problem
specific information has been extracted from the problem. The best, median and mean
results for ICHEA have also been shown. There is no changes done in ICHEA and it
still performs best in most of the problems (shown in bold). The test results obtained
by [8] is also impressive where the authors uses partially matched crossover (PMX)
and an unusual selection process where only top two candidates are selected for mat-
ing in each generation and rest of the population is replaced by making duplicates of
this pair.

5 Discussion

The test results show that EAs can be significantly improved if the chromosomes are
designed to be problem specific. The experiment in Section 4.2 shows if only the
unique integer value is taken into account for allele values then the solution is con-
verged much earlier for N-Queens problem. Considerable improvement has been seen
in GA. The objective here is not to get the best results for N-Queens problem but to
show how intelligent an algorithm is. The results in Section 4.1 shows that tested
optimization algorithm (DE, CMA-ES, GA and NSGA II) blindly searches for the
optimum solution through greedy heuristic search manner without extracting the in-
formation from constraints while ICHEA utilizes the information from constraints
through its intermarriage crossover operator and gets the best results. Test results in
Section 4.2 again favor ICHEA. The advantage of ICHEA is that its formulation is
problem independent which still extracts enough information from the constraint to
solve the problems efficiently. It can be argued that ICHEA also uses problem depen-
dent integer values for N-Queens problem. The novel formulation of ICHEA does not
require the generated integer values to be unique. ICHEA works with allele coupling
only. So only the definition of constraints and the rules for coupling of two allele
values to partially satisfy the constraints need to be provided. It only maintains the
population of feasible solutions that drastically reduces the size of the search space.

250 A. Sharma and D. Sharma

6 Conclusion

This paper has modeled ICHEA to handle discrete CSPs. It has been demonstrated
through N-Queens problem that it outperforms other EAs because it makes use of
information from the problems and constraints. The search mechanism of ICHEA is
guided by constraints where it concentrates in the feasible regions of constraint satis-
faction sets to get the solution without putting extra computational effort in searching
through the whole search space. N-Queens is a toy problem that does not have com-
plex constraints structure as in some real world problems like university time tabling,
vehicle routing etc. Future work consists of modeling ICHEA to provide problem
independent solution for problems that have different constraint strengths. ICHEA
will be further tested on mixed CSP where problem domain constitutes both conti-
nuous and discrete constraints.

Acknowledgment. We would like to thank Dr. Cecil Schmidt of Washburn Universi-
ty, Topeka for providing the code for GA to solve N-Queens problem from his work
in [8].

References

1. Bandyopadhyay, S., Pal, S.K.: Pixel classification using variable string genetic algorithms
with chromosome differentiation. IEEE Transactions on Geoscience and Remote
Sensing 39(2), 303–308 (2001)

2. Coello, C.A.C.: A Comprehensive Survey of Evolutionary-Based Multiobjective
Optimization Techniques. Knowledge and Information Systems 1, 269–308 (1998)

3. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied
Mechanics and Engineering 191(11-12), 1245–1287 (2002)

4. Craenen, B.G.W., et al.: Comparing evolutionary algorithms on binary constraint satisfac-
tion problems. IEEE Transactions on Evolutionary Computation 7(5), 424–444 (2003)

5. Craenen, B.G.W.: Solving constraint satisfaction problems with evolutionary algorithms.
Phd Dissertation, Vrije Universiteit (2005)

6. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans-
actions on Evolutionary Computation 6(2), 182–197 (2002)

7. Deb, K.: Kanpur Genetic Algorithms Laboratory,
http://www.iitk.ac.in/kangal/codes.shtml

8. Eastridge, R., Schmidt, C.: Solving n-queens with a genetic algorithm and its usefulness in
a computational intelligence course. J. Comput. Sci. Coll. 23(4), 223–230 (2008)

9. Eiben, A.E., et al.: Solving Binary Constraint Satisfaction Problems Using Evolutionary
Algorithms with an Adaptive Fitness Function. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 201–210. Springer, Heidelberg
(1998)

10. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization. In: Proceedings of the 5th International
Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann Publishers Inc.,
San Francisco (1993)

 ICHEA for Discrete Constraint Satisfaction Problems 251

11. Hu, X., et al.: Swarm intelligence for permutation optimization: a case study of n-queens
problem. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS 2003, pp.
243–246 (2003)

12. Kramer, O.: A Review of Constraint-Handling Techniques for Evolution Strategies. In:
Applied Computational Intelligence and Soft Computing 2010, pp. 1–11 (2010)

13. Letavec, R.: The Queens Problem - Delta. ITE 2(3), 101–103 (2002)
14. Liu, H., et al.: Hybridizing particle swarm optimization with differential evolution for

constrained numerical and engineering optimization. Appl. Soft Comput., 629–640 (2010)
15. Martinjak, I., Golub, M.: Comparison of Heuristic Algorithms for the N-Queen Problem.

In: 29th International Conference on Information Technology Interfaces, ITI 2007, pp.
759–764 (2007)

16. Mezura-montes, E., Coello, C.A.C.: A Survey of Constraint-Handling Techniques Based
on Evolutionary Multiobjective Optimization, Departamento de Computación, Evolutio-
nary Computation Group at CINVESTAV (2006)

17. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter
optimization problems. Evolutionary Computation 4(1), 1–32 (1996)

18. Paredis, J.: Co-evolutionary Constraint Satisfaction. In: Davidor, Y., Männer, R.,
Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 46–55. Springer, Heidelberg
(1994)

19. Rahnamayan, S., Dieras, P.: Efficiency competition on N-queen problem: DE vs.
CMA-ES. In: Canadian Conference on Electrical and Computer Engineering, CCECE
2008, pp. 000033–000036. IEEE (2008)

20. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms,
pp. 93–100. L. Erlbaum Associates Inc. (1985)

21. Shang, Y., Fromherz, M.P.J.: Experimental complexity analysis of continuous constraint
satisfaction problems. Information Sciences 153, 1–36 (2003)

22. Sharma, A.: A new optimizing algorithm using reincarnation concept. In: 2010 11th IEEE
International Symposium on Computational Intelligence and Informatics (CINTI), pp.
281–288. Springer, Heidelberg (2010)

23. Sharma, A., Omlin, C.W.: Performance Comparison of Particle Swarm Optimization with
Traditional Clustering Algorithms used in Self-Organizing Map. International Journal of
Computational Intelligence 5(1), 1–12 (2009)

24. Sharma, A., Sharma, D.: ICHEA – A Constraint Guided Search for Improving Evolutio-
nary Algorithms. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part I.
LNCS, vol. 7663, pp. 269–279. Springer, Heidelberg (2012)

25. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic
algorithms. Evolutionary Computation 2, 221–248 (1994)

26. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing
the State-of-the-Art. Evolutionary Computation 8, 125–147 (2000)

27. De Weck, O., Kim, I.Y.: Variable Chromosome Length Genetic Algorithm for Structural
Topology Design Optimization. Strain. In: AIAA 2004, pp. 1–12 (April 2004)

252 A. Sharma and D. Sharma

Appendix

A) ICHEA Algorithm

ICHEA is another variation of EA that has been introduced in [24] adds constraint
handling features for continuous CSPs to the standard GAs. Because of space limita-
tions we are only describing the changes in ICHEA accommodated to make it com-
patible for discrete CSPs. The pseudocode can be given as:

 chromosomes = initializeChromosomes();

 for each generation

 parents = TournamentSelection();

 offspring = interMarriageCrossover(parents);

 Mutation(offspring);

 chromosomes = chromosomes + offspring;

 SortAndReplace();

 CheckTerminationCriteria();

 End for loop;

The description of changed subroutines is given below:

InitializeChromosomes: The population of chromosomes is generated using se-
quence of integer values 1ۃ, 2, … , as shown (݀݋݉) with the modulus operator ۄ|݌݋݌|
below:
Ԧ௜ݔ ൌ ,ݎ݁ݐ݊ݑ݋ሺܿ݀݋݉ ሻ|݌݋݌| ൅ 1 (8)

where ܿݎ݁ݐ݊ݑ݋ is initialized with 0 that is always incremented by 1 for each chromo-
some and |݌݋݌| is the population size. The length of initialized chromosome is 1.

TournamentSelection: Here novelty selection is incorporated along with fitness
based selection as described in [24] but the selection of chromosomes is based on the
following order of preference:
1. Its fitness in the search space
2. If fitness is same then higher novelty value
3. If novelty is same then a chromosome is picked randomly

InterMarriageCrossover: The crossover techniques have been described in Section 3.

Mutation: ICHEA uses swap mutation for permutations.

SortAndReplace: According to [14] the lower the individuals’ degree of constraint
violation, the higher the probability that it clusters together around the current best
solution and individuals with lower degrees of constraint violations are very difficult
to jump out of current best individual’s adjacent region. This may cause the current
best individual to stay on the same position for a long time leading to loss of diversity
in the population. To avoid this scenario the ICHEA keeps the fair share of all levels
of fitness in the population. If the population ݌݋݌ of size |݌݋݌| has ݉ constraints in
the problem of size ݊ then the whole population is divided into equal sized ۂ݊ߪہ
slots where ߪ is in the range of (0.1 1.0). 0.1 = ߪ is used in the experiments. Slot ݅

 ICHEA for Discrete Constraint Satisfaction Problems 253

is allocated to individuals based on its fitness value ݂݅ݏݏ݁݊ݐሺ݌Ԧሻ ൌ ݊ െ .Ԧ| from Eq݌|
(7) where ݅ ൌ ሺ݊ߪہ െ ۂԦ|ሻ݌| ൅ 1. If slot ݅ remains empty then its allocated space is
evenly distributed to other slots. Let ݌݋݌௜ indicate the population of individuals that
belong to slot ݅ so the total population is:

݌݋݌ ൌ ∑ ௜ୀଵ ۂఙ௡ہ௜݌݋݌

Then ݌݋݌௜ is sorted according to the fitness and the best |݌݋݌| ⁄ۂ݊ߪہ is selected for
subpopulation ݌݋݌௜ ׵ . max ሺ|݌݋݌௜|ሻ ൌ |݌݋݌| ⁄ۂ݊ߪہ

If after allocation, ݇ slots have |݌݋݌௜| < |݌݋݌| ⁄ۂ݊ߪہ , then unallocated population of
individuals ݌݋݌௨௡௔௟௟௢௖ is: ݌݋݌௨௡௔௟௟௢௖ ൌ ෍ ൜|݌݋݌| ⁄ۂ݊ߪہ െ |௜݌݋݌| ݂݅ ,|௜݌݋݌| ൏ |݌݋݌| ⁄ۂ݊ߪہ ௠௜ୀଵ ݁ݏ݅ݓݎ݄݁ݐ݋ , 0

This unallocated population ݌݋݌௨௡௔௟௟௢௖ needs to be allocated evenly in the slots that
have |݌݋݌௜| > |݌݋݌| ⁄ۂ݊ߪہ .

Once the chromosomes are sorted a random death concept is used defined in [22]
to delete some predefined number of chromosomes randomly from the population.
The certain top percentage of the population is spared to control the search focus.

CheckTerminationCriteria: The iteration is stopped when:

1. The maximum number of generation is reached or
2. The CSP solution is found or
3. The process is stalled by no improvement in the solution for some generations.

