
T. Huang et al. (Eds.): ICONIP 2012, Part I, LNCS 7663, pp. 269–279, 2012.
© Springer-Verlag Berlin Heidelberg 2012

ICHEA – A Constraint Guided Search
for Improving Evolutionary Algorithms

Anurag Sharma and Dharmendra Sharma

Faculty of Information Sciences and Engineering
University of Canberra, ACT, Australia

{Anurag.Sharma,Dharmendra.Sharma}@canberra.edu.au

Abstract. Many science and engineering applications require finding solutions
to optimization problems by satisfying a set of constraints. These problems are
typically NP-complete and can be formalized as constraint satisfaction prob-
lems (CSPs). Evolutionary algorithms (EAs) are good solvers for optimization
problems ubiquitous in various problem domains. EAs have also been used to
solve CSPs, however traditional EAs are ‘blind’ to constraints as they do not
exploit information from the constraints in search for solutions. In this paper, a
variation of EA is proposed where information is extracted from the constraints
and exploited in search. The proposed model (ICHEA for Intelligent Constraint
Handling Evolutionary Algorithm) improves on efficiency and is independent
of problem characteristics. This paper presents ICHEA and its results from
solving continuous CSPs. The results are significantly better than results
from other existing approaches and the model shows strong potential. The
scope is to finding at least one solution that satisfies all the constraints rather
than optimizing the solutions.

Keywords: constraint satisfaction problem (CSP), Evolutionary algorithms
(EAs), Intelligent Constraint Handling Evolutionary Algorithm (ICHEA),
optimization problems.

1 Introduction

Many engineering problems ranging from resource allocation and scheduling to fault
diagnosis and design involve constraint satisfaction as an essential component that
require finding solutions to satisfy a set of constraints over real numbers or discrete
representation of constraints[3, 4, 19].Even though CSP solving is an essential com-
puter science approaches only little research has been reported on the development of
efficient and effective constraint-handling techniques (especially with respect to a
plethora of new methods available for unconstrained optimization [11]).

The classical algorithms that solve CSPs include branch and bound, backtrack al-
gorithm, iterative forward search algorithm, local search but heuristic methods such as
evolutionary algorithms(EAs) have mixed successand for many difficult problems
these are the only available choices [1, 4, 16]. EAs however suffer from some of
its inherent problems to solve CSPs as they do not make use of information from

270 A. Sharma and D. Sharma

constraints and only blindly search in the solution space using different heuristic
search algorithms [4]. Generally objective functions are designed on problem depen-
dent penalty functions but some use generalized error measurements like euclidean
distance from feasible regions which is applicable to continuous CSPs only.

The constraint problems can be divided into two classes: constrained optimizing
problems (COPs) and constraint satisfaction problems (CSPs).The difference between
these classes is that in the first an optimal solution that satisfies all constraints should
be found, while in the second class any solution as long as all the constraints are satis-
fied is acceptable[8]. (This paper only focuses on CSPs.)

Characteristically, CSPs solved by EAsuse penalty based functions. A penalty
function updates the fitness of chromosomes in EA. A penalty term is used in general
for reward and punishment for satisfying and/or violating the constraints [2]. Howev-
er, its main shortcoming is that penalty factors which determine the severity of the
punishment, must be set by the user and their values are problem dependent[14].
Some other constraint handling approaches include expensive repair algorithms that
promote the local search to transform infeasible solutions to feasible solutions be-
cause the feasible parents not necessarily produce feasible progenies[2].In multi-
objective optimization (MOO) constraints are transformed into multiple objectives.
There are many established MOO algorithms like MOGA[9], VEGA [18], NSGA and
NSGAII[6]. Paredis in [17] has used co-evolution strategies that utilizes predator-prey
model to keep two populations – one population represents solutions that satisfies
many constraints while other population represents those individuals whose con-
straint(s) is violated by lots of individuals in the first population. This strategy re-
quires extra computational effort to find the intersection of a line with the boundary of
the feasible region.

The main contribution of this paper is to provide a variation of EAs that reduce its
inherent problems by exploiting constraints in improving search. The paper is orga-
nized as follows: Section 2 briefly discusses the EA techniques used in handling con-
straints. Section 3 describes our proposed algorithm ICHEA – a variation of EA.
Section 4 elaborates more on ICHEA from algorithmic perspective. Section 5 shows
experimental results of ICHEA with other EAs used in solving CSPs. Section 6 dis-
cusses the outcomes of the experiments performed and section 7 concludes the paper
by summarizing the results and proposing some further extensions to the research.

2 Constraint Handling through EAs

Traditional EAs are ‘blind’ to constraint as they do not extract the knowledge from
the constraints but search the solution through random heuristic greedy approach
[3, 5]. This causes the search engine to spend extra computational effort in searching
for the solution into the wider search space without only concentrating in the re-
stricted smaller feasible search space. Constraints can reduce the search space and it
can make the heuristic search more efficient by harnessing information from con-
straint to guide the search engine, search in feasible search space only.Some research
has been reported on working with feasible search space or searching for solution in

 ICHEA – A Constraint Guided Search for Improving Evolutionary Algorithms 271

the boundary between the feasible and infeasible region known as strategic oscillation
[10]. Normally, these are problem dependent, or require complex calculation to per-
form crossover and mutation to produce feasible progeny from feasible parents.
Moreover, finding an initial feasible solution is itself an NP-hard problem [2].

Generally, violation count is used as a fitness function for any CSP. Depending on
the strengths of constraints, individual weights can be assigned to constraints in a
penalty function to calculate the fitness value. To avoid problem dependent penalty
functions and to utilize some information from constraints to guide the evolutionary
search many heuristic algorithms do not use violation count but use a distance func-
tion to indicate how far an individual is from the feasible regions [15]. It transforms
constraint functions to a fitness function to rank individual chromosomes. This fitness
function tries to progressively bring the chromosomes closer to the feasible space
using the following function:

௜ሺܺሻݏݏ݁݊ݐ݂݅ ൌ ൜݃௜ሺܺሻ, ݂݅ሺ݃௜ሺܺሻ ൏ 0ሻ0, ݂݅ሺ݃௜ሺܺሻ ൒ 0ሻ (1)

 ݁ ൌ ∑ ௜ሺܺሻ|௠௜ୀଵݏݏ݁݊ݐ݂݅| (2)

whereܺ is an input vector, ݉ is the total number of constraints and ݃௜ is ݅ th con-
straint function in the form of ݃௜ሺܺሻ ൒ 0 explained in Section 4 at Eq. (6-8). The
fitness function ݂݅ݏݏ݁݊ݐ௜ is a measurement of euclidean distance of vector ܺ from
the nearest point of the feasible region where constraint ݃௜ is satisfied. The error func-
tion ݁ is the summation of all the fitness functions. The objective is to minimize the
error value ݁. The solution to CSP is found when ݁ ൌ 0 where at least one solution is
acceptable. Fitness value based on the distance from constraint satisfaction regions
given in Eq. (1) and Eq. (2) produce good results and are independent of problems but
the major drawback of such fitness functions is that they are limited to continuous
domains only. They cannot be used for discrete CSPs where fitness functions typical-
ly depend on violation counts and penalty functions.

ICHEA attempts to solve CSP by utilizing as much information as possible that
can be derived from constraints to guide the evolutionary search without using penal-
ty functions and making it problem independent. It is a proposed variation of EA that
does not disregard the information from constraints to produce more efficient results.
This algorithm also does not require initial feasible solutions and it is also not re-
stricted to produce feasible progenies from feasible parents.

3 Intelligent Constraint Handling Evolutionary Algorithm

Constraint satisfaction problem (CSP) is defined by an inputvector ܺ ൌ ሼݔଵ, ,ଶݔ … ௜ܦ ௜ has afinitedomainݔ ௡ሽin a finite search space S where each variableݔ .

A set of constraints ሼܿଵ, ܿଶ, … ܿ௠ሽ are defined in the form of functions:

 ܿ௜ሺݔଵ, ,ଶݔ ௡ሻݔ … ൌ ൜1, ݂݅ ݀݁ݐ݈ܽ݋݅ݒ ݂݅ ,0݂݀݁݅ݏ݅ݐܽݏ (3)

272 A. Sharma and D. Sharma

Constraint satisfaction sets (feasible regions for each constraint) ሼ ଵܵ, ܵଶ, . . ܵ௠ሽ can
also be defined where:

 ௜ܵ ൌ ሼܺ א ܵ | ܿ௜ሺܺሻ ൌ 1, 1 ൑ ݅ ൑ ݉, ݅ א ܼሺ݅݊ݐ݁ݏ ݎ݁݃݁ݐሻሽ (4)

The solution of a CSP is ݏ א ܵwhen all the constraints ܿ௜are satisfied, which can be
given as:

 ∑ ܿ௜ሺݏሻ௠௜ୀଵ ൌ ݉ (5)

For continuous CSPs numerical constraints can be given in two forms – equality and
inequality[6, 13, 22].

 ݃௜ሺܺሻ ൒ 0 ݅ ൌ 1, … , ݇ (6)

 ௝݄ሺܺሻ ൌ 0 ݆ ൌ ݇ ൅ 1, … , ݉ (7)

The equality constraints cannot be solved directly using EAs so it is converted into
inequality constraint by introducing a positive tolerance value ߜ.

 ݃௝ሺܺሻ ൌ ߜ െ ห ௝݄ሺܺሻห ൒ 0 (8)

To utilize constraint satisfaction sets in an EA, a new crossover operator is definedin
ICHEA that usesinformation from constraints rather than blindly search for the solu-
tion. The idea of intermarriageis incorporated intoour proposed crossover operator
where both parents belong to different subpopulation sets i.e. satisfaction sets in the
context of CSPs. In other words the parent vectors from different sets ௜ܵand ௝ܵ are
taken for crossover where ݅ ് ݆. It is also possible that a parent does not belong to any
of the constraint satisfaction set i.e. ܵ െ ሺ ଵܵ ׫ ܵଶ ׫ ׫ … ܵ௠ሻ . The generated
offspring contains genes from both parents. The purpose is to make a “generic”
offspring that tries to satisfy more than one constraint because its parents are from
two different constraint satisfaction sets. The algorithm favors those offspring which
satisfy more constraints by utilizing Deb’s ranking scheme based on feasibility [6] to
rank the population. Constraint handling techniques can fall into two categories –
discrete and continuous constraint functions. Only continuous constraint functions
form the scope of this paper.

3.1 Intermarriage Crossover for Continuous CSPs

In intermarriage crossover, two parents generate two offspring. This is a dual process
where both parent move closer to each other one at a time and their new positions are
considered as two new offspring. An offspring from two parentsthrough intermarriage
is defined in a search space as a constant multiple of difference of two parent vectors
as shown in Eq. (9). Initially offspring ଵܱ is placed at ሺ ଶܲ െ ଵܲሻ/2 (a binary traver-
sal) then it iteratively moves closer to parent ଵܲ until it also satisfies the constraint(s)
that ଵܲ satisfies and similarly offspringܱଶ is designated.The iterative move can be
defined as:

 ଵܱ ൌ ቀଵଶቁ௜ ሺ ଶܲ െ ଵܲሻ (9)

 ICHEA – A Constraint Guided Search for Improving Evolutionary Algorithms 273

Fig. 1. Intermarriage Crossover

Fig. 2. Shrinking of the Feasible Region of a
Given Constraint from ߜ = 10௠௔௫ே to ߜ = 10௠௜௡ே

Variable ݅ gets incremented from 1 to a threshold ܶin the sequence1,2ۃ, . . . , The .ۄܶ
intermarriage crossover process is shown in the Fig. 1 where  mark indicates possi-
ble placement for an offspring and ×
mark indicate the offspring vector is
unacceptable in that particular position.
So using the Eq. (9) the next ݅ value is
used until the offspring finds an accept-
able place or a threshold value ܶ is
reached.The intermarriage crossover
would cause two selected vectors (as
parents) of different constraint satisfac-
tion sets to come closer (as offspring)
towards constraint boundary because the solution space lies in the overlapping boun-
dary region. Favoring points for intermarriage that satisfy more constraints results in
finding solution space quickly. As intermarriage crossover looks for feasible solution
using binary search in each side of the parents, its worst time complexity is 2logଶ ܶ
which represents total number of function calls (NFC) in a worst case of an intermar-
riage crossover. We empirically determined ܶ = 10 for our experiments. Larger val-
ues like 20, 50, 100 slow down the overall process and smaller values like 1, 2, 5
reduces the capability of intermarriage crossover to locate overlapping regions.

3.2 Locating Feasible Regions

For some problems, compared to the
size of the search space the satisfac-
tion set is relatively very small and
search for a solution is difficult. So
ICHEA starts with self-defined ex-
tended feasible search space of the
satisfaction sets that gradually decrea-
sesto the actual size. It helps in locat-
ing the feasible region by narrowing
down the search. In the test problems
search space can be extended or re-
duced by changing the value of ߜ
given in Eq. (8). ICHEA starts with value of 10 = ߜ௠௔௫ே that gradually decreases to 10 =ߜ௠௜௡ே. As soon as a CSP solution with 10 = ߜ௠௔௫ே is found݉ܽܰݔ is decre-
mented by 1 and starts a new search untilߜ reaches to 10௠௜௡ே . Fig. 2 shows how
constraint satisfaction set for a given constraint shrinks from ߜ = 10௠௔௫ே to 10 =ߜ௠௜௡ே. Feasible region can be located easily for 10 = ߜ௠௔௫ே in the search space
then it can gradually guide the evolutionary search to the actual feasible region ሺ10 = ߜ௠௜௡ேሻ specified by the user. ݉ܽܰݔand݉݅݊ܰ are usually 2 and -3 respectively. ݉ܽ2 >ܰݔ is not very effective and ݉ܽܰݔ ൒ 2 is able to locate the feasible regions
quickly. Any value above 2 can also be chosen but it will be decremented quickly
after few generations as extended feasible regions are located.

274 A. Sharma and D. Sharma

4 ICHEA Algorithm

ICHEA is another variation of EA that adds constraint handling features to the stan-
dard GAs. The pseudocode can be given as:

chromosomes =initializeChromosomes();

for each generation

 parents = NoveltyTournamentSelection();

 offspring = interMarriageCrossover(parents);

 Mutation(offspring);

 chromosomes = chromosomes + offspring;

 SortAndReplace();

 CheckTerminationCriteria();

 End for loop;

The description of subroutines is given below:

InitializeChromosomes: the population of chromosomes is randomly generated in a
search space initially where 50% is boundary points specified by lower and upper
bound of each dimension. The length of chromosome is same as the dimension of
input variables of CSP.

NoveltyTournamentSelection: Novelty search is a new approach to heuristic search
inspired by natural evolution's open-ended propensity to perpetually discover novelty.
The first paper on novelty was published in 2008 by [12]. It is normally used when
the objective function is deceitful for example a maze problem. The tournament selec-
tion of size 2 has been used where the winner of the two chromosomes is based on the
following preferences:

1. Its novelty in the search space
2. If novelty is same then higher fitness value
3. If fitness is same then a chromosome is picked randomly

InterMarriageCrossover: This technique has been described in section 4.1.

Mutation: ICHEA uses polynomial mutation as described in [6]for real valued data.

SortAndReplace: The idea of Deb’s ranking scheme based on feasibility [6] has been
incorporated here. At the end of each generation, chromosomes are sorted based on
the following order of preferences:

1. Number of satisfied constraints.
2. Fitness value which is the distance function from Eq. (2).

Once the chromosomes are sorted arandom death concept is used defined in[20] to
delete some predefined number of chromosomes randomly from the population. The
certain top percentage of the population is spared to control the search focus.

CheckTerminationCriteria: The iteration is stopped when:

1. The maximum number of generation is reached or
2. The CSP solution is found or
3. The process is stalled by no improvement in the solution for some generations.

 ICHEA – A Constraint Guided Search for Improving Evolutionary Algorithms 275

 Table 2. Benchmark Trigonometric Problem – H77

 GA ߜ
PSO-
DE

NSGA II ICHEA

10ିଵ
SR 1.00 1.00 1.00 1.00

Best
6951 gens
at 69.2s

17 gens
at 0.03s

136 gens
at 2.4s

8 gens
at 0.3s

Median
7428 gens
at 83.3s

45gens
at 0.1s

136 gens
at 2.4s

22 gens
at 0.64s

Worst
9532 gens
at 92.2s

221gens
at 0.4s

136 gens
at 2.4s

48 gens
at 1.53s

10ିଷ

SR
0.00 (1/5
constraint
violated)

0.20
0.00 (1/5
constraint
violated)

1.00

Best
50,000
gens at
481.0s

100,141
gens at
276.1s

50,000
gens at
914.64s

447
gens at
19.0s

Median - - -
3250

gens at
113.7s

Worst - - -
6297

gens at
211.4s

5 Experiments

ICHEA has been tested with canonical genetic algorithm (GA), non-dominated sort-
ing genetic algorithm (NSGA II) [6]and hybridization of particle swarm optimization
with differential evolution (PSO-DE) [13]to compare its robustness and efficiency.
GA has been used as-it-is without any modification or specialization to handle

Table 1. Parameter Settings

Parameters ICHEA GA PSO-DE NSGA
Population Size 25 100 100 100
Crossover rate 0.8 0.8 [0.95 1.0] 0.8
Mutation rate 0.1 0.1 - 0.1
Max generations 10,000 50,000 200,000 50, 000

constraints. NSGA II solves CSPs through multi-objective optimization and it has
been shown in [6] that it has an edge over other multi objective optimization algo-
rithms to solve COPs. PSO-DE is one of the latest proposed algorithms to solve
numerical COPs very efficiently.
It is able to reach to optimum
solutions easily for many bench-
mark problems [13]. The code for
GA is taken from genetic algo-
rithms toolbox revision: 1.1.4.2,
Matlab 7.0.1, NSGA II is taken
from its author’s website in [7]
developed in C language and
PSO-DE is developed in C++
language which has also been
taken from its author’s website in
[23]. ICHEA has been developed
in Java language. All algorithms
have been tested on Windows XP
machine with Pentium (R) i5 CPU
2.52 GHz and 3.24 GB RAM. No
parallel processing or distributed
environment is used for the expe-
riments. All of these algorithms
use distance function shown in
Eq. (2) as a fitness function
without any additional penalty
functions.

An average of 10 successive runs is taken into account to test the algorithms based
on success rate (SR) and generation count to reach to the solution. SR is the rate of

276 A. Sharma and D. Sharma

successful trials for each problem i.e. ܴܵ ൌ ݏ݈ܽ݅ݎݐ ݈ܽݐ݋ݐ/ݏ݈ܽ݅ݎݐ ݈ݑ݂ݏݏ݁ܿܿݑݏ . The
common efficiency measurement – the number of function calls (NFC) is not used in
the experiment as
ICHEA is local
search intensive
while other algo-
rithms are not. Table
1 shows the parame-
ter settings for all the
algorithms. Different
maximum genera-
tions have been
taken as the compu-
tation speed of each
algorithm varies.
PSO-DE uses an
additional parameter
– amplification fac-
tion ܨ that is ran-
domly generated
within ሾ0.9 1.0ሿ.

Seven benchmark
problems from CSP
and COP do-
mains[15, 21]have
been resourced for
the comparative test.
Table 2 to Table 5
shows the CSP test
results for problems
H77, Chem, Broy-
den10, and HS109.
Test problems are
not elaborated due to
the space limitation.
The test resultsshow
best, median and
worst solutions for
each problem in
terms of SR and
efficiency. Columns
are left blank with “-
” if either it is not
applicable or no

Table 3. Benchmark Quadratic Problem – Chem ߜ GA PSO-DE NSGA II ICHEA

10ିଵ

SR
0.00 (2/5
constraint
violated)

0.00 (5/5
constraint
violated)

0.00 (1/5
constraint
violated)

1.00

Best
50,000
gens at
515.2s

200,000
gens at
461.0s

50,000
gens at
784.1s

54 gens
at 0.83s

Median - - -
238

gens at
4.66

Worst - - -
559

gens at
11.1s

10ିଷ
SR

0.00 (5/5
constraint
violated)

0.00 (5/5
constraint
violated)

0.00 (4/5
constraints
violated)

0.30

Best
50,000
gens at
443.2s

200,000
gens at
508.2s

50,000
gens at
825.4s

5900
gens at
196.4s

Median - - - -
Worst - - - -

Table 4. Benchmark Polynomial Problem – Broyden10

 GA ߜ
PSO-
DE

NSGA II ICHEA

10ିଵ
SR

0.00
(10/10

constraints
violated)

0.40

0.00
(10/10

constraints
violated)

0.80

Best
50,000
gens at
419.0s

20,187
gens at
59.8s

20,000
gens at
524.0s

116 gens
at 189.1s

Median -
40,205
gens at
114.1s

-
248 gens
at 235.1s

Worst - - - -

 ICHEA – A Constraint Guided Search for Improving Evolutionary Algorithms 277

good results have been obtained. Problem HS109 is a hard problem where no good
solutions are observed for the original problem. Originally this problem belongs to
COP domain that has been converted to CSP by introducing error value ݁ݏ݌ which is
a deflection from best known optimum solution. We used the ݁ݏ݌ value of 10% ra-
ther than usual 1% to
increase the size of
feasibility region.

Since constraint sa-
tisfaction is a subset of
constraint optimiza-
tion, all algorithms
have been tested on
COP benchmark prob-
lems [13, 15] as well.
The objective is
changed to find at least
one CSP solution ra-
ther than search for an
optimum solution.
Table 6 shows the COP
test results. In many of
these problems finding
a feasible solution or
CSP solution is not a
challenge. For example
problem solutions for
G01, … , G10 are ob-
tained in less than 1
second except for prob-
lem G05. Test results
have been discussed in
the following section.

6 Discussion

The experimental results based on SR and efficiency indicate that canonical GA is gener-
ally not able to handle hard CSPs when only distance value is used as a fitness function.
It must resort to some penalty functions. NSGA II also struggles in solving hard CSPs.
PSO-DE generally solves a problem very quickly compared to other algorithms but only
if the feasible regions are larger with positive tolerance value of 1.0E-1. For hard CSPs

Table 5. Benchmark Trigonometric Problem – HS109

 GA PSO-DE NSGA II ICHEA ߜ

10ିଵ
SR

0.00 (6/11
constraints
violated)

0.00 (6/11
constraints
violated)

0.00 (4/11
constraints
violated)

0.70

Best
50,000
gens at
371.9s

200,000
gens at
728.8s

50,000
gens at
1903.0s

53 gens
at 71.0s

Median - - -
70 gens

at 239.3s
Worst - - - -

Table 6. COP Benchmark Test Problems Results

Prob ߜ GA PSO-DE NSGA II ICHEA

G01 -
SR 1.00 1.00 1.00 1.00

Median
2 gens at

0.03s
5 gens at
0.016s

13 gens at
0.32s

1 gen at
0.02s

G02 -
SR 1.00 1.00 1.00 1.00

Median
2 gens at

0.01s
1 gens at

0.03s
2 gens at

0.01s
1 gen at

0.01s

G05 10ିହ
SR

0.00 (3/5
constraints
violated)

1.00
0.00 (3/5

constraints
violated)

1.00

Best
50,000
gens at
318.6s

376 gens
at 0.76s

50,000
gens at
910.2

18 gens
0.40s

Median -
1818

gens at
3.44s

-
19 gens
0.41s

Worst -
1958

gens at
4.4s

-
21 gens
at 0.46s

278 A. Sharma and D. Sharma

with positive tolerance value of 1.0E-3 (which is generally an acceptable value) PSO-DE
has low SR. Comparative results of all algorithms shows the competitiveness of ICHEA
where it is able to find feasible solutions with relatively higher success rate on hard CSPs
as it makes use of informationfrom constraints more effectively using a novel search
operator – intermarriage crossover.

ICHEA does not need to have initial feasible solutions; however, it is able to main-
tain feasible solutions through intermarriagecrossover in an efficient way without
using any kind of repair functions. The selection of parents is based on their novelty
in a search space to enforce diversity [12]. The test results show that ICHEA provides
a generic EA that can solve numeric CSPs efficiently without making use of problem
dependent penalty functions.

7 Conclusion

This paper has introduced a new variation of EA named ICHEA to handle CSPs. It
has been shown through benchmark problems that ICHEA outperforms standard GA,
NSGA II and PSO-DE in terms of higher SR and efficiency. The search mechanism
of ICHEA is guided by constraints where it concentrates on the feasible regions of
constraint satisfaction sets to get a solution without putting extra computational effort
in searching through the whole search space.

ICHEA is a work-in-progress to create a generalized tool to solve any type of CSP.
It has all the potential to be extended to work for discrete data as well because its
objective function only exploits information from constraints. ICHEA is currently
further developed to solve COPsas characterized and will be evaluated on benchmark
problems.

References

1. Brailsford, S.: Constraint satisfaction problems: Algorithms and applications. European
Journal of Operational Research 119(3), 557–581 (1999)

2. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied
Mechanics and Engineering 191(11-12), 1245–1287 (2002)

3. Craenen, B.G.W., et al.: Comparing evolutionary algorithms on binary constraint satisfac-
tion problems. IEEE Transactions on Evolutionary Computation 7(5), 424–444 (2003)

4. Craenen, B.G.W.: Solving constraint satisfaction problems with evolutionary algorithms.
Phd Dissertation, Vrije Universiteit (2005)

5. Craenen, B.G.W., et al.: Solving constraint satisfaction problems with heuristic-based evo-
lutionary algorithms. In: Proceedings of the 2000 Congress on Evolutionary Computation,
vol. 2, pp. 1571–1577. IEEE (2000)

6. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans-
actions on Evolutionary Computation 6(2), 182–197 (2002)

7. Deb, K.: Kanpur Genetic Algorithms Laboratory,
http://www.iitk.ac.in/kangal/codes.shtml

 ICHEA – A Constraint Guided Search for Improving Evolutionary Algorithms 279

8. Eiben, A.E.: Evolutionary algorithms and constraint satisfaction: definitions, survey, me-
thodology, and research directions. Presented at the (2001)

9. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: For-
mu-lation, Discussion and Generalization. In: Proceedings of the 5th International Confe-
rence on Genetic Algorithms, pp. 416–423. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1993)

10. Glover, F., Kochenberger, G.A.: Critical event tabu search for multidimensional knapsack
problems. In: Osman, I., Kelly, J. (eds.) Meta Heuristics: Theory and Applications (1996)

11. Kramer, O.: A Review of Constraint-Handling Techniques for Evolution Strategies. Ap-
plied Computational Intelligence and Soft Computing, 1–11 (2010)

12. Lehman, J., Stanley, K.: Exploiting Open-Endedness to Solve Problems Through the
Search for Novelty. In: Proceedings of the Eleventh International Conference on Artificial
Life (ALIFE XI). MIT Press (2008)

13. Liu, H., et al.: Hybridizing particle swarm optimization with differential evolution for con-
strained numerical and engineering optimization. Appl. Soft Comput., 629–640 (2010)

14. Mezura-Montes, E., Coello, C.A.C.: A Survey of Constraint-Handling Techniques Based
on Evolutionary Multiobjective Optimization, Departamento de Computación, Evolutio-
nary Computation Group at CINVESTAV (2006)

15. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter op-
timization problems. Evolutionary Computation 4(1), 1–32 (1996)

16. Müller, T.: Constraint-based Timetabling. PhD Dissertation, Charles University (2005)
17. Paredis, J.: Co-evolutionary Constraint Satisfaction. In: Davidor, Y., Männer, R., Schwe-

fel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 46–55. Springer, Heidelberg (1994)
18. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algo-

rithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, pp. 93–
100. L. Erl-baum Associates Inc. (1985)

19. Shang, Y., Fromherz, M.P.J.: Experimental complexity analysis of continuous constraint
satisfaction problems. Information Sciences 153, 1–36 (2003)

20. Sharma, A.: A new optimizing algorithm using reincarnation concept. In: 2010 11th IEEE
International Symposium on Computational Intelligence and Informatics (CINTI),
pp. 281–288. Springer, Heidelberg (2010)

21. Shcherbina, O.: The COCONUT Benchmark,
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/
Benchmark.html

22. Tessema, B., Yen, G.G.: A Self Adaptive Penalty Function Based Algorithm for Con-
strained Optimization. In: IEEE Congress on Evolutionary Computation, CEC 2006,
pp. 246–253. IEEE (2006)

23. Wang, Y.: Yong Wang CV,
http://deptauto.csu.edu.cn/staffmember/YongWang.html

	ICHEA – A Constraint Guided Search for Improving Evolutionary Algorithms

	Introduction
	Constraint Handling through EAs
	Intelligent Constraint Handling Evolutionary Algorithm
	new crossover
	Intermarriage Crossover for Continuous CSPs
	Locating Feasible Regions

	ICHEA Algorithm
	Experiments
	Discussion
	Conclusion
	References

