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Abstract. Many science and engineering applications require finding solutions 
to optimization problems by satisfying a set of constraints. These problems are 
typically NP-complete and can be formalized as constraint satisfaction prob-
lems (CSPs). Evolutionary algorithms (EAs) are good solvers for optimization 
problems ubiquitous in various problem domains. EAs have also been used to 
solve CSPs, however traditional EAs are ‘blind’ to constraints as they do not 
exploit information from the constraints in search for solutions. In this paper, a 
variation of EA is proposed where information is extracted from the constraints 
and exploited in search. The proposed model (ICHEA for Intelligent Constraint 
Handling Evolutionary Algorithm) improves on efficiency and is independent 
of problem characteristics. This paper presents ICHEA and its results from 
solving continuous CSPs. The results are significantly better than results  
from other existing approaches and the model shows strong potential. The 
scope is to finding at least one solution that satisfies all the constraints rather 
than optimizing the solutions. 

Keywords: constraint satisfaction problem (CSP), Evolutionary algorithms 
(EAs), Intelligent Constraint Handling Evolutionary Algorithm (ICHEA),  
optimization problems. 

1 Introduction 

Many engineering problems ranging from resource allocation and scheduling to fault 
diagnosis and design involve constraint satisfaction as an essential component that 
require finding solutions to satisfy a set of constraints over real numbers or discrete 
representation of constraints[3, 4, 19].Even though CSP solving is an essential com-
puter science approaches only little research has been reported on the development of 
efficient and effective constraint-handling techniques (especially with respect to a 
plethora of new methods available for unconstrained optimization [11]). 

The classical algorithms that solve CSPs include branch and bound, backtrack al-
gorithm, iterative forward search algorithm, local search but heuristic methods such as 
evolutionary algorithms(EAs) have mixed successand for many difficult problems 
these are the only available choices [1, 4, 16]. EAs however suffer from some of  
its inherent problems to solve CSPs as they do not make use of information from  
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constraints and only blindly search in the solution space using different heuristic 
search algorithms [4]. Generally objective functions are designed on problem depen-
dent penalty functions but some use generalized error measurements like euclidean 
distance from feasible regions which is applicable to continuous CSPs only. 

The constraint problems can be divided into two classes: constrained optimizing 
problems (COPs) and constraint satisfaction problems (CSPs).The difference between 
these classes is that in the first an optimal solution that satisfies all constraints should 
be found, while in the second class any solution as long as all the constraints are satis-
fied is acceptable[8]. (This paper only focuses on CSPs.) 

Characteristically, CSPs solved by EAsuse penalty based functions. A penalty 
function updates the fitness of chromosomes in EA. A penalty term is used in general 
for reward and punishment for satisfying and/or violating the constraints [2]. Howev-
er, its main shortcoming is that penalty factors which determine the severity of the 
punishment, must be set by the user and their values are problem dependent[14]. 
Some other constraint handling approaches include expensive repair algorithms that 
promote the local search to transform infeasible solutions to feasible solutions be-
cause the feasible parents not necessarily produce feasible progenies[2].In multi-
objective optimization (MOO) constraints are transformed into multiple objectives. 
There are many established MOO algorithms like MOGA[9], VEGA [18], NSGA and 
NSGAII[6]. Paredis in [17] has used co-evolution strategies that utilizes predator-prey 
model to keep two populations – one population represents solutions that satisfies 
many constraints while other population represents those individuals whose con-
straint(s) is violated by lots of individuals in the first population. This strategy re-
quires extra computational effort to find the intersection of a line with the boundary of 
the feasible region. 

The main contribution of this paper is to provide a variation of EAs that reduce its 
inherent problems by exploiting constraints in improving search. The paper is orga-
nized as follows: Section 2 briefly discusses the EA techniques used in handling con-
straints. Section 3 describes our proposed algorithm ICHEA – a variation of EA.  
Section 4 elaborates more on ICHEA from algorithmic perspective. Section 5 shows 
experimental results of ICHEA with other EAs used in solving CSPs. Section 6 dis-
cusses the outcomes of the experiments performed and section 7 concludes the paper 
by summarizing the results and proposing some further extensions to the research. 

2 Constraint Handling through EAs 

Traditional EAs are ‘blind’ to constraint as they do not extract the knowledge from 
the constraints but search the solution through random heuristic greedy approach  
[3, 5]. This causes the search engine to spend extra computational effort in searching 
for the solution into the wider search space without only concentrating in the re-
stricted smaller feasible search space. Constraints can reduce the search space and it 
can make the heuristic search more efficient by harnessing information from con-
straint to guide the search engine, search in feasible search space only.Some research 
has been reported on working with feasible search space or searching for solution in 
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the boundary between the feasible and infeasible region known as strategic oscillation 
[10]. Normally, these are problem dependent, or require complex calculation to per-
form crossover and mutation to produce feasible progeny from feasible parents. 
Moreover, finding an initial feasible solution is itself an NP-hard problem [2]. 

Generally, violation count is used as a fitness function for any CSP. Depending on 
the strengths of constraints, individual weights can be assigned to constraints in a 
penalty function to calculate the fitness value. To avoid problem dependent penalty 
functions and to utilize some information from constraints to guide the evolutionary 
search many heuristic algorithms do not use violation count but use a distance func-
tion to indicate how far an individual is from the feasible regions [15]. It transforms 
constraint functions to a fitness function to rank individual chromosomes. This fitness 
function tries to progressively bring the chromosomes closer to the feasible space 
using the following function: 

௜ሺܺሻݏݏ݁݊ݐ݂݅  ൌ  ൜݃௜ሺܺሻ,         ݂݅ሺ݃௜ሺܺሻ ൏ 0ሻ0,                 ݂݅ሺ݃௜ሺܺሻ ൒ 0ሻ (1) 

 ݁ ൌ  ∑ ௜ሺܺሻ|௠௜ୀଵݏݏ݁݊ݐ݂݅|  (2) 

whereܺ is an input vector, ݉ is the total number of constraints and ݃௜  is ݅ th con-
straint function in the form of ݃௜ሺܺሻ ൒ 0 explained in Section 4 at Eq. (6-8). The 
fitness function ݂݅ݏݏ݁݊ݐ௜  is a measurement of euclidean distance of vector ܺ from 
the nearest point of the feasible region where constraint ݃௜ is satisfied. The error func-
tion ݁ is the summation of all the fitness functions. The objective is to minimize the 
error value ݁. The solution to CSP is found when ݁ ൌ 0 where at least one solution is 
acceptable. Fitness value based on the distance from constraint satisfaction regions 
given in Eq. (1) and Eq. (2) produce good results and are independent of problems but 
the major drawback of such fitness functions is that they are limited to continuous 
domains only. They cannot be used for discrete CSPs where fitness functions typical-
ly depend on violation counts and penalty functions. 

ICHEA attempts to solve CSP by utilizing as much information as possible that 
can be derived from constraints to guide the evolutionary search without using penal-
ty functions and making it problem independent. It is a proposed variation of EA that 
does not disregard the information from constraints to produce more efficient results. 
This algorithm also does not require initial feasible solutions and it is also not re-
stricted to produce feasible progenies from feasible parents. 

3 Intelligent Constraint Handling Evolutionary Algorithm 

Constraint satisfaction problem (CSP) is defined by an inputvector ܺ ൌ ሼݔଵ, ,ଶݔ … ௜ܦ ௜ has afinitedomainݔ ௡ሽin a finite search space S where each variableݔ . 

A set of constraints ሼܿଵ, ܿଶ, … ܿ௠ሽ are defined in the form of functions: 

 ܿ௜ሺݔଵ, ,ଶݔ ௡ሻݔ … ൌ  ൜1,         ݂݅ ݀݁ݐ݈ܽ݋݅ݒ ݂݅         ,0݂݀݁݅ݏ݅ݐܽݏ  (3) 
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Constraint satisfaction sets (feasible regions for each constraint) ሼ ଵܵ, ܵଶ, . . ܵ௠ሽ can 
also be defined where: 

  ௜ܵ ൌ  ሼܺ א ܵ | ܿ௜ሺܺሻ ൌ 1, 1 ൑ ݅ ൑ ݉, ݅ א ܼሺ݅݊ݐ݁ݏ ݎ݁݃݁ݐሻሽ (4) 

The solution of a CSP is ݏ א ܵwhen all the constraints ܿ௜are satisfied, which can be 
given as: 

 ∑ ܿ௜ሺݏሻ௠௜ୀଵ ൌ ݉ (5) 

For continuous CSPs numerical constraints can be given in two forms – equality and 
inequality[6, 13, 22]. 

 ݃௜ሺܺሻ  ൒ 0                 ݅ ൌ 1, … , ݇ (6) 

 ௝݄ሺܺሻ ൌ 0        ݆ ൌ ݇ ൅ 1, … , ݉ (7) 

The equality constraints cannot be solved directly using EAs so it is converted into 
inequality constraint by introducing a positive tolerance value ߜ.  

 ݃௝ሺܺሻ ൌ ߜ െ ห ௝݄ሺܺሻห ൒ 0  (8) 

To utilize constraint satisfaction sets in an EA, a new crossover operator is definedin 
ICHEA that usesinformation from constraints rather than blindly search for the solu-
tion. The idea of intermarriageis incorporated intoour proposed crossover operator 
where both parents belong to different subpopulation sets i.e. satisfaction sets in the 
context of CSPs. In other words the parent vectors from different sets ௜ܵand ௝ܵ are 
taken for crossover where ݅ ് ݆. It is also possible that a parent does not belong to any 
of the constraint satisfaction set i.e. ܵ െ ሺ ଵܵ ׫ ܵଶ ׫ ׫ … ܵ௠ሻ . The generated 
offspring contains genes from both parents. The purpose is to make a “generic” 
offspring that tries to satisfy more than one constraint because its parents are from 
two different constraint satisfaction sets. The algorithm favors those offspring which 
satisfy more constraints by utilizing Deb’s ranking scheme based on feasibility [6] to 
rank the population. Constraint handling techniques can fall into two categories – 
discrete and continuous constraint functions. Only continuous constraint functions 
form the scope of this paper. 

3.1 Intermarriage Crossover for Continuous CSPs 

In intermarriage crossover, two parents generate two offspring. This is a dual process 
where both parent move closer to each other one at a time and their new positions are 
considered as two new offspring. An offspring from two parentsthrough intermarriage 
is defined in a search space as a constant multiple of difference of two parent vectors 
as shown in Eq. (9). Initially offspring ଵܱ is placed at ሺ ଶܲ െ ଵܲሻ/2 (a binary traver-
sal) then it iteratively moves closer to parent ଵܲ until it also satisfies the constraint(s) 
that ଵܲ satisfies and similarly offspringܱଶ is designated.The iterative move can be 
defined as: 

 ଵܱ ൌ  ቀଵଶቁ௜ ሺ ଶܲ െ ଵܲሻ (9) 
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Fig. 1. Intermarriage Crossover 

 

Fig. 2. Shrinking of the Feasible Region of a 
Given Constraint from ߜ  = 10௠௔௫ே to ߜ  = 10௠௜௡ே 

Variable ݅ gets incremented from 1 to a threshold ܶin the sequence1,2ۃ, . . . ,  The .ۄܶ
intermarriage crossover process is shown in the Fig. 1 where  mark indicates possi-
ble placement for an offspring and × 
mark indicate the offspring vector is 
unacceptable in that particular position. 
So using the Eq. (9) the next ݅ value is 
used until the offspring finds an accept-
able place or a threshold value ܶ  is 
reached.The intermarriage crossover 
would cause two selected vectors (as 
parents) of different constraint satisfac-
tion sets to come closer (as offspring) 
towards constraint boundary because the solution space lies in the overlapping boun-
dary region. Favoring points for intermarriage that satisfy more constraints results in 
finding solution space quickly. As intermarriage crossover looks for feasible solution 
using binary search in each side of the parents, its worst time complexity is 2logଶ ܶ 
which represents total number of function calls (NFC) in a worst case of an intermar-
riage crossover. We empirically determined ܶ = 10 for our experiments. Larger val-
ues like 20, 50, 100 slow down the overall process and smaller values like 1, 2, 5 
reduces the capability of intermarriage crossover to locate overlapping regions. 

3.2 Locating Feasible Regions 

For some problems, compared to the 
size of the search space the satisfac-
tion set is relatively very small and 
search for a solution is difficult. So 
ICHEA starts with self-defined ex-
tended feasible search space of the 
satisfaction sets that gradually decrea-
sesto the actual size. It helps in locat-
ing the feasible region by narrowing 
down the search. In the test problems 
search space can be extended or re-
duced by changing the value of ߜ 
given in Eq. (8). ICHEA starts with value of 10 = ߜ௠௔௫ே that gradually decreases to  10 =ߜ௠௜௡ே. As soon as a CSP solution with 10 = ߜ௠௔௫ே is found݉ܽܰݔ is decre-
mented by 1 and starts a new search untilߜ reaches to 10௠௜௡ே . Fig. 2 shows how 
constraint satisfaction set for a given constraint shrinks from ߜ  = 10௠௔௫ே  to 10 =ߜ௠௜௡ே. Feasible region can be located easily for 10 = ߜ௠௔௫ே in the search space 
then it can gradually guide the evolutionary search to the actual feasible region ሺ10 = ߜ௠௜௡ேሻ specified by the user. ݉ܽܰݔand݉݅݊ܰ are usually 2 and -3 respectively. ݉ܽ2 >ܰݔ is not very effective and ݉ܽܰݔ ൒ 2 is able to locate the feasible regions 
quickly. Any value above 2 can also be chosen but it will be decremented quickly 
after few generations as extended feasible regions are located. 
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4 ICHEA Algorithm 

ICHEA is another variation of EA that adds constraint handling features to the stan-
dard GAs. The pseudocode can be given as: 

chromosomes  =initializeChromosomes(); 

for each generation 

  parents = NoveltyTournamentSelection(); 

  offspring = interMarriageCrossover(parents); 

  Mutation(offspring); 

  chromosomes = chromosomes + offspring; 

  SortAndReplace();                 

  CheckTerminationCriteria(); 

  End for loop; 

The description of subroutines is given below: 

InitializeChromosomes: the population of chromosomes is randomly generated in a 
search space initially where 50% is boundary points specified by lower and upper 
bound of each dimension. The length of chromosome is same as the dimension of 
input variables of CSP. 

NoveltyTournamentSelection: Novelty search is a new approach to heuristic search 
inspired by natural evolution's open-ended propensity to perpetually discover novelty. 
The first paper on novelty was published in 2008 by [12]. It is normally used when 
the objective function is deceitful for example a maze problem. The tournament selec-
tion of size 2 has been used where the winner of the two chromosomes is based on the 
following preferences: 

1. Its novelty in the search space 
2. If novelty is same then higher fitness value 
3. If fitness is same then a chromosome is picked randomly 

InterMarriageCrossover: This technique has been described in section 4.1. 

Mutation: ICHEA uses polynomial mutation as described in [6]for real valued data.  

SortAndReplace: The idea of Deb’s ranking scheme based on feasibility [6] has been 
incorporated here. At the end of each generation, chromosomes are sorted based on 
the following order of preferences: 

1. Number of satisfied constraints. 
2. Fitness value which is the distance function from Eq. (2). 

Once the chromosomes are sorted arandom death concept is used defined in[20] to 
delete some predefined number of chromosomes randomly from the population. The 
certain top percentage of the population is spared to control the search focus. 

CheckTerminationCriteria: The iteration is stopped when: 

1. The maximum number of generation is reached or 
2. The CSP solution is found or 
3. The process is stalled by no improvement in the solution for some generations. 
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  Table 2. Benchmark Trigonometric Problem – H77 

 GA  ߜ
PSO-
DE 

NSGA II ICHEA 

10ିଵ
SR 1.00 1.00 1.00 1.00 

Best 
6951 gens 
at 69.2s 

17 gens 
at 0.03s

136 gens 
at 2.4s 

8 gens 
at 0.3s 

Median
7428 gens 
at 83.3s 

45gens 
at 0.1s 

136 gens 
at 2.4s 

22 gens 
at 0.64s 

Worst
9532 gens 
at 92.2s 

221gens 
at 0.4s 

136 gens 
at 2.4s 

48 gens 
at 1.53s 

10ିଷ

SR 
0.00 (1/5 
constraint 
violated) 

0.20 
0.00 (1/5 
constraint 
violated) 

1.00 

Best 
50,000 
gens at 
481.0s 

100,141 
gens at 
276.1s 

50,000 
gens at 
914.64s 

447 
gens at 
19.0s 

Median - - - 
3250 

gens at 
113.7s 

Worst - - - 
6297 

gens at 
211.4s 

5 Experiments 

ICHEA has been tested with canonical genetic algorithm (GA), non-dominated sort-
ing genetic algorithm (NSGA II) [6]and hybridization of particle swarm optimization 
with differential evolution (PSO-DE) [13]to compare its robustness and efficiency. 
GA has been used as-it-is without any modification or specialization to handle  
 

Table 1. Parameter Settings 

Parameters ICHEA GA PSO-DE NSGA 
Population Size 25 100 100 100 
Crossover rate 0.8 0.8 [0.95 1.0] 0.8 
Mutation rate 0.1 0.1 - 0.1 
Max generations 10,000 50,000 200,000 50, 000

constraints. NSGA II solves CSPs through multi-objective optimization and it has 
been shown in [6] that it has an edge over other multi objective optimization algo-
rithms to solve COPs. PSO-DE is one of the latest proposed algorithms to solve  
numerical COPs very efficiently. 
It is able to reach to optimum 
solutions easily for many bench-
mark problems [13]. The code for 
GA is taken from genetic algo-
rithms toolbox revision: 1.1.4.2, 
Matlab 7.0.1, NSGA II is taken 
from its author’s website in [7] 
developed in C language and 
PSO-DE is developed in C++ 
language which has also been 
taken from its author’s website in 
[23]. ICHEA has been developed 
in Java language. All algorithms 
have been tested on Windows XP 
machine with Pentium (R) i5 CPU 
2.52 GHz and 3.24 GB RAM. No 
parallel processing or distributed 
environment is used for the expe-
riments. All of these algorithms 
use distance function shown in 
Eq. (2) as a fitness function  
without any additional penalty 
functions.  

An average of 10 successive runs is taken into account to test the algorithms based 
on success rate (SR) and generation count to reach to the solution. SR is the rate of  
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successful trials for each problem i.e. ܴܵ ൌ ݏ݈ܽ݅ݎݐ ݈ܽݐ݋ݐ/ݏ݈ܽ݅ݎݐ ݈ݑ݂ݏݏ݁ܿܿݑݏ  . The 
common efficiency measurement – the number of function calls (NFC) is not used in 
the experiment as 
ICHEA is local 
search intensive 
while other algo-
rithms are not. Table 
1 shows the parame-
ter settings for all the 
algorithms. Different 
maximum genera-
tions have been  
taken as the compu-
tation speed of each 
algorithm varies. 
PSO-DE uses an 
additional parameter 
– amplification fac-
tion ܨ  that is ran-
domly generated 
within ሾ0.9 1.0ሿ.  

Seven benchmark 
problems from CSP 
and COP do-
mains[15, 21]have 
been resourced for 
the comparative test. 
Table 2 to Table 5 
shows the CSP test 
results for problems 
H77, Chem, Broy-
den10, and HS109. 
Test problems are 
not elaborated due to 
the space limitation. 
The test resultsshow 
best, median and 
worst solutions for 
each problem in 
terms of SR and 
efficiency. Columns 
are left blank with “-
” if either it is not 
applicable or no  
 

 

Table 3. Benchmark Quadratic Problem – Chem ߜ  GA PSO-DE NSGA II ICHEA 

10ିଵ

SR 
0.00 (2/5 
constraint 
violated)

0.00 (5/5 
constraint 
violated)

0.00 (1/5 
constraint 
violated) 

1.00 
 

Best 
50,000 
gens at 
515.2s 

200,000 
gens at 
461.0s 

50,000 
gens at 
784.1s 

54 gens 
at 0.83s 

Median - - - 
238 

gens at 
4.66 

Worst - - - 
559 

gens at 
11.1s 

10ିଷ
SR 

0.00 (5/5 
constraint 
violated)

0.00 (5/5 
constraint 
violated)

0.00 (4/5 
constraints 
violated) 

0.30 
 

Best 
50,000 
gens at 
443.2s 

200,000 
gens at 
508.2s 

50,000 
gens at 
825.4s 

5900 
gens at 
196.4s 

Median - - - - 
Worst - - - - 

 

Table 4. Benchmark Polynomial Problem – Broyden10 

 GA  ߜ
PSO-
DE 

NSGA II ICHEA 

10ିଵ
SR 

0.00 
(10/10 

constraints 
violated) 

0.40 

0.00 
(10/10 

constraints 
violated) 

0.80 
 

Best 
50,000 
gens at 
419.0s 

20,187 
gens at 
59.8s 

20,000 
gens at 
524.0s 

116 gens 
at 189.1s 

 

Median - 
40,205 
gens at 
114.1s

- 
248 gens 
at 235.1s 

Worst - - - - 
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good results have been obtained. Problem HS109 is a hard problem where no good 
solutions are observed for the original problem. Originally this problem belongs to 
COP domain that has been converted to CSP by introducing error value ݁ݏ݌ which is 
a deflection from best known optimum solution. We used the ݁ݏ݌ value of 10% ra-
ther than usual 1% to 
increase the size of 
feasibility region.  

Since constraint sa-
tisfaction is a subset of 
constraint optimiza-
tion, all algorithms 
have been tested on 
COP benchmark prob-
lems [13, 15] as well. 
The objective is 
changed to find at least 
one CSP solution ra-
ther than search for an 
optimum solution. 
Table 6 shows the COP 
test results. In many of 
these problems finding 
a feasible solution or 
CSP solution is not a 
challenge. For example 
problem solutions for 
G01, … , G10 are ob-
tained in less than 1 
second except for prob-
lem G05. Test results 
have been discussed in 
the following section. 

 
 
 
 
 

6 Discussion 

The experimental results based on SR and efficiency indicate that canonical GA is gener-
ally not able to handle hard CSPs when only distance value is used as a fitness function. 
It must resort to some penalty functions. NSGA II also struggles in solving hard CSPs. 
PSO-DE generally solves a problem very quickly compared to other algorithms but only 
if the feasible regions are larger with positive tolerance value of 1.0E-1. For hard CSPs 

Table 5. Benchmark Trigonometric Problem – HS109 

 GA PSO-DE NSGA II ICHEA  ߜ 

10ିଵ
SR 

0.00 (6/11 
constraints 
violated) 

0.00 (6/11 
constraints 
violated) 

0.00 (4/11 
constraints 
violated) 

0.70 
 

Best 
50,000 
gens at 
371.9s 

200,000 
gens at 
728.8s 

50,000 
gens at 
1903.0s 

53 gens 
at 71.0s 

Median - - - 
70 gens 

at 239.3s 
Worst - - - - 

 
Table 6. COP Benchmark Test Problems Results 

Prob ߜ  GA PSO-DE NSGA II ICHEA 

G01 - 
SR 1.00 1.00 1.00 1.00 

Median
2 gens at 

0.03s 
5 gens at 
0.016s 

13 gens at 
0.32s 

1 gen at 
0.02s 

G02 - 
SR 1.00 1.00 1.00 1.00 

Median
2 gens at 

0.01s 
1 gens at 

0.03s 
2 gens at 

0.01s 
1 gen at 

0.01s 

G05 10ିହ
SR 

0.00 (3/5 
constraints 
violated) 

1.00 
0.00 (3/5 

constraints 
violated) 

1.00 

Best 
50,000 
gens at 
318.6s 

376 gens 
at 0.76s

50,000 
gens at 
910.2 

18 gens 
0.40s 

Median - 
1818 

gens at 
3.44s 

- 
19 gens 
0.41s 

Worst - 
1958 

gens at 
4.4s 

- 
21 gens 
at 0.46s 
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with positive tolerance value of 1.0E-3 (which is generally an acceptable value) PSO-DE 
has low SR. Comparative results of all algorithms shows the competitiveness of ICHEA 
where it is able to find feasible solutions with relatively higher success rate on hard CSPs 
as it makes use of informationfrom constraints more effectively using a novel search 
operator – intermarriage crossover.  

ICHEA does not need to have initial feasible solutions; however, it is able to main-
tain feasible solutions through intermarriagecrossover in an efficient way without 
using any kind of repair functions. The selection of parents is based on their novelty 
in a search space to enforce diversity [12]. The test results show that ICHEA provides 
a generic EA that can solve numeric CSPs efficiently without making use of problem 
dependent penalty functions. 

7 Conclusion 

This paper has introduced a new variation of EA named ICHEA to handle CSPs. It 
has been shown through benchmark problems that ICHEA outperforms standard GA, 
NSGA II and PSO-DE in terms of higher SR and efficiency. The search mechanism 
of ICHEA is guided by constraints where it concentrates on the feasible regions of 
constraint satisfaction sets to get a solution without putting extra computational effort 
in searching through the whole search space.  

ICHEA is a work-in-progress to create a generalized tool to solve any type of CSP. 
It has all the potential to be extended to work for discrete data as well because its 
objective function only exploits information from constraints. ICHEA is currently 
further developed to solve COPsas characterized and will be evaluated on benchmark 
problems. 
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