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Abstract. Intelligent constraint handling evolutionary algorithm (ICHEA) is a 
recently proposed variation of evolutionary algorithm (EA) that solves real-
valued constraint satisfaction problems (CSPs) efficiently [20]. ICHEA has 
ability to extract and exploit information from constraints that guides its 
evolutionary search operators in contrast to traditional EAs that are ‘blind’ to 
constraints. Even its efficacy to solve CSPs it was not implemented to handle 
constraint optimization problems (COPs). This paper proposes an enhancement 
to ICHEA to solve real-valued COPs. The presented approach demonstrates 
very competitive results with other state-of-the-art approaches in terms of 
quality of solutions on well-known benchmark test problems. 
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1 Introduction 

Evolutionary algorithm (EA) has been successful in solving many difficult NP class 
problems; however, it suffers from some of its inherent approaches to solve constraint 
problems as it does not make use of information from constraints and blindly search 
in the solution space using various heuristic search operators [3, 5, 16]. 
Characteristically, constraint problems solved by EAs use penalty based functions. A 
penalty function updates the fitness of chromosomes in EA. A penalty term is used in 
general for reward and punishment for satisfying and/or violating the constraints [4]. 
Use of penalty functions has been commonly reported in literature for use in 
constrained optimization. Two basic types of penalty functions exist; exterior penalty 
functions, which penalize infeasible solutions, and interior penalty functions, which 
penalize feasible solutions [2]. The most popular method adopted to handle 
constraints in EAs was taken from the mathematical programming literature – penalty 
functions (mostly exterior penalty functions) – where the aim is to decrease (punish) 
the fitness of infeasible solutions as to favor those feasible individuals in the selection 
and replacement processes. The main advantage of the use of penalty functions is 
their simplicity; however, their main shortcoming is that penalty factors, which 
determine the severity of the punishment, must be set by the user and their values are 
problem dependent that requires a careful fine-tuning of parameter to obtain 
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competitive results [12, 13]. A self-adaptive penalty function based genetic algorithm 
(SAPF) is proposed in [21] that penalizes individuals based on ratio of total feasible 
and infeasible individuals present in the population. There are various forms of 
penalties reported in the literature, like static penalty, dynamic penalty, annealing 
penalty and death penalty [4]. 

Some other constraint handling approaches include expensive repair algorithms 
that promote the local search to transform infeasible solutions to feasible solutions 
because the feasible parents not necessarily produce feasible progenies [4]. In multi-
objective optimization (MOO) constraints are transformed into multiple objectives. 
There are many established MOO algorithms like MOGA [9], VEGA [19], NSGA 
and NSGAII [6]. Paredis in [17] has used co-evolution strategies that utilizes 
predator-prey model to keep two populations – one population represents solutions 
that satisfies many constraints while other population represents those individuals 
whose constraint(s) is violated by lots of individuals in the first population. This 
strategy requires extra computational effort to find the intersection of a line with the 
boundary of the feasible region. 

The use of domain knowledge within an EA can also be utilized to improve its 
performance as EAs are ‘blind’ to constraints. Recently, there have been few 
algorithms developed that move away from penalty based fitness functions to generic 
distance function given in Eq. (8). ICHEA [20] uses its intermarriage crossover 
operator to look for overlapping feasible regions through differentiating the 
boundaries of feasible regions for each constraint. This reduces the search space to 
obtain the solution efficiently. Cultural algorithms are also used to extract domain 
knowledge for its evolutionary search by using two subpopulations – population space 
and the belief space. Ricardo and Carlos in [18] proposed cultured differential 
evolution (CDE) that uses differential evolution (DE) as the population space and 
belief space as the information repository to store experiences of individuals for other 
individuals to learn. Amirjanov in [1] proposed changing domain range based genetic 
algorithm (CRGA) that adaptively shifts and shrinks the size of search space of the 
feasible region by employing feasible and infeasible solution in the population to 
reach the global optimum. Mezura-Montes et. al. in [14] proposed simple multi-
membered evolution strategy (SMES) that uses a simple diversity mechanism by 
allowing infeasible solutions to remain in the population. A simple feasibility-based 
comparison mechanism is used to guide the process toward the feasible region of the 
search space. The idea is to allow the individual with the lowest amount of constraint 
violation and the best value of the objective function to be selected for the next 
population. PSO-DE proposed by [12] is another algorithm that integrates particle 
swarm optimization (PSO) and DE to solve real-valued COPs. 

This paper is organized as follows: Section 2 describes formalization of CSPs and 
COPs. Section 3 revisits ICHEA introduced in [20]. Section 4 describes enhanced 
ICHEA that can solve COPs. Section 5 shows experimental results of ICHEA with 
other state-of-the-art algorithm to solve number of benchmark COPs. Section 6 
discusses the outcomes of the experiments performed and section 7 concludes the 
paper by summarizing the results and proposing some further extensions to the 
research. 
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2 Formalization of CSPs and COPs  

Constraint problems can be divided into two classes: Constrained Optimizing 
Problems (COPs) and constraint satisfaction problems (CSPs).The difference between 
these classes is that in the first an optimal solution that satisfies all the constraints 
should be found, while in the second class any solution as long as all the constraints 
are satisfied is acceptable [8]. It has been shown in [20] that ICHEA is very effective 
in solving real-valued CSPs, however, its ability to solve COPs was not investigated. 
This current work is an enhancement of ICHEA to solve real-valued COPs. 

A solution to real-valued COP has two folds – search for an optimum solution that 
also must satisfy all the constraints. Real-valued COP can be formulated as: optimize ݂ሺݔԦሻ (1)

where COP’s objective function ݂ሺݔԦሻ  has an ݊ -dimensional input vector ݔԦ ൌ ሼݔଵ, ,ଶݔ Ԧݔ ,௡ሽ that is defined in a search space ܵ. More specificallyݔ … א ك ࣠ ܵ, 
where  ࣠   being the feasible region on the search space ܵ ك  Թ௡ . Usually, the 
search space ܵ  is defined as a ݊ -dimensional rectangle in Թ௡ . The domain of 
variables is defined by their lower bounds ݈௜ and upper bounds ݑ௜: ݈௜ ൑ ௜ݔ ൑ ,௜ݑ 1 ൑ ݅ ൑ ݊ (2)

The feasible region ࣠ with bounds on each dimension is further restricted by a set of ݉ additional constraints that can be given in two relational forms – equality and 
inequality [6, 12, 21]. ݃௜ሺݔԦሻ ൒ 0      ݅ ൌ 1, … , ݇ (3)

௝݄ሺݔԦሻ ൌ 0 ݆ ൌ ݇ ൅ 1, … , ݉   (4)

The equality constraints ௝݄ሺݔԦሻ cannot be solved directly using EAs so it is converted 
into inequality constraints by introducing a positive tolerance value ߜ. ݃௝ሺݔԦሻ ൌ ߜ െ ห ௝݄ሺݔԦሻห ൒ 0 (5)

A set of individual feasible regions ሼ ଵ࣠, ࣠ଶ, . . ௠࣠ሽ for each constraint can also be 
defined as: 

௜࣠ ൌ  ሼݔԦ א ࣠ | ݃௜ሺݔԦሻ ൒ 0, 1 ൑ ݅ ൑ ݉, ݅ א ܼሽ (6)

where ܼ is the set of integers. Many EAs uses a distance function as their fitness 
function to rank individuals. The distance function indicates how far a chromosome is 
from the feasible regions [15]. This fitness function tries to bring the chromosomes 
closer to the feasible region using the following function for ݅׊ ׷ ሼ1 ൑ ݅ ൑ ݉ሽ: ݂݅ݏݏ݁݊ݐ௜ሺݔԦሻ ൌ  ൜݃௜ሺݔԦሻ, ݂݅ ݃௜ሺݔԦሻ ൏ 00, ݂݅ ݃௜ሺݔԦሻ ൒ 0 (7)

 ݁ ൌ  ∑ Ԧሻ|௠௜ୀଵݔ௜ሺݏݏ݁݊ݐ݂݅|  (8) 
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The fitness function fitness୧ is a measurement of euclidean distance of a vector xሬԦ 
from a feasible region ୧࣠. The error function ݁ is the summation of all the fitness 
functions. Minimizing the error value  ݁  leads toward a CSP solution where the 
objective function ݂ሺݔԦሻ is not needed. A solution to CSP is found when ݁ ൌ 0. To 
get a COP solution, CSP solutions are further processed to get optimum value of xሬԦ 
that optimizes the objective function ݂ሺݔԦሻ.  

ICHEA has been demonstrated to outperform many well-known EAs to solve 
CSPs in [20] as it utilizes the information from constraints to guide its evolutionary 
search operators. The motivation behind this paper is to propose an enhancement of 
ICHEA to show its efficacy in solving real-valued COPs based on the test results of 
some benchmark problems. 

3 Intelligent Constraint Handling Evolutionary Algorithm 

ICHEA uses its novel search operator intermarriage crossover that uses information 
from constraints rather than blindly searching for the solution. In this crossover both 
parents belong to different feasible regions ௜࣠ and ௝࣠where ݅ ് ݆. It is also possible that 
a parent does not belong to any of the feasible regions ܵ െ ࣠. The generated offspring 
contains genes from both parents. The purpose is to make a “generic” offspring that tries 
to satisfy more than one constraint because its parents are from two different feasible 
regions. The algorithm favors those offspring which satisfy more constraints by utilizing 
Deb’s ranking scheme based on feasibility [6] to rank the population where the 
population is first sorted according to number of satisfied constraints in decreasing order 
then by fitness value given in Eq. (8) in increasing order. 

3.1 Intermarriage Crossover for Real-Valued CSPs 

In intermarriage crossover, two parents generate two offspring. This is a dual process 
where both parents move closer to each other one at a time and their new positions are 
considered as two new offspring. An offspring from two parents through 
intermarriage is defined in a search space as a constant multiple of difference of two 
parent vectors as shown in Eq. (9). Initially offspring ଵܱ  is placed at position ሺ ଶܲ െ ଵܲሻ/ݎ where ݎ is a coefficient in the range within ሺ0,1ሻ which is 0.75 if both 
parents satisfy at least one different constraint and ݎ is 0.1 if both parents satisfy all 
same constraints. Then ଵܱ moves iteratively closer to parent ଵܲ until it also satisfies 
the constraint(s) that ଵܲ  satisfies and similarly offspring  ܱଶ  is designated. The 
iterative move can be captured as:  

ଵܱ ൌ ௜ሺݎ ଶܲ െ ଵܲሻ (9)

Variable ݅ gets incremented from 1 to a threshold value ܶin the sequence 1,2ۃ, . . . ,  .ۄܶ
We have used ܶ  = 5 for our experiments. So using the Eq. (9) the ݅  value is 
incremented by 1 until the offspring finds an acceptable place or a threshold value ܶ is 
reached. This causes two selected vectors (parents) of different constraint satisfaction 
sets to come closer (offspring) towards constraint boundary because the solution space 
lies in the overlapping boundary region. Favoring points for intermarriage that satisfy 
more constraints, results in finding solution space quickly [20]. 
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ݔ݅ݎݐܽܯ݉݅݀   ൌ ێێێۏ 
േ1ۍ 00 േ1 ڮ 0 00 ڭ0 ڰ 0ڭ    00    0 ڮ േ1 00 േ1ۑۑۑے

ې ∆ ௝ܲ,௜ ൌ ሺ ௝ܲ െ ௜ܲሻ  ∆ ௗܲ௜௠ெ௔௧௥௜௫೔,௜ ൌ∆ ௝ܲ,௜ ൈ ௜ݔ݅ݎݐܽܯ݉݅݀   

This intermarriage crossover tends to converge quickly resulting in low diversity 
of the population. To avoid this early convergence, the concept of multi-parent 
crossover has been incorporated where rather than picking most desirable parents 
from the population, new parents are generate on the vertices of a hyper rectangle that 
encloses a parent. This hyper rectangle is dynamically created from the locations of 
two chosen parents ௜ܲ  and ௝ܲ  for crossover. To make a hyper rectangle around each 
parent the following steps are being followed: 
• Determine the distance from ௝ܲ  to ௜ܲ  ∆ ௝ܲ,௜  which is then multiplied by ݀݅݉ݔ݅ݎݐܽܯ݉݅݀ .ݔ݅ݎݐܽܯ is a square diagonal matrix of size ݊ which is the total 

dimensions of the search space. The diagonal entries are only േ1 as shown below. ݀݅݉ݔ݅ݎݐܽܯ  produces 2௡  possible combinations of matrices that are used to 
generate set of all 2௡  vertices ௗܲ௜௠ெ௔௧௥௜௫ of the hyper rectangle where only 
maximum of up to 2 vertices are chosen randomly. An instance ݅ of ݀݅݉ݔ݅ݎݐܽܯ 
namely ݀݅݉ݔ݅ݎݐܽܯ௜ is chosen to create a parent ௗܲ௜௠ெ௔௧௥௜௫೔  which represents the ݅௧௛  vertex of the hyper rectangle. Matrix multiplication of ݀݅݉ݔ݅ݎݐܽܯ௜  and ∆ ௝ܲ,௜ gives the distance from new parent ௗܲ௜௠ெ௔௧௥௜௫೔  to ௜ܲ  denoted 
by ∆ ௗܲ௜௠ெ௔௧௥௜௫೔,௜.   

• Add vector ௜ܲ  to the distance vector ∆ ௗܲ௜௠ெ௔௧௥௜௫೔,௜ to get parent ௗܲ௜௠ெ௔௧௥௜௫೔ : ௗܲ௜௠ெ௔௧௥௜௫೔ ൌ ୧ܲ ൅ ∆ ௗܲ௜௠ெ௔௧௥௜௫೔,௜ (10)

Parent ୧ܲ goes through intermarriage crossover with each of these parents and then 
only the best offspring is selected to go into the offspring pool. This same process is 
repeated for other parent ୨ܲ. 
3.2 ICHEA Algorithm 

ICHEA is a variation of EA introduced in that adds constraint handling features to the 
standard GAs. The pseudocode can be given as: 
  chromosomes  = initializeChromosomes(); 
  for each generation 
  parents = NoveltyTournamentSelection(); 
  offspring = interMarriageCrossover(parents); 
  Mutation(offspring); 
  chromosomes = chromosomes + offspring; 
  SortAndReplace();                 
  CheckTerminationCriteria(); 
  End for loop; 
The detailed description of the algorithm can be found in [20]: 



 Real-Valued Constraint Optimization with ICHEA 411 

4 ICHEA for Constraint Optimization Problems 

ICHEA introduced in [20] is limited to works for CSPs only. We have enhanced the 
algorithm as below to improve the solutions of the COPs as well. 

4.1 Parallel Processing for CSP and COP 

The foundation of ICHEA lies in acknowledging the information from the set of 
feasible regions ࣠ that guides its evolutionary search to solve CSPs effectively. To 
enhance its capability in solving COPs a formative approach is taken where ICHEA 
runs two processes in parallel – one to solve CSP and another to optimize CSP 
solutions. The parallel process starts by dividing the whole population ݌݋݌ into 2 
parts. First part ݌݋݌஼ை௉ keeps the CSP solutions that are required for optimization 
and the second part ݌݋݌஼ௌ௉  keeps the good infeasible solutions that are processed to 
get CSP solutions. The ratio of ݌݋݌஼ை௉: ݌݋݌஼ௌ௉  is fine-tuned to 1:4 for our 
experiments. ݌݋݌஼ௌ௉  is divided into equal sized ݉  slots where slot ݅  is allocated for 
individuals that violate ݅ constraints. If there are no individuals with ݅ violations 
then its allocated space is evenly distributed to other slots. This is done to keep 
diverse population of partially feasible solutions as [12] have observed that only 
keeping individuals with lower degree of constraint violations might cause the 
population to be trapped in a local optimum. Let ݌݋݌஼ௌ௉௜ indicate the population of 
individuals that violate ݅ constraints so the total population ݌݋݌஼ௌ௉  is: 

஼ௌ௉݌݋݌  ൌ ∑ ஼ௌ௉݌݋݌ ௜௠௜ୀଵ  

Then ݌݋݌஼ௌ௉ ௜ is sorted according to the fitness and the best |݌݋݌஼ௌ௉| ݉⁄  is selected 
for subpopulation ݌݋݌஼ௌ௉௜. ׵ max ሺห݌݋݌஼ௌ௉ ௜หሻ ൌ |஼ௌ௉݌݋݌| ݉⁄  

If after allocation, ݇  slots have ห݌݋݌஼ௌ௉ ௜ห |஼ௌ௉݌݋݌| >  ݉⁄ , then unallocated 
population of individuals ݌݋݌௨௡௔௟௟௢௖  is: ݌݋݌௨௡௔௟௟௢௖ ൌ ෍ ቊ|݌݋݌஼ௌ௉| ݉⁄ െ ห݌݋݌஼ௌ௉௜ห,    ݂݅ ห݌݋݌஼ௌ௉௜ห  ൏ |஼ௌ௉݌݋݌|  ݉⁄ ௠௜ୀଵ                       ݁ݏ݅ݓݎ݄݁ݐ݋    ,                               0   

This unallocated population ݌݋݌௨௡௔௟௟௢௖  needs to be allocated evenly in the slots that 
have ห݌݋݌஼ௌ௉௜ห > |݌݋݌஼ௌ௉| ݉⁄ . 

4.2 Search Focus towards Best So Far Individual 

Intermarriage crossover guides the evolutionary search to focus on feasible regions. 
In addition to normal intermarriage crossover the same parents undergo intermarriage 
crossover with a neighbor of current best solution to guide the search focus towards 
best so far individual. This is similar to PSO approach [7] where all swarm particles 
tend to move towards better positions nearby the best position that leads to optimum 
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solution [7, 10]. This helps in exploring promising solution in a nearby region of the 
current best solution. If the intermarriage crossover operator is denoted by ٔ then 
the intermarriage crossover initiated by parents ௜ܲ  and ௝ܲ  involves the following 
steps:  

1. ௜ܲ ٔ ௝ܲ 
2.  

3. ௡ܲ௘௜௚௛௕௢௥ೕ ൌ ሺߪ  ௝ܲ ൅ ௕ܲ௘௦௧ሻ where ߪ א ሺ0.0,1.0ሻ   

4. ௜ܲ ٔ ௡ܲ௘௜௚௛௕௢௥ೕ  

The step (1) is just a normal intermarriage crossover between ௜ܲ  and ௝ܲ followed by 
step (2) that is an intermarriage crossover between a parent ௜ܲ  and aforementioned 
newly created parents on the vertices of the hyper-rectangle ׊ ௗܲ௜௠ெ௔௧௥௜௫೔  (see 
Section 3.1) so that exploration is not limited to the selected population only. Step (3) 
determines the common neighbor ௡ܲ௘௜௚௛௕௢௥ೕ of parent ௝ܲ  and the current best 
chromosome ௕ܲ௘௦௧  using a randomly generated coefficient ߪ  in the range of (0.0, 
1.0). Finally intermarriage crossover happens between ௜ܲ  and ௡ܲ௘௜௚௛௕௢௥ೕ  in step (4) 
which is inspired from PSO to search near by the current best solution. These four 
steps are specifically used to find the COP solution. 

5 Experiment 

To validate the efficacy of ICHEA, 11 
benchmark problems from COP domain 
[11, 12, 15] have been selected. All test 
problems are mathematical functions of 
various types like quadratic, linear, 
nonlinear and trigonometric. ICHEA has 
been compared against five state-of-the-art 
approaches briefly mentioned in the section 
1: CRGA [1], SAPF [21], PSO-DE [12], 
CDE [18] and SMES [14]. No parallel processing or distributed environment is used 
for the experiments.  

An average of 10 successive runs for ICHEA is taken into account to demonstrate 
its solution quality against published results of other algorithms mentioned above. 
Table 1 shows the parameter settings used for all test problems. Generally, ICHEA is 
able to find a solution close to optimal solution in a few generations but it is allowed 
to run full 1.0E3 generations to try to obtain best possible solutions. For example best 
solutions for problem G12, G08, G11 and G01 are obtained in 10, 12, 28, 234 
generations with 9.1E3, 1.1E4, 2.4E4, 2.4E5 evaluations respectively. The positive 
tolerance value ߜ for problem G03 and G11 is 1.0E-3 and 1.0E-5 respectively.  

Table 2 shows the statistical summary of the results for all the tested problems 
showing best, median, mean and worst solutions obtained with their corresponding 
standard deviations (SD). Table 3 – Table 5 show the same results compared with  
 

Table 1. Parameter Settings 

Parameters ICHEA 
Population size 100 

Maximum generations 1.0E3  
Maximum evaluations 1.0E6 
Mutation rate 0.1 
Crossover rate 1.0 
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Table 2. Experimental results of ICHEA on 11 benchmark functions 

Functions Best Median Mean Worst SD 

G01 -15.00000 -15.00000 -15.00000 -15.00000 5.4E-07 

G02 -0.803036 -0.784636 -0.768525 -0.743884 2.3E-02 

G03 -1.00497 -1.00483 -1.00476 -1.00483 1.1E-04 

G04 -30665.539 -30665.539 -30665.537 -30665.530 3.2E-03 

G06 -6961.814 -6961.813 -6961.814 -6961.814 1.85E-05 

G07 24.6149 24.9502 25.7139 27.2705 1.0E+00 

G08 -0.095825 -0.095825 -0.095825 -0.095825 2.3E-07 

G09 680.645 680.742 680.774 680.995 1.1E-01 

G10 7128.097 7165.736 7196.508 7297.964 5.8E+01 

G11 0.7500 0.7500 0.7500 0.7500 3.2E-05 

G12 -1.00000 -1.00000 -1.00000 -1.00000 1.2E-06 

Table 3. Comparison of best solutions of ICHEA with five other state-of-the-art algorithms  

Functions ICHEA CRGA SAPF PSO-DE CDE SMES 

G01 -15.00000 -14.9977 -15.000 -15.000000 -15.000000 -15.000 

G02 -0.803036 -0.802959 -0.803202 -0.8036145 -0.803619 -0.803601 

G03 -1.00497 -0.9997 -1.000 -1.0050100 -0.995413 -1.000 

G04 -30665.539 -30665.520 -30665.401 -30665.539 -30665.539 -30665.539 

G06 -6961.814 -6956.251 -6961.046 -6961.8139 -6961.8139 -6961.814 

G07 24.6149 24.882 24.838 24.30621 24.30621 24.327 

G08 -0.095825 -0.095825 -0.095825 -0.095826 -0.095825 -0.095825 

G09 680.645 680.726 680.773 680.6301 680.6301 680.632 

G10 7128.097 7114.743 7069.981 7049.248 7049.248 7051.903 

G11 0.7500 0.750 0.749 0.749999 0.7499 0.75 

G12 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000 

Top ranked 7/11 3/11 4/11 11/11 9/11 11/11 

 
other algorithms based on best, mean and worst solutions respectively. The results in 
bold indicate the optimum solutions or one of the best amongst all the algorithms. 
ICHEA is able to reach global optimum for problems G01, G04, G06, G08, G11 and 
G12 while problems solutions for G02, G03, G09 is very close to optimum solutions. 
For problems G10 very good solutions are not observed within the limited 
generations. This demonstrates the competitiveness of ICHEA with other algorithms. 

We have also taken the count of final results that are ranked in top half, achieved 
by all the algorithms. The last rows of Table 3 – Table 5 shows the count of top 
ranked final results where PSO-DE, SMES and ICHEA are found to be best 3 out of 6 
algorithms for getting good mean and worst solutions and PSO-DE, SMES, CDE and 
ICHEA are best 4 out of 6 algorithms for reaching towards optimum solution; 
however, according to “no-free-lunch” theorem no algorithm is the best for all classes 
of problems [22]. PSO-DE is able to demonstrate very impressive results for 
benchmark COPs but it is not able to perform well for CSPs as demonstrated in [20] 
where ICHEA outperforms it in terms of success rate and efficiency.  
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Table 4. Comparison of mean solutions of ICHEA with five other state-of-the-art algorithms 

Functions ICHEA CRGA SAPF PSO-DE CDE SMES 

G01 -15.00000 -14.9850 -14.552 -15.000000 -14.999996 -15.000 

G02 -0.768525 -0.764494 -0.755798 -0.756678 -0.724886 -0.785238 

G03 -1.00476 -0.9972 -0.964 -1.0050100 -0.788635 -1.000 

G04 -30665.537 -30664.398 -30665.922 -30665.539 -30665.539 -30665.539 

G06 -6961.814 -6740.288 -6953.061 -6961.8139 -6961.8139 -6961.284 

G07 25.7139 25.746 27.328 24.30621 24.30621 24.475 

G08 -0.095825 -0.095819 -0.095635 -0.0958259 -0.095825 -0.095825 

G09 680.774 681.347 681.246 680.6301 680.6301 680.643 

G10 7196.508 8785.149 7238.964 7049.248 7049.248 7253.047 

G11 0.7500 0.752 0.751 0.749999 0.757995 0.75 

G12 -1.00000 -1.000000 -0.99994 -1.000000 -1.000000 -1.000 

Top ranked  8/11 2/11 1/11 10/11 6/11 9/11 

Table 5. Comparison of worst solutions of ICHEA with five other state-of-the-art algorithms  

Functions ICHEA CRGA SAPF PSO-DE CDE SMES 

G01 -15.00000 -14.9467 -13.097 -15.000000 -14.999993 -15.000 

G02 -0.743884 -0.722109 -0.745712 -0.6367995 -0.590908 -0.751322 

G03 -1.00483 -0.9931 -0.887 -1.0050100 -0.639920 -1.000 

G04 -30665.530 -30660.313 -30656.471 -30665.539 -30665.539 -30665.539 

G06 -6961.814 -6077.123 -6943.304 -6961.8139 -6961.8139 -6952.482 

G07 27.2705 27.381 33.095 24.3062 24.3062 24.843 

G08 -0.095825 -0.095808 -0.092697 -0.0958259 -0.095825 -0.095825 

G09 680.995 682.965 682.081 680.6301 680.6301 680.719 

G10 7297.964 10826.09 7489.406 7049.248 7049.249 7638.366 

G11 0.7500 0.757 0.757 0.750001 0.796455 0.75 

G12 -1.00000 -1.000000 -0.999548 -1.000000 -1.000000 -1.000 

Top ranked 8/11 1/11 1/11 10/11 7/11 9/11 

6 Discussion 

ICHEA was initially introduced to solve real-valued CSP solutions only where it was 
able to outperform many other EAs in terms of success rate and efficiency [20]. In 
this paper ICHEA has been enhanced to solve COPs as well. The comparative test 
results on benchmark COPs are very promising and competitive with other state-of-
the-art algorithms. ICHEA is a problem independent formulation where consistent 
results have been observed for all the test problems using common parameters.  

Introduction of ICHEA in [20] demonstrated that extracting information from 
constraints can produce very good solutions efficiently. Hence the basic structure of 
ICHEA has been kept intact while enhancing it to employ constraint optimization 
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tasks. The current form of ICHEA is still problem independent where addition of 
parallel processing simultaneously deals with constraint satisfaction and optimization 
tasks. Intermarriage crossover has been adjusted to search for an optimum solution 
that still utilizes information from the constraints.  

7 Conclusion 

ICHEA introduced in [20] has been demonstrated to outperform many well-known 
EAs including PSO-DE to solve benchmark CSPs. ICHEA has been enhanced in this 
paper without losing its integrity to solve real-valued COPs which has shown very 
competitive results. This new ICHEA runs in two parallel processes – one for CSP 
and another for COP. The CSP process searches feasible regions to make a population 
of feasible solutions while COP process tries to optimize the solutions using the 
whole population. The main idea remains the information extraction from constraints 
that reduces the search space to promising regions only. Currently ICHEA is 
restricted to solve only real-valued CSP and COP but it has all the potential to be 
extended to work for discrete constraints problems as it relies on extracting 
information from constraints. The future work also involves applying ICHEA for 
dynamic CSPs and COPs.  
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