
T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 406–416, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Real-Valued Constraint Optimization with ICHEA

Anurag Sharma and Dharmendra Sharma

Faculty of Information Sciences and Engineering
University of Canberra, ACT, Australia

{Anurag.Sharma,Dharmendra.Sharma}@canberra.edu.au

Abstract. Intelligent constraint handling evolutionary algorithm (ICHEA) is a
recently proposed variation of evolutionary algorithm (EA) that solves real-
valued constraint satisfaction problems (CSPs) efficiently [20]. ICHEA has
ability to extract and exploit information from constraints that guides its
evolutionary search operators in contrast to traditional EAs that are ‘blind’ to
constraints. Even its efficacy to solve CSPs it was not implemented to handle
constraint optimization problems (COPs). This paper proposes an enhancement
to ICHEA to solve real-valued COPs. The presented approach demonstrates
very competitive results with other state-of-the-art approaches in terms of
quality of solutions on well-known benchmark test problems.

Keywords: Intelligent constraint handling evolutionary algorithm (ICHEA),
evolutionary algorithm (EA), constraint satisfaction problem (CSP), constraint
optimization problem (COP).

1 Introduction

Evolutionary algorithm (EA) has been successful in solving many difficult NP class
problems; however, it suffers from some of its inherent approaches to solve constraint
problems as it does not make use of information from constraints and blindly search
in the solution space using various heuristic search operators [3, 5, 16].
Characteristically, constraint problems solved by EAs use penalty based functions. A
penalty function updates the fitness of chromosomes in EA. A penalty term is used in
general for reward and punishment for satisfying and/or violating the constraints [4].
Use of penalty functions has been commonly reported in literature for use in
constrained optimization. Two basic types of penalty functions exist; exterior penalty
functions, which penalize infeasible solutions, and interior penalty functions, which
penalize feasible solutions [2]. The most popular method adopted to handle
constraints in EAs was taken from the mathematical programming literature – penalty
functions (mostly exterior penalty functions) – where the aim is to decrease (punish)
the fitness of infeasible solutions as to favor those feasible individuals in the selection
and replacement processes. The main advantage of the use of penalty functions is
their simplicity; however, their main shortcoming is that penalty factors, which
determine the severity of the punishment, must be set by the user and their values are
problem dependent that requires a careful fine-tuning of parameter to obtain

 Real-Valued Constraint Optimization with ICHEA 407

competitive results [12, 13]. A self-adaptive penalty function based genetic algorithm
(SAPF) is proposed in [21] that penalizes individuals based on ratio of total feasible
and infeasible individuals present in the population. There are various forms of
penalties reported in the literature, like static penalty, dynamic penalty, annealing
penalty and death penalty [4].

Some other constraint handling approaches include expensive repair algorithms
that promote the local search to transform infeasible solutions to feasible solutions
because the feasible parents not necessarily produce feasible progenies [4]. In multi-
objective optimization (MOO) constraints are transformed into multiple objectives.
There are many established MOO algorithms like MOGA [9], VEGA [19], NSGA
and NSGAII [6]. Paredis in [17] has used co-evolution strategies that utilizes
predator-prey model to keep two populations – one population represents solutions
that satisfies many constraints while other population represents those individuals
whose constraint(s) is violated by lots of individuals in the first population. This
strategy requires extra computational effort to find the intersection of a line with the
boundary of the feasible region.

The use of domain knowledge within an EA can also be utilized to improve its
performance as EAs are ‘blind’ to constraints. Recently, there have been few
algorithms developed that move away from penalty based fitness functions to generic
distance function given in Eq. (8). ICHEA [20] uses its intermarriage crossover
operator to look for overlapping feasible regions through differentiating the
boundaries of feasible regions for each constraint. This reduces the search space to
obtain the solution efficiently. Cultural algorithms are also used to extract domain
knowledge for its evolutionary search by using two subpopulations – population space
and the belief space. Ricardo and Carlos in [18] proposed cultured differential
evolution (CDE) that uses differential evolution (DE) as the population space and
belief space as the information repository to store experiences of individuals for other
individuals to learn. Amirjanov in [1] proposed changing domain range based genetic
algorithm (CRGA) that adaptively shifts and shrinks the size of search space of the
feasible region by employing feasible and infeasible solution in the population to
reach the global optimum. Mezura-Montes et. al. in [14] proposed simple multi-
membered evolution strategy (SMES) that uses a simple diversity mechanism by
allowing infeasible solutions to remain in the population. A simple feasibility-based
comparison mechanism is used to guide the process toward the feasible region of the
search space. The idea is to allow the individual with the lowest amount of constraint
violation and the best value of the objective function to be selected for the next
population. PSO-DE proposed by [12] is another algorithm that integrates particle
swarm optimization (PSO) and DE to solve real-valued COPs.

This paper is organized as follows: Section 2 describes formalization of CSPs and
COPs. Section 3 revisits ICHEA introduced in [20]. Section 4 describes enhanced
ICHEA that can solve COPs. Section 5 shows experimental results of ICHEA with
other state-of-the-art algorithm to solve number of benchmark COPs. Section 6
discusses the outcomes of the experiments performed and section 7 concludes the
paper by summarizing the results and proposing some further extensions to the
research.

408 A. Sharma and D. Sharma

2 Formalization of CSPs and COPs

Constraint problems can be divided into two classes: Constrained Optimizing
Problems (COPs) and constraint satisfaction problems (CSPs).The difference between
these classes is that in the first an optimal solution that satisfies all the constraints
should be found, while in the second class any solution as long as all the constraints
are satisfied is acceptable [8]. It has been shown in [20] that ICHEA is very effective
in solving real-valued CSPs, however, its ability to solve COPs was not investigated.
This current work is an enhancement of ICHEA to solve real-valued COPs.

A solution to real-valued COP has two folds – search for an optimum solution that
also must satisfy all the constraints. Real-valued COP can be formulated as: optimize ݂ሺݔԦሻ (1)

where COP’s objective function ݂ሺݔԦሻ has an ݊ -dimensional input vector ݔԦ ൌ ሼݔଵ, ,ଶݔ Ԧݔ ,௡ሽ that is defined in a search space ܵ. More specificallyݔ … א ك ࣠ ܵ,
where ࣠ being the feasible region on the search space ܵ ك Թ௡ . Usually, the
search space ܵ is defined as a ݊ -dimensional rectangle in Թ௡ . The domain of
variables is defined by their lower bounds ݈௜ and upper bounds ݑ௜: ݈௜ ൑ ௜ݔ ൑ ,௜ݑ 1 ൑ ݅ ൑ ݊ (2)

The feasible region ࣠ with bounds on each dimension is further restricted by a set of ݉ additional constraints that can be given in two relational forms – equality and
inequality [6, 12, 21]. ݃௜ሺݔԦሻ ൒ 0 ݅ ൌ 1, … , ݇ (3)

௝݄ሺݔԦሻ ൌ 0 ݆ ൌ ݇ ൅ 1, … , ݉ (4)

The equality constraints ௝݄ሺݔԦሻ cannot be solved directly using EAs so it is converted
into inequality constraints by introducing a positive tolerance value ߜ. ݃௝ሺݔԦሻ ൌ ߜ െ ห ௝݄ሺݔԦሻห ൒ 0 (5)

A set of individual feasible regions ሼ ଵ࣠, ࣠ଶ, . . ௠࣠ሽ for each constraint can also be
defined as:

௜࣠ ൌ ሼݔԦ א ࣠ | ݃௜ሺݔԦሻ ൒ 0, 1 ൑ ݅ ൑ ݉, ݅ א ܼሽ (6)

where ܼ is the set of integers. Many EAs uses a distance function as their fitness
function to rank individuals. The distance function indicates how far a chromosome is
from the feasible regions [15]. This fitness function tries to bring the chromosomes
closer to the feasible region using the following function for ݅׊ ׷ ሼ1 ൑ ݅ ൑ ݉ሽ: ݂݅ݏݏ݁݊ݐ௜ሺݔԦሻ ൌ ൜݃௜ሺݔԦሻ, ݂݅ ݃௜ሺݔԦሻ ൏ 00, ݂݅ ݃௜ሺݔԦሻ ൒ 0 (7)

 ݁ ൌ ∑ Ԧሻ|௠௜ୀଵݔ௜ሺݏݏ݁݊ݐ݂݅| (8)

 Real-Valued Constraint Optimization with ICHEA 409

The fitness function fitness୧ is a measurement of euclidean distance of a vector xሬԦ
from a feasible region ୧࣠. The error function ݁ is the summation of all the fitness
functions. Minimizing the error value ݁ leads toward a CSP solution where the
objective function ݂ሺݔԦሻ is not needed. A solution to CSP is found when ݁ ൌ 0. To
get a COP solution, CSP solutions are further processed to get optimum value of xሬԦ
that optimizes the objective function ݂ሺݔԦሻ.

ICHEA has been demonstrated to outperform many well-known EAs to solve
CSPs in [20] as it utilizes the information from constraints to guide its evolutionary
search operators. The motivation behind this paper is to propose an enhancement of
ICHEA to show its efficacy in solving real-valued COPs based on the test results of
some benchmark problems.

3 Intelligent Constraint Handling Evolutionary Algorithm

ICHEA uses its novel search operator intermarriage crossover that uses information
from constraints rather than blindly searching for the solution. In this crossover both
parents belong to different feasible regions ௜࣠ and ௝࣠where ݅ ് ݆. It is also possible that
a parent does not belong to any of the feasible regions ܵ െ ࣠. The generated offspring
contains genes from both parents. The purpose is to make a “generic” offspring that tries
to satisfy more than one constraint because its parents are from two different feasible
regions. The algorithm favors those offspring which satisfy more constraints by utilizing
Deb’s ranking scheme based on feasibility [6] to rank the population where the
population is first sorted according to number of satisfied constraints in decreasing order
then by fitness value given in Eq. (8) in increasing order.

3.1 Intermarriage Crossover for Real-Valued CSPs

In intermarriage crossover, two parents generate two offspring. This is a dual process
where both parents move closer to each other one at a time and their new positions are
considered as two new offspring. An offspring from two parents through
intermarriage is defined in a search space as a constant multiple of difference of two
parent vectors as shown in Eq. (9). Initially offspring ଵܱ is placed at position ሺ ଶܲ െ ଵܲሻ/ݎ where ݎ is a coefficient in the range within ሺ0,1ሻ which is 0.75 if both
parents satisfy at least one different constraint and ݎ is 0.1 if both parents satisfy all
same constraints. Then ଵܱ moves iteratively closer to parent ଵܲ until it also satisfies
the constraint(s) that ଵܲ satisfies and similarly offspring ܱଶ is designated. The
iterative move can be captured as:

ଵܱ ൌ ௜ሺݎ ଶܲ െ ଵܲሻ (9)

Variable ݅ gets incremented from 1 to a threshold value ܶin the sequence 1,2ۃ, . . . , .ۄܶ
We have used ܶ = 5 for our experiments. So using the Eq. (9) the ݅ value is
incremented by 1 until the offspring finds an acceptable place or a threshold value ܶ is
reached. This causes two selected vectors (parents) of different constraint satisfaction
sets to come closer (offspring) towards constraint boundary because the solution space
lies in the overlapping boundary region. Favoring points for intermarriage that satisfy
more constraints, results in finding solution space quickly [20].

410 A. Sharma and D. Sharma

ݔ݅ݎݐܽܯ݉݅݀ ൌ ێێێۏ
േ1ۍ 00 േ1 ڮ 0 00 ڭ0 ڰ 0ڭ 00 0 ڮ േ1 00 േ1ۑۑۑے

ې ∆ ௝ܲ,௜ ൌ ሺ ௝ܲ െ ௜ܲሻ ∆ ௗܲ௜௠ெ௔௧௥௜௫೔,௜ ൌ∆ ௝ܲ,௜ ൈ ௜ݔ݅ݎݐܽܯ݉݅݀

This intermarriage crossover tends to converge quickly resulting in low diversity
of the population. To avoid this early convergence, the concept of multi-parent
crossover has been incorporated where rather than picking most desirable parents
from the population, new parents are generate on the vertices of a hyper rectangle that
encloses a parent. This hyper rectangle is dynamically created from the locations of
two chosen parents ௜ܲ and ௝ܲ for crossover. To make a hyper rectangle around each
parent the following steps are being followed:
• Determine the distance from ௝ܲ to ௜ܲ ∆ ௝ܲ,௜ which is then multiplied by ݀݅݉ݔ݅ݎݐܽܯ݉݅݀ .ݔ݅ݎݐܽܯ is a square diagonal matrix of size ݊ which is the total

dimensions of the search space. The diagonal entries are only േ1 as shown below. ݀݅݉ݔ݅ݎݐܽܯ produces 2௡ possible combinations of matrices that are used to
generate set of all 2௡ vertices ௗܲ௜௠ெ௔௧௥௜௫ of the hyper rectangle where only
maximum of up to 2 vertices are chosen randomly. An instance ݅ of ݀݅݉ݔ݅ݎݐܽܯ
namely ݀݅݉ݔ݅ݎݐܽܯ௜ is chosen to create a parent ௗܲ௜௠ெ௔௧௥௜௫೔ which represents the ݅௧௛ vertex of the hyper rectangle. Matrix multiplication of ݀݅݉ݔ݅ݎݐܽܯ௜ and ∆ ௝ܲ,௜ gives the distance from new parent ௗܲ௜௠ெ௔௧௥௜௫೔ to ௜ܲ denoted
by ∆ ௗܲ௜௠ெ௔௧௥௜௫೔,௜.

• Add vector ௜ܲ to the distance vector ∆ ௗܲ௜௠ெ௔௧௥௜௫೔,௜ to get parent ௗܲ௜௠ெ௔௧௥௜௫೔ : ௗܲ௜௠ெ௔௧௥௜௫೔ ൌ ୧ܲ ൅ ∆ ௗܲ௜௠ெ௔௧௥௜௫೔,௜ (10)

Parent ୧ܲ goes through intermarriage crossover with each of these parents and then
only the best offspring is selected to go into the offspring pool. This same process is
repeated for other parent ୨ܲ.
3.2 ICHEA Algorithm

ICHEA is a variation of EA introduced in that adds constraint handling features to the
standard GAs. The pseudocode can be given as:
 chromosomes = initializeChromosomes();
 for each generation
 parents = NoveltyTournamentSelection();
 offspring = interMarriageCrossover(parents);
 Mutation(offspring);
 chromosomes = chromosomes + offspring;
 SortAndReplace();
 CheckTerminationCriteria();
 End for loop;
The detailed description of the algorithm can be found in [20]:

 Real-Valued Constraint Optimization with ICHEA 411

4 ICHEA for Constraint Optimization Problems

ICHEA introduced in [20] is limited to works for CSPs only. We have enhanced the
algorithm as below to improve the solutions of the COPs as well.

4.1 Parallel Processing for CSP and COP

The foundation of ICHEA lies in acknowledging the information from the set of
feasible regions ࣠ that guides its evolutionary search to solve CSPs effectively. To
enhance its capability in solving COPs a formative approach is taken where ICHEA
runs two processes in parallel – one to solve CSP and another to optimize CSP
solutions. The parallel process starts by dividing the whole population ݌݋݌ into 2
parts. First part ݌݋݌஼ை௉ keeps the CSP solutions that are required for optimization
and the second part ݌݋݌஼ௌ௉ keeps the good infeasible solutions that are processed to
get CSP solutions. The ratio of ݌݋݌஼ை௉: ݌݋݌஼ௌ௉ is fine-tuned to 1:4 for our
experiments. ݌݋݌஼ௌ௉ is divided into equal sized ݉ slots where slot ݅ is allocated for
individuals that violate ݅ constraints. If there are no individuals with ݅ violations
then its allocated space is evenly distributed to other slots. This is done to keep
diverse population of partially feasible solutions as [12] have observed that only
keeping individuals with lower degree of constraint violations might cause the
population to be trapped in a local optimum. Let ݌݋݌஼ௌ௉௜ indicate the population of
individuals that violate ݅ constraints so the total population ݌݋݌஼ௌ௉ is:

஼ௌ௉݌݋݌ ൌ ∑ ஼ௌ௉݌݋݌ ௜௠௜ୀଵ

Then ݌݋݌஼ௌ௉ ௜ is sorted according to the fitness and the best |݌݋݌஼ௌ௉| ݉⁄ is selected
for subpopulation ݌݋݌஼ௌ௉௜. ׵ max ሺห݌݋݌஼ௌ௉ ௜หሻ ൌ |஼ௌ௉݌݋݌| ݉⁄

If after allocation, ݇ slots have ห݌݋݌஼ௌ௉ ௜ห |஼ௌ௉݌݋݌| > ݉⁄ , then unallocated
population of individuals ݌݋݌௨௡௔௟௟௢௖ is: ݌݋݌௨௡௔௟௟௢௖ ൌ ෍ ቊ|݌݋݌஼ௌ௉| ݉⁄ െ ห݌݋݌஼ௌ௉௜ห, ݂݅ ห݌݋݌஼ௌ௉௜ห ൏ |஼ௌ௉݌݋݌| ݉⁄ ௠௜ୀଵ ݁ݏ݅ݓݎ݄݁ݐ݋ , 0

This unallocated population ݌݋݌௨௡௔௟௟௢௖ needs to be allocated evenly in the slots that
have ห݌݋݌஼ௌ௉௜ห > |݌݋݌஼ௌ௉| ݉⁄ .

4.2 Search Focus towards Best So Far Individual

Intermarriage crossover guides the evolutionary search to focus on feasible regions.
In addition to normal intermarriage crossover the same parents undergo intermarriage
crossover with a neighbor of current best solution to guide the search focus towards
best so far individual. This is similar to PSO approach [7] where all swarm particles
tend to move towards better positions nearby the best position that leads to optimum

412 A. Sharma and D. Sharma

solution [7, 10]. This helps in exploring promising solution in a nearby region of the
current best solution. If the intermarriage crossover operator is denoted by ٔ then
the intermarriage crossover initiated by parents ௜ܲ and ௝ܲ involves the following
steps:

1. ௜ܲ ٔ ௝ܲ
2.

3. ௡ܲ௘௜௚௛௕௢௥ೕ ൌ ሺߪ ௝ܲ ൅ ௕ܲ௘௦௧ሻ where ߪ א ሺ0.0,1.0ሻ

4. ௜ܲ ٔ ௡ܲ௘௜௚௛௕௢௥ೕ

The step (1) is just a normal intermarriage crossover between ௜ܲ and ௝ܲ followed by
step (2) that is an intermarriage crossover between a parent ௜ܲ and aforementioned
newly created parents on the vertices of the hyper-rectangle ׊ ௗܲ௜௠ெ௔௧௥௜௫೔ (see
Section 3.1) so that exploration is not limited to the selected population only. Step (3)
determines the common neighbor ௡ܲ௘௜௚௛௕௢௥ೕ of parent ௝ܲ and the current best
chromosome ௕ܲ௘௦௧ using a randomly generated coefficient ߪ in the range of (0.0,
1.0). Finally intermarriage crossover happens between ௜ܲ and ௡ܲ௘௜௚௛௕௢௥ೕ in step (4)
which is inspired from PSO to search near by the current best solution. These four
steps are specifically used to find the COP solution.

5 Experiment

To validate the efficacy of ICHEA, 11
benchmark problems from COP domain
[11, 12, 15] have been selected. All test
problems are mathematical functions of
various types like quadratic, linear,
nonlinear and trigonometric. ICHEA has
been compared against five state-of-the-art
approaches briefly mentioned in the section
1: CRGA [1], SAPF [21], PSO-DE [12],
CDE [18] and SMES [14]. No parallel processing or distributed environment is used
for the experiments.

An average of 10 successive runs for ICHEA is taken into account to demonstrate
its solution quality against published results of other algorithms mentioned above.
Table 1 shows the parameter settings used for all test problems. Generally, ICHEA is
able to find a solution close to optimal solution in a few generations but it is allowed
to run full 1.0E3 generations to try to obtain best possible solutions. For example best
solutions for problem G12, G08, G11 and G01 are obtained in 10, 12, 28, 234
generations with 9.1E3, 1.1E4, 2.4E4, 2.4E5 evaluations respectively. The positive
tolerance value ߜ for problem G03 and G11 is 1.0E-3 and 1.0E-5 respectively.

Table 2 shows the statistical summary of the results for all the tested problems
showing best, median, mean and worst solutions obtained with their corresponding
standard deviations (SD). Table 3 – Table 5 show the same results compared with

Table 1. Parameter Settings

Parameters ICHEA
Population size 100

Maximum generations 1.0E3
Maximum evaluations 1.0E6
Mutation rate 0.1
Crossover rate 1.0

 Real-Valued Constraint Optimization with ICHEA 413

Table 2. Experimental results of ICHEA on 11 benchmark functions

Functions Best Median Mean Worst SD

G01 -15.00000 -15.00000 -15.00000 -15.00000 5.4E-07

G02 -0.803036 -0.784636 -0.768525 -0.743884 2.3E-02

G03 -1.00497 -1.00483 -1.00476 -1.00483 1.1E-04

G04 -30665.539 -30665.539 -30665.537 -30665.530 3.2E-03

G06 -6961.814 -6961.813 -6961.814 -6961.814 1.85E-05

G07 24.6149 24.9502 25.7139 27.2705 1.0E+00

G08 -0.095825 -0.095825 -0.095825 -0.095825 2.3E-07

G09 680.645 680.742 680.774 680.995 1.1E-01

G10 7128.097 7165.736 7196.508 7297.964 5.8E+01

G11 0.7500 0.7500 0.7500 0.7500 3.2E-05

G12 -1.00000 -1.00000 -1.00000 -1.00000 1.2E-06

Table 3. Comparison of best solutions of ICHEA with five other state-of-the-art algorithms

Functions ICHEA CRGA SAPF PSO-DE CDE SMES

G01 -15.00000 -14.9977 -15.000 -15.000000 -15.000000 -15.000

G02 -0.803036 -0.802959 -0.803202 -0.8036145 -0.803619 -0.803601

G03 -1.00497 -0.9997 -1.000 -1.0050100 -0.995413 -1.000

G04 -30665.539 -30665.520 -30665.401 -30665.539 -30665.539 -30665.539

G06 -6961.814 -6956.251 -6961.046 -6961.8139 -6961.8139 -6961.814

G07 24.6149 24.882 24.838 24.30621 24.30621 24.327

G08 -0.095825 -0.095825 -0.095825 -0.095826 -0.095825 -0.095825

G09 680.645 680.726 680.773 680.6301 680.6301 680.632

G10 7128.097 7114.743 7069.981 7049.248 7049.248 7051.903

G11 0.7500 0.750 0.749 0.749999 0.7499 0.75

G12 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000

Top ranked 7/11 3/11 4/11 11/11 9/11 11/11

other algorithms based on best, mean and worst solutions respectively. The results in
bold indicate the optimum solutions or one of the best amongst all the algorithms.
ICHEA is able to reach global optimum for problems G01, G04, G06, G08, G11 and
G12 while problems solutions for G02, G03, G09 is very close to optimum solutions.
For problems G10 very good solutions are not observed within the limited
generations. This demonstrates the competitiveness of ICHEA with other algorithms.

We have also taken the count of final results that are ranked in top half, achieved
by all the algorithms. The last rows of Table 3 – Table 5 shows the count of top
ranked final results where PSO-DE, SMES and ICHEA are found to be best 3 out of 6
algorithms for getting good mean and worst solutions and PSO-DE, SMES, CDE and
ICHEA are best 4 out of 6 algorithms for reaching towards optimum solution;
however, according to “no-free-lunch” theorem no algorithm is the best for all classes
of problems [22]. PSO-DE is able to demonstrate very impressive results for
benchmark COPs but it is not able to perform well for CSPs as demonstrated in [20]
where ICHEA outperforms it in terms of success rate and efficiency.

414 A. Sharma and D. Sharma

Table 4. Comparison of mean solutions of ICHEA with five other state-of-the-art algorithms

Functions ICHEA CRGA SAPF PSO-DE CDE SMES

G01 -15.00000 -14.9850 -14.552 -15.000000 -14.999996 -15.000

G02 -0.768525 -0.764494 -0.755798 -0.756678 -0.724886 -0.785238

G03 -1.00476 -0.9972 -0.964 -1.0050100 -0.788635 -1.000

G04 -30665.537 -30664.398 -30665.922 -30665.539 -30665.539 -30665.539

G06 -6961.814 -6740.288 -6953.061 -6961.8139 -6961.8139 -6961.284

G07 25.7139 25.746 27.328 24.30621 24.30621 24.475

G08 -0.095825 -0.095819 -0.095635 -0.0958259 -0.095825 -0.095825

G09 680.774 681.347 681.246 680.6301 680.6301 680.643

G10 7196.508 8785.149 7238.964 7049.248 7049.248 7253.047

G11 0.7500 0.752 0.751 0.749999 0.757995 0.75

G12 -1.00000 -1.000000 -0.99994 -1.000000 -1.000000 -1.000

Top ranked 8/11 2/11 1/11 10/11 6/11 9/11

Table 5. Comparison of worst solutions of ICHEA with five other state-of-the-art algorithms

Functions ICHEA CRGA SAPF PSO-DE CDE SMES

G01 -15.00000 -14.9467 -13.097 -15.000000 -14.999993 -15.000

G02 -0.743884 -0.722109 -0.745712 -0.6367995 -0.590908 -0.751322

G03 -1.00483 -0.9931 -0.887 -1.0050100 -0.639920 -1.000

G04 -30665.530 -30660.313 -30656.471 -30665.539 -30665.539 -30665.539

G06 -6961.814 -6077.123 -6943.304 -6961.8139 -6961.8139 -6952.482

G07 27.2705 27.381 33.095 24.3062 24.3062 24.843

G08 -0.095825 -0.095808 -0.092697 -0.0958259 -0.095825 -0.095825

G09 680.995 682.965 682.081 680.6301 680.6301 680.719

G10 7297.964 10826.09 7489.406 7049.248 7049.249 7638.366

G11 0.7500 0.757 0.757 0.750001 0.796455 0.75

G12 -1.00000 -1.000000 -0.999548 -1.000000 -1.000000 -1.000

Top ranked 8/11 1/11 1/11 10/11 7/11 9/11

6 Discussion

ICHEA was initially introduced to solve real-valued CSP solutions only where it was
able to outperform many other EAs in terms of success rate and efficiency [20]. In
this paper ICHEA has been enhanced to solve COPs as well. The comparative test
results on benchmark COPs are very promising and competitive with other state-of-
the-art algorithms. ICHEA is a problem independent formulation where consistent
results have been observed for all the test problems using common parameters.

Introduction of ICHEA in [20] demonstrated that extracting information from
constraints can produce very good solutions efficiently. Hence the basic structure of
ICHEA has been kept intact while enhancing it to employ constraint optimization

 Real-Valued Constraint Optimization with ICHEA 415

tasks. The current form of ICHEA is still problem independent where addition of
parallel processing simultaneously deals with constraint satisfaction and optimization
tasks. Intermarriage crossover has been adjusted to search for an optimum solution
that still utilizes information from the constraints.

7 Conclusion

ICHEA introduced in [20] has been demonstrated to outperform many well-known
EAs including PSO-DE to solve benchmark CSPs. ICHEA has been enhanced in this
paper without losing its integrity to solve real-valued COPs which has shown very
competitive results. This new ICHEA runs in two parallel processes – one for CSP
and another for COP. The CSP process searches feasible regions to make a population
of feasible solutions while COP process tries to optimize the solutions using the
whole population. The main idea remains the information extraction from constraints
that reduces the search space to promising regions only. Currently ICHEA is
restricted to solve only real-valued CSP and COP but it has all the potential to be
extended to work for discrete constraints problems as it relies on extracting
information from constraints. The future work also involves applying ICHEA for
dynamic CSPs and COPs.

References

1. Amirjanov, A.: The development of a changing range genetic algorithm. Computer
Methods in Applied Mechanics and Engineering 195(19-22), 2495–2508 (2006)

2. Back, T., et al. (eds.): Handbook of Evolutionary Computation. IOP Publishing Ltd. (1997)
3. Brailsford, S.: Constraint satisfaction problems: Algorithms and applications. European

Journal of Operational Research 119(3), 557–581 (1999)
4. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with

evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied
Mechanics and Engineering 191(11-12), 1245–1287 (2002)

5. Craenen, B.G.W.: Solving constraint satisfaction problems with evolutionary algorithms.
Phd Dissertation, Vrije Universiteit (2005)

6. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation 6(2), 182–197 (2002)

7. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings
of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995,
pp. 39–43 (1995)

8. Eiben, A.E.: Evolutionary algorithms and constraint satisfaction: definitions, survey,
methodology, and research directions. Presented at the (2001)

9. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization. In: Proceedings of the 5th International
Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann Publishers Inc., San
Francisco (1993)

10. Onwubolu, G.C., Sharma, A.: Particle Swarm Optimization for the assignment of facilities
to locations. In: New Optimization Techniques in Engineering. Springer (2004)

416 A. Sharma and D. Sharma

11. Liang, J.J., et al.: Problem Definitions and Evaluation Criteria for the CEC 2006 Special
Session on Constrained Real-parameter Optimization. Nanyang Technological University,
Singapore (2006)

12. Liu, H., et al.: Hybridizing particle swarm optimization with differential evolution for
constrained numerical and engineering optimization. Appl. Soft Comput., 629–640 (2010)

13. Mezura-montes, E., Coello, C.A.C.: A Survey of Constraint-Handling Techniques Based
on Evolutionary Multiobjective Optimization. Departamento de Computación,
Evolutionary Computation Group at CINVESTAV (2006)

14. Mezura-Montes, E., Coello, C.A.C.: A simple multimembered evolution strategy to solve
constrained optimization problems. IEEE Transactions on Evolutionary Computation 9(1),
1–17 (2005)

15. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter
optimization problems. Evolutionary Computation 4(1), 1–32 (1996)

16. Müller, T.: Constraint-based Timetabling. PhD Dissertation, Charles University (2005)
17. Paredis, J.: Co-evolutionary Constraint Satisfaction. In: Proceedings of the International

Conference on Evolutionary Computation. The Third Conference on Parallel Problem
Solving from Nature, pp. 46–55. Springer (1994)

18. Becerra, R.L., Coello Coello, C.A.: Cultured differential evolution for constrained
optimization. In: Computer Methods in Applied Mechanics and Engineering, vol. 195(33-36),
pp. 4303–4322 (2006)

19. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms,
pp. 93–100. Erlbaum Associates Inc. (1985)

20. Sharma, A., Sharma, D.: ICHEA – A Constraint Guided Search for Improving
Evolutionary Algorithms. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012,
Part I. LNCS, vol. 7663, pp. 269–279. Springer, Heidelberg (2012)

21. Tessema, B., Yen, G.G.: A Self Adaptive Penalty Function Based Algorithm for
Constrained Optimization. In: IEEE Congress on Evolutionary Computation, CEC 2006,
pp. 246–253. IEEE (2006)

22. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation 1(1), 67–82 (1997)

	Real-Valued Constraint Optimization with ICHEA

	Introduction
	Formalization of CSPs and COPs
	Intelligent Constraint Handling Evolutionary Algorithm
	Intermarriage Crossover for Real-Valued CSPs
	ICHEA Algorithm

	ICHEA for Constraint Optimization Problems
	Parallel Processing for CSP and COP
	Search Focus towards Best So Far Individual

	Experiment
	Discussion
	Conclusion
	References

