
T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 445–455, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Incremental Approach to Solving Dynamic
Constraint Satisfaction Problems

Anurag Sharma and Dharmendra Sharma

Faculty of Information Sciences and Engineering
University of Canberra, ACT, Australia

{Anurag.Sharma,Dharmendra.Sharma}@canberra.edu.au

Abstract. Constraint satisfaction problems (CSPs) underpin many science and
engineering applications. Recently introduced intelligent constraint handling
evolutionary algorithm (ICHEA) in [14] has demonstrated strong potential in
solving them through evolutionary algorithms (EAs). ICHEA outperforms
many other evolutionary algorithms to solve CSPs with respect to success rate
(SR) and efficiency. This paper is an enhancement of ICHEA to improve its ef-
ficiency and SR further by an enhancement of the algorithm to deal with local
optima obstacles. The enhancement also includes a capability to handle dy-
namically introduced constraints without restarting the whole algorithm that
uses the knowledge from already solved constraints using an incremental ap-
proach. Experiments on benchmark CSPs adapted as dynamic CSPs has shown
very promising results.

Keywords: Constraint satisfaction problem (CSP), intelligent constraint han-
dling evolutionary algorithm (ICHEA), evolutionary algorithm (EA), local op-
tima, dynamic constraints, incremental approach.

1 Introduction

CSPs are at the core of many real-world applications, including control, and diagnosis
of physical systems such as car, planes, and factories. It is also used in modern robotic
systems such as control of modular, hyper-redundant robots, which are robots with
many more degrees of freedom than required for typical tasks. Sometimes the envi-
ronment of the CSPs changes along with time as in obstacle avoidance, vehicle
routing and reusing previously generated university timetable. Even though CSPs are
an important area of research in part of computer science, little has been reported on
the development of efficient and effective constraint-handling techniques – relative to
the development of new methods for unconstrained optimization using EAs [7]. Re-
cently introduced ICHEA [14] is able to solve real-valued CSPs efficiently with rela-
tively higher success rate (SR) than other tested well known EAs. The strength of
ICHEA is that it makes use of knowledge from constraints rather than blindly search
in the solution space as done by traditional EAs [2]. ICHEA has been demonstrated to
outperform other well regarded EAs like NSGA II [3] and PSO-DE [10]. However
it also exhibited drawbacks in solving hard CSPs where it was computationally

446 A. Sharma and D. Sharma

expensive as its median solutions to benchmark CSPs generally required more than
200.0 seconds of CPU time to solve on a common standalone machine [14]. Its SR
was also very low in the range of 0.0-0.6 for hard problems. Hence we have intro-
duced some new strategies to improve ICHEA to address these drawbacks.

Moreover, ICHEA is only able to handle static CSPs in its current state so we pro-
pose an enhancement to the ICHEA to realize incrementality in constraint solving.
Using this approach the dynamic behavior of CSPs can be handled efficiently as it is
quintessential for real-time dynamic CSPs (DCSP) where only little research has been
reported using EAs. Furthermore, there are not any established benchmark problems
for them. Some benchmark problems are compiled in [12] and [6] but they are used
for dynamic COPs and dynamic optimization problems respectively. The difference
between COPs and CSPs is that in first an optimal solution that satisfies all the con-
straints should be found, while in second any solution as long as all the constraints are
satisfied is acceptable [4]. Because of the unavailability of benchmark DCSPs we
have transformed some existing benchmarks CSPs from [15] to DCSPs.

The main contribution of this paper is to enhance the performance of existing
ICHEA (called ICHEA+) to solve CSPs and introduce an incremental approach to
solve real-valued DCSPs using ICHEA. The paper is organized as follows: Section 2
describes the formalization of CSPs and DCSPs. Section 3 briefly discusses EA tech-
niques used to handle dynamic behavior of CSPs (called I-ICHEA) and the available
benchmark problems. Section 4 describes the enhancement of ICHEA with some new
strategies to overcome getting local optimal solutions. Section 5 shows experimental
results with discussions in Section 6 about the outcome. Section 7 concludes the paper
by summarizing the results and proposing some further possible extensions to the
research.

2 Formalization of CSPs and DCSPs

A CSP is defined by an ݊ dimensional input vector ܺ ൌ ሼݔଵ, ,ଶݔ ௡ሽ in a finiteݔ …
space S where each variable ݔ௜ has a finite domain ௜ܦ . A set of ݉ constraints ሼܿଵ, ܿଶ, … ܿ௠ሽ are defined in the form of functions:

 ܿ௜ሺݔଵ, ,ଶݔ ௡ሻݔ … ൌ ൜ 1, ݂݅ ݀݁ݐ݈ܽ݋݅ݒ ݂݅ ,0݂݀݁݅ݏ݅ݐܽݏ (1)

Constraint satisfaction sets ሼ ଵܵ, ܵଶ, . . ܵ௠ሽ can also be defined where:

 ௜ܵ ൌ ሼܺ א ܵ | ܿ௜ሺܺሻ ൌ 1, 1 ൑ ݅ ൑ ݉, ݅ א ܼሽ (2)

where ܼ is the set of integers. The solution of a CSP is ݏ א ܵ when all the constraints ܿ௜ are satisfied, which can be given as:

 ∑ ܿ௜ሺݏሻ௠௜ୀଵ ൌ ݉ (3)

For real-valued CSPs numerical constraints can be given in two forms – equality and
inequality functions [3, 10, 16]:

 ݃௜ሺܺሻ ൒ 0 ݅ ൌ 1, … , ݇ (4)

 ௝݄ሺܺሻ ൌ 0 ݆ ൌ ݇ ൅ 1, … , ݉ (5)

 An Incremental Approach to Solving Dynamic Constraint Satisfaction Problems 447

The equality constraints cannot be solved directly using EAs so they are converted to
inequality constraints by introducing a positive tolerance value ߜ.

 ݃௝ሺܺሻ ൌ ߜ െ ห ௝݄ሺܺሻห ൒ 0 (6)

Generally violation count is used as a fitness function for any CSPs. Depending on the
strengths of constraints, individual weights is assigned to constraints in a penalty
function to calculate the fitness value. To avoid using problem dependent penalty
functions and utilizing some knowledge from constraints to guide the evolutionary
search many EAs do not use violation count but use a distance function to indicate
how far an individual is from the feasible regions [11]. It transforms the inequality
constraint functions to a fitness function to rank individual members in the population
generated by ICHEA. This fitness function tries to bring the individuals closer to the
feasible space using the following functions for ݅׊ ׷ ሼ1 ൑ ݅ ൑ ݉ሽ:

௜ሺܺሻݏݏ݁݊ݐ݂݅ ൌ ൜g௜ሺܺሻ, ݂݅ ݃௜ሺܺሻ ൏ 00, ݂݅ ݃௜ሺܺሻ ൒ 0 (7)

 ݁ ൌ ∑ ห݂݅ݏݏ݁݊ݐ௜ሺܺሻห௠௜ୀଵ (8)

The fitness function ݂݅ݏݏ݁݊ݐ௜ is a measurement of euclidean distance of vector ܺ
from the nearest point of the feasible region where constraint ܿ௜ is satisfied. The error
function ݁ is the summation of all the fitness functions. The objective is to minimize
the error value ݁ where the solution to a CSP is found when ݁ ൌ 0.

For DCSPs the total number of constraints ݉ is not know a priori and the solution
has to be produced based on constraints that come to hand. A DCSP can be defined as
a sequence of static CSPs where each one differs from the previous one by the addi-
tion or removal of some constraints. It is indeed easy to see that all the possible
changes to a CSP (constraint or domain modifications, variable additions or removals)
can be expressed in terms of constraint additions or removals [17]. The same fitness
function given in Eq. (7) and Eq. (8) are used for DCSPs. To solve such a sequence of
CSPs, it is always possible to solve each constraint from scratch as it has been done
for the first one but this naive method, which remembers nothing from the previous
reasoning, has two significant drawbacks [17]:

─ Inefficiency: which may be unacceptable in the framework of real time applica-
tions (planning, scheduling etc), where the time allowed for re-planning is limited.

─ Instability: of the successive solutions, which may be unpleasant in the framework
of an interactive design or a planning activity, if some work has been started on the
basis of the previous solution.

A DCSP is a sequence of static CSPs that are formed by constraint changes. The no-
tion of DCSP has been introduced to represent such situations by [13]. Some attempt
has been made to solve DCSP using EA as [5] uses Multi-objective optimization
(MOO) to transform changes in constraints as a new objective function with changes
in so called disruption function. This function is used to estimate the effect of chang-
ing an initial constraint to a new one. The changes are reflected in pareto set and pro-
gram runs again to get the new pareto optimal set guided by previous pareto front. In
a typical MOO problem there exists a set of solutions which are superior to the rest of

448 A. Sharma and D. Sharma

the solution in the search space when all objectives are considered but are inferior to
other solutions in the space in one or more objectives. A local search is another ap-
proach to reuse previous solutions for DCSP. The previous solution can simply be
used as a starting assignment for the new local search repair-based algorithm. DCSP
features employing the previous related CSP to find a minimal change solution to the
current CSP but it can be computationally challenging [9, 17].

3 Benchmark Problems

As mentioned above there is little research reported on real-valued DCSPs nor there is
any benchmark problems available for it. There are some benchmark problems for
dynamic optimization problems in [8] and [6] that are without constraints. Some re-
cently developed EAs have performed well on these benchmark problems like self-
adaptive differential evolution algorithm (jDE) [1], dynamic hybrid particle swarm
optimization (DHPSO) [6] and triggered memory based PSO (TMPSO) [18]. Nguen
and Yao in [12] has introduced some benchmark problems for real-valued dynamic
COPs and a novel algorithm repair genetic algorithm (RepairGA) to solve these prob-
lems efficiently; however, none of benchmarks are for DCSPs. We took some bench-
mark CSPs from coconut benchmark [15] and converted them to DCSP by taking one
constraint at a time that is solved as a sequence of static constraints. In this paper only
addition of constraints are considered to make a dynamic environment. Update of
constraints or redefinition of feasible regions has not been considered. A new con-
straint is added into the environment in every 100 generations or else if all the current
constraints are satisfied – whichever is earlier.

4 Enhancement to ICHEA

ICHEA is a variation of EA that uses its own crossover operator namely intermar-
riage crossover that selects two parents from different constraint satisfaction sets ௜ܵ
to make them come closer iteratively towards their corresponding feasible boundary
because the CSP solutions lie in the overlapping boundary region of feasible regions
that satisfy different constraints. Favoring individuals that satisfy higher number of
constraints and the use of feasible regions for intermarriage crossover guide the evo-
lutionary search in finding the solution space quickly [14]. This guiding process has
helped ICHEA to outperform other well-known EAs to solve CSPs where constraint
strengths are very high i.e. the feasible regions are very small compared to the whole
search space. Calculation for constraint strengths has been shown in Section 5.

As mentioned in Section 1, even after ICHEA’s success in outperforming other
well-known EAs to solve CSP, it is still computationally expensive as its median
solutions for some benchmark problems generally require more than 200.0 seconds of
a CPU time on a common machine to produce a solution [14]. Its SR is also very low
in the range of 0.0-0.6 for some hard benchmark problems. Hence we propose the
following enhancement that improves its performance in terms of efficiency and SR.
The enhanced ICHEA is called ICHEA+ (ICHEA-plus) where the improvement

 An Incremental Approach to Solving Dynamic Constraint Satisfaction Problems 449

observed has been as high as 68 times over the previous ICHEA on benchmark prob-
lems. ICHEA+ is even able to produce efficient solutions with high SR of up to 1.00
on low positive tolerance value ሺߜ ൌ 10ିଷሻ on hard CSP problems where previous
ICHEA had low success with SR = 0.00.

4.1 Diversity Management

According to [10] the lower the individuals’ degree of constraint violation, the higher
the probability that it clusters together around the current best solution and individuals
with lower degrees of constraint violations are very difficult to jump out of current
best individual’s adjacent region. This may cause the current best individual to stay
on the same position for a long time leading to loss of diversity in the population. To
avoid this scenario the ICHEA+ keeps the fair share of all degrees of constraint vio-
lating individuals in the population. If the population ݌݋݌ of size |݌݋݌| has ݉ con-
straints in the problem then the whole population is divided into equal sized ݉ slots
where slot ݅ is allocated to individuals that violate ݅ constraints. If there are no indi-
viduals with ݅ violations then its allocated space is evenly distributed to other slots.
Let ݌݋݌௜ indicate the population of individuals that violate ݅ constraints so the total
population is:

݌݋݌ ൌ ∑ ௜௠௜ୀଵ݌݋݌

Then ݌݋݌௜ is sorted according to the fitness and the best |݌݋݌| ݉⁄ is selected for
subpopulation ݌݋݌௜ ׵ . max ሺ|݌݋݌௜|ሻ ൌ |݌݋݌| ݉⁄

If after allocation, ݇ slots have |݌݋݌௜| < |݌݋݌| ݉⁄ , then unallocated population of
individuals ݌݋݌௨௡௔௟௟௢௖ is: ݌݋݌௨௡௔௟௟௢௖ ൌ ෍ ൜|݌݋݌| ݉⁄ െ |௜݌݋݌| ݂݅ ,|௜݌݋݌| ൏ |݌݋݌| ݉⁄ ௠௜ୀଵ ݁ݏ݅ݓݎ݄݁ݐ݋ , 0

This unallocated population ݌݋݌௨௡௔௟௟௢௖ needs to be allocated evenly in the slots that
have |݌݋݌௜| > |݌݋݌| ݉⁄ .

4.2 Stalled Local Optimal Solutions Management

The above diversity management is not sufficient to avoid the population getting
stuck into local optimal solution for hard CSPs. This is a common problem for EAs
when the whole population gets stuck around local optimal solution and lose its diver-
sity. We introduce the concept of forced constraint violations to tackle this issue. This
works like tabu search algorithm where the individuals try to move away from the
forcibly introduced new infeasible regions (tabu regions). If the population is stagnant
for certain number of generations then the current best solution is considered as local
optimal solution where some region around it is marked as a new infeasible region to
move the population away from it. This region is defined as a hyper-sphere whose
centre is the location of the current best (local optimal) solution with the radius

450 A. Sharma and D. Sharma

Table 1. Benchmark Quadratic Problem Chem

ICHEA+ I-ICHEA ICHEA imp ߜ

10ିଵ

SR 1.00 1.00 1.00 0.0

Best
11 gens at

1.8s

19 gens at

2.7s

54 gens at

0.83s 0.5

Median
26 gens at

4.03s

25 gens at

3.5s

238 gens

at 4.66s 1.2

Worst
37 gens at

6.7s

33 gens at

4.8s

559 gens

at 11.1s 1.7

10ିଷ

SR 1.00 1.00 0.30 0.7

Best
75 gens at

7.3s

34 gens at

5.4s

5900 gens

at 196.4s 26.9

Median
621 gens

at 108.3s

267 gens

at 45.7s
-

3.1

Worst
740 gens

at 122.9s
291 gens

at 49.6s
-

2.7

Fig. 1. Making hyper-sphere around stalled
local optimal solution

Table 2. COP Benchmark problem G05 ߜ
ICHEA+ I-

CHEA
ICHEA

imp

10ିହ
SR 1.00 1.00 1.00 0.0

Best
26 gens
at 0.52s

29 gens
at 0.53s

18 gens
0.40s 0.77

Median
30 gens
at 0.57s

34 gens
at 0.62s

19 gens
0.41s 0.72

Worst
39 gens
at 0.72s

36 gens
at 0.64s

21 gens
at 0.46s 0.64

defined as distance from the location of current best individual with the location of
the worst individual that has the same degree of violations as the current best individ-
ual. If the current best individual belongs to a subpopulation ݌݋݌௜ which is sorted
according to the fitness from best to worst where an individual can be described as ௝ܺ א ሼ݌݋݌௜|1 ൑ ݆ ൑ ௜|ሽ has best individual ଵܺ and worst individual |ܺ௣௢௣೔|. The݌݋݌|

radius ܴ of the hyper-sphere can be computed as: ܴ ൌ ห ଵܺ െ |ܺ௣௢௣೔|ห and hence the
new forced dynamic constraint is: ݃௠ାଵሺܺሻ ൌ ∑ ሺݔ௜ െ ௜ሻଶ௡௜ୀଵߤ ൐ ܴଶ where ߤ௜ א ଵܺ
and ݔ௜ א X. Fig. 1 demonstrates the movement of the current best individual that
starts from high violation regions towards low violation regions until it is trapped in a
stagnant region which is then referred as stalled local optimal solution.

5 Experiments

ICHEA is a problem independent tool to solve any given ݊ dimensional CSP so we
use the following parameters to solve all the problems:
Stall threshold = 12 generations, crossover rate = 1.0, mutation rate = 0.1, maximum

generation = 1000 and |݌݋݌| ൌ ൜25, n ൐ 6100, 1 ൑ n ൑ 6

As one constraint is considered at a time for DCSP, we would also like to see if the

constraint strengths of individual constraint matters in finding an efficient solution.
Hence two different sequences of static CSPs are used where each constraint is added
into the environment – from lowest to highest strength and vice versa. As described in
[10] constraint strength ሺߩሻ are computed offline by using the formula ൌ|Ω| ⁄|݌݋݌| , where |݌݋݌| is the number of solutions randomly generated from ݌݋݌,

 An Incremental Approach to Solving Dynamic Constraint Satisfaction Problems 451

Table 3. Benchmark Trigonometric Problem HS109 Table 4. Benchmark Polynomial
Problem Broyden10

 +ICHEA ߜ
I-ICHEA ሺߩ ՛ሻ

I-ICHEA ሺߩ ՝ሻ
ICHEA

imp

10ିଵ

SR 0.70 0.70 0.70 0.70 0.0

Best
54 gens

at 81.1s

57 gens at

87.7s

59 gens at

79.8s

53 gens

at 71.0s 0.9

Median
131 gens

at 205.0s

113 gens at

183.0s

66 gens at

92.1s

70 gens

at 239s 1.2

Worst
192 gens

at 361.3s

186 gens at

283.6s

150 gens at

208.6s
-

2.8

10ିଷ

SR 0.10 0.80 0.80 0.0 0.8

Best
133 gens

at 204.7s

100 gens at

155.0s

89 gens at

128.4s
-

4.9

Median -
122 gens at

186.0s

125 gens at

183.2s
-

0.0

Worst -
156 gens at

250.5s

151 gens at

230.6s
-

0.0

 ߜ
ICHEA+ I-

ICHEA
ICHEA

imp

10ିଵ
SR 1.00 1.00 0.80 0.2

Best
22 gens

at 39.6s

31 gens

at 45.0s

116 gens

at 189.1s 4.8

Median
29 gens

at 55.8s

49 gens

at 81.7

248 gens

at 235.1s 4.2

Worst
53 gens

at 182.1s

158 gens

at 300.0s
-

5.5

10ିଷ
SR 1.00 1.00 - 1.0

Best
28 gens

at 51.8s

36 gens

at 59.4s
-

19.3

Median
42 gens

at 85.3s

38 gens

at 74.0s
-

11.7

Worst
79 gens

at 269.3s

174 gens

at 385.3s
-

3.7

Fig. 2. I-ICHEA and ICHEA+
comparison for H77 (ߜ ൌ10ିଵ)

 Fig. 3. I-ICHEA and
ICHEA+ comparison for
Broyden (ߜ ൌ 10ିଷ)

 Fig. 4. I-ICHEA and ICHEA+
comparison for Chem
(δ ൌ 10ିଷ) |Ω| is the number of feasible solutions out of these |݌݋݌| solutions. In the experimental

setup, |10,000=|݌݋݌ and ߩ value is computed as the average of five successive runs.
It has been demonstrated in [14] that ICHEA outperforms all other tested EAs

where other tested EAs have very low SR. Hence we are only providing the results of
ICHEA+ with previously introduced ICHEA. ICHEA has been developed in Java
language and the tests have been carried out on the same Windows XP machine with
Pentium (R) i5 CPU 2.52 GHz and 3.24 GB RAM. No parallel processing or distri-
buted environment is used for the experiment. An average of 10 successive runs is
taken into account to test the algorithms based on SR and generation count to reach to

452 A. Sharma and D. Sharma

Table 5. Benchmark trigonometry problem H77

 ߜ
ICHEA+ I-ICHEA ሺߩ ՛ሻ

I-ICHEA ሺߩ ՝ሻ
ICHEA

imp

10ିଵ

SR 1.00 1.00 1.00 1.00 0.0

Best
5 gens at

0.6s

6 gens at

0.7s

9 gens at

1.1s

8 gens at

0.3s 0.5

Median
8 gens at

1.2s

6 gens at

0.7s

11 gens at

1.5s

22 gens at

0.64s 0.5

Worst
13 gens

at 2.0s

8 gens at

0.9s

13 gens at

2.0s

48 gens at

1.53s 0.8

10ିଷ

SR 1.00 1.00 1.00 1.00 0.0

Best
7 gens at

0.91s

8 gens at

1.0s

20 gens at

3.4s

447 gens

at 19.0s 20.9

Median
16 gens

at 2.3s

28 gens

at 4.4s

41 gens at

6.8s

3250 gens

at 113.7s 49.4

Worst
21 gens

at 3.1s

37 gens

at 5.8s

66 gens at

11.3s

6297 gens

at 211.4s 68.2

Table 6. Constraint Strengths for H77

Constraints ߩ

1 6.33E-01

2 6.14E-01

3 6.33E-04

the solution. SR is the rate of successful trials for each problem i.e. ܴܵ ൌ ݏ݈ܽ݅ݎݐ ݈ܽݐ݋ݐ/ ݏ݈ܽ݅ݎݐ ݈ݑ݂ݏݏ݁ܿܿݑݏ.
Nine test cases have been created using the benchmark problems from CSP domain

[15] and COP domain [10, 11]. Tables 1, 3, 4, 5 show CSP test results for problems
Chem, HS109, Broyden10 and H77, and Table 2 shows test results for a COP – G05.
Each benchmark problem has been tested on two different ߜ values ሼ10ିଵ, 10ିଷሽ

except for problem G05 which only uses ߜ ൌ 10ିହ. Table 6 and Table 7 show con-
straint strengths for problems H77 and HS109 respectively. Other problems have
same constraint strengths for all the constraints with ߩ ൌ 0. The ߩ values are sorted
in both ascending and descending order for separate tests where constraints are in-
crementally added to the search space in that order. As described earlier DCSPs are
basically sequence of static constraints that are incrementally added to the search
space. Table 1 – Table 5 show test results of ICHEA+ with previous ICHEA to com-
pare their performances on different benchmark problems. The results of I-ICHEA
(both ascendingሺ՛ሻ and descendingሺ՝ሻ order of ߩ) have also been shown on the same
tables to compare the results of ICHEA solving both static CSPs and dynamic CSPs
as it is important to show whether knowledge from already solved constraints has
been utilized or not. The test results are shown with best, median and worst solutions
for each problem in terms of SR and efficiency. Columns are left blank with “-” if
either it is not applicable or no good results have been obtained. The last column

Fig. 5. I-ICHEA and ICHEA+ compari-
son for HS109 (ߜ ൌ 10ିଷ)

Table 7. Constraint Strengths for HS109

Constraints 0.87662 0.87536 0 ߩ 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0.00004 0.9241 0.44 0.41442 0.41874

 An Incremental Approach to Solving Dynamic Constraint Satisfaction Problems 453

named imp shows the improvement of the ICHEA+ over ICHEA where the values for
best, median and worst indicate how many times the ICHEA+ is better than ICHEA
and the values for SR indicate the increase in SRs from ICHEA to ICHEA+.

Fig.2 – Fig. 5 depict the average of all test runs to compare performances of
ICHEA+ and I-ICHEA. The y- axis shows the error value given in Eq. (8) and x-axis
shows the number of generations. The graphical image shows the progress of ICHEA
in solving CSP and DC SP. The spikes in the graphs for I-ICHEA indicate that a new
constraint has been introduced into the search space and spikes for ICHEA+ indicate
the current best individual at that generation has been improved by solving some addi-
tional constraints. This causes the fitness value of current best individual to increase
as ICHEA+ favors individuals with less constraint violations which results in new
individual (generally with high error value) to be added into the population [14].

6 Discussion

The experimental setup in Section 5 has dual objectives. Firstly, it demonstrates the
comparative study of previously published ICHEA in [14] with an upgraded ICHEA
that applies some new strategies proposed in Section 4.1 and Section 4.2 and second-
ly, whether ICHEA is able to handle dynamic constraints in an incremental manner by
reusing knowledge from previous increments. The experimental results show that the
addition of diversity management and stalled local optimal solutions management has
improved the performance of ICHEA to solve CSPs. Previously introduced ICHEA
has very low SR for many benchmark problems when ߜ is 10ିଷ because of local
optimal solutions that makes the whole population become stagnant that has been
massively improved for problems – HS109, Broyden10 and Chem. ICHEA’s efficien-
cy has also been improved massively at different rates for all the hard problems ex-
cept G05 which is a simple problem in the perspective of CSPs. The second objective
of the experiment is to show if I-ICHEA can perform similar to ICHEA+ where the
experimental results show that I-ICHEA has not only performed similar to ICHEA+
but has outperformed it for problems – HS109 and Chem. This demonstrates that
ICHEA makes full use of constraints solved in previous increments that are transpired
to new increments and it is capable of handling dynamic constraints. Constraints can
be added dynamically to ICHEA and it can still give the solution with same efficiency
and success as of solving all the constraints concurrently. The experimental results on
the order of constraint strength did not produce any conclusive results about the per-
formance of ICHEA as shown in problems – H77 and HS109 where results with
mixed success have been observed.

7 Conclusion

This paper has proposed an improvement on ICHEA to solve CSPs together with an
enhancement of its capacity to handle DCSPs effectively. It has been shown
through benchmarks problems that the new strategies applied to ICHEA helps in
maintaining the diversity of the populations and dealing with local optimal solutions

454 A. Sharma and D. Sharma

by dynamically creating new constraints. This has helped massively in getting higher
SR for most of the test problems. ICHEA has also been tested to handle DCSPs on
benchmark CSPs that have been transformed to DCSPs. It has been shown that con-
straints can be added dynamically to ICHEA without restarting the algorithm and it
can still give the solution with similar efficiency and SR as of solving all the con-
straints concurrently because ICHEA utilizes the knowledge from constraints of pre-
vious increments. The experimental results on the order of constraint strengths have
been inconclusive in finding a CSP solution in an incremental approach. For future
work efficiency of ICHEA can be tested on dynamic constraints where previous con-
straints can be removed or updated that distort the previous feasible regions. ICHEA
has been able to solve CSPs and DCSPs. It has potential to be extended to work for
discrete data as well because it extracts knowledge from constraints for its evolutio-
nary search. ICHEA+ and I-ICHEA are currently further developed to solve real va-
lued COPs and dynamic COPs respectively.

References

1. Brest, J., et al.: Dynamic optimization using Self-Adaptive Differential Evolution. In:
IEEE Congress on Evolutionary Computation, CEC 2009, pp. 415–422 (2009)

2. Craenen, B.G.W., et al.: Comparing evolutionary algorithms on binary constraint satisfac-
tion problems. IEEE Transactions on Evolutionary Computation 7, 424–444 (2003)

3. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm. NSGA-II. IEEE Trans-
actions on Evolutionary Computation 6(2), 182–197 (2002)

4. Eiben, A.E.: Evolutionary Algorithms and Constraint Satisfaction: Definitions, Survey,
Methodology, and Research Directions. In: Theoretical Aspects of Evolutionary Compu-
ting, pp. 13–58 (2001)

5. El Rhalibi, A., Kelleher, G.: An approach to dynamic vehicle routing, rescheduling and
disruption metrics. In: IEEE International Conference on Systems, Man and Cybernetics,
vol. 4, pp. 3613–3618 (2003)

6. Karimi, J., et al.: A new hybrid approach for dynamic continuous optimization problems.
Applied Soft Computing 12, 1158–1167 (2012)

7. Kramer, O.: A Review of Constraint-Handling Techniques for Evolution Strategies. Ap-
plied Computational Intelligence and Soft Computing, 1–11 (2010)

8. Li, C., et al.: Benchmark Generator for CEC’2009 Competition on Dynamic Optimization
(2008)

9. Li, T., et al.: Dynamic Constraint Satisfaction Approach to Hybrid Flowshop Reschedul-
ing. In: 2007 IEEE International Conference on Automation and Logistics, pp. 818–823
(2007)

10. Liu, H., et al.: Hybridizing particle swarm optimization with differential evolution for con-
strained numerical and engineering optimization. Appl. Soft Comput., 629–640 (2010)

11. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter op-
timization problems. Evolutionary Computation 4, 1–32 (1996)

12. Nguyen, T., Yao, X.: Continuous Dynamic Constrained Optimisation - The Challenges.
IEEE Transactions on Evolutionary Computation 99, 1 (2012)

13. Dechter, R.: Constraint networks. In: Encyclopedia of Artificial Intelligence, pp. 276–285.
John Wiley & Sons, Ltd., New York (1992)

 An Incremental Approach to Solving Dynamic Constraint Satisfaction Problems 455

14. Sharma, A., Sharma, D.: ICHEA – A Constraint Guided Search for Improving Evolutio-
nary Algorithms. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part I.
LNCS, vol. 7663, pp. 269–279. Springer, Heidelberg (2012)

15. The COCONUT Benchmark, http://www.mat.univie.ac.at/~neum/glopt/
coconut/Bench-mark/Benchmark.html

16. Tessema, B., Yen, G.G.: A Self Adaptive Penalty Function Based Algorithm for Con-
strained Optimization. In: IEEE Congress on Evolutionary Computation, pp. 246–253
(2006)

17. Verfaillie, G., Jussien, N.: Constraint Solving in Uncertain and Dynamic Environments: A
Survey. Constraints, 253–281 (2005)

18. Wang, H., Wang, D.-W., Yang, S.: Triggered Memory-Based Swarm Optimization in
Dynamic Environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448,
pp. 637–646. Springer, Heidelberg (2007)

	An Incremental Approach to Solving Dynamic Constraint Satisfaction Problems
	Introduction
	Formalization of CSPs and DCSPs
	Benchmark Problems
	Enhancement to ICHEA
	Diversity Management
	Stalled Local Optimal Solutions Management

	Experiments
	Discussion
	Conclusion
	References

