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Abstract. Constraint satisfaction problems (CSPs) underpin many science and 
engineering applications. Recently introduced intelligent constraint handling 
evolutionary algorithm (ICHEA) in [14] has demonstrated strong potential in 
solving them through evolutionary algorithms (EAs). ICHEA outperforms 
many other evolutionary algorithms to solve CSPs with respect to success rate 
(SR) and efficiency. This paper is an enhancement of ICHEA to improve its ef-
ficiency and SR further by an enhancement of the algorithm to deal with local 
optima obstacles. The enhancement also includes a capability to handle dy-
namically introduced constraints without restarting the whole algorithm that 
uses the knowledge from already solved constraints using an incremental ap-
proach. Experiments on benchmark CSPs adapted as dynamic CSPs has shown 
very promising results. 
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1 Introduction 

CSPs are at the core of many real-world applications, including control, and diagnosis 
of physical systems such as car, planes, and factories. It is also used in modern robotic 
systems such as control of modular, hyper-redundant robots, which are robots with 
many more degrees of freedom than required for typical tasks. Sometimes the envi-
ronment of the CSPs changes along with time as in obstacle avoidance, vehicle 
routing and reusing previously generated university timetable. Even though CSPs are 
an important area of research in part of computer science, little has been reported on 
the development of efficient and effective constraint-handling techniques – relative to 
the development of new methods for unconstrained optimization using EAs [7]. Re-
cently introduced ICHEA [14] is able to solve real-valued CSPs efficiently with rela-
tively higher success rate (SR) than other tested well known EAs. The strength of 
ICHEA is that it makes use of knowledge from constraints rather than blindly search 
in the solution space as done by traditional EAs [2]. ICHEA has been demonstrated to 
outperform other well regarded EAs like NSGA II [3] and PSO-DE [10]. However  
it also exhibited drawbacks in solving hard CSPs where it was computationally  
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expensive as its median solutions to benchmark CSPs generally required more than 
200.0 seconds of CPU time to solve on a common standalone machine [14]. Its SR 
was also very low in the range of 0.0-0.6 for hard problems. Hence we have intro-
duced some new strategies to improve ICHEA to address these drawbacks. 

Moreover, ICHEA is only able to handle static CSPs in its current state so we pro-
pose an enhancement to the ICHEA to realize incrementality in constraint solving. 
Using this approach the dynamic behavior of CSPs can be handled efficiently as it is 
quintessential for real-time dynamic CSPs (DCSP) where only little research has been 
reported using EAs. Furthermore, there are not any established benchmark problems 
for them. Some benchmark problems are compiled in [12] and [6] but they are used 
for dynamic COPs and dynamic optimization problems respectively. The difference 
between COPs and CSPs is that in first an optimal solution that satisfies all the con-
straints should be found, while in second any solution as long as all the constraints are 
satisfied is acceptable [4]. Because of the unavailability of benchmark DCSPs we 
have transformed some existing benchmarks CSPs from [15] to DCSPs.  

The main contribution of this paper is to enhance the performance of existing 
ICHEA (called ICHEA+) to solve CSPs and introduce an incremental approach to 
solve real-valued DCSPs using ICHEA. The paper is organized as follows: Section 2 
describes the formalization of CSPs and DCSPs. Section 3 briefly discusses EA tech-
niques used to handle dynamic behavior of CSPs (called I-ICHEA) and the available 
benchmark problems. Section 4 describes the enhancement of ICHEA with some new 
strategies to overcome getting local optimal solutions. Section 5 shows experimental 
results with discussions in Section 6 about the outcome. Section 7 concludes the paper 
by summarizing the results and proposing some further possible extensions to the 
research. 

2 Formalization of CSPs and DCSPs  

A CSP is defined by an ݊ dimensional input vector ܺ ൌ  ሼݔଵ, ,ଶݔ  ௡ሽ in a finiteݔ …
space S where each variable ݔ௜  has a finite domain ௜ܦ  . A set of ݉  constraints ሼܿଵ, ܿଶ, … ܿ௠ሽ are defined in the form of functions: 

 ܿ௜ሺݔଵ, ,ଶݔ ௡ሻݔ … ൌ  ൜ 1,         ݂݅ ݀݁ݐ݈ܽ݋݅ݒ ݂݅         ,0݂݀݁݅ݏ݅ݐܽݏ  (1) 

Constraint satisfaction sets ሼ ଵܵ, ܵଶ, . . ܵ௠ሽ can also be defined where: 

 ௜ܵ ൌ  ሼܺ א ܵ | ܿ௜ሺܺሻ ൌ 1, 1 ൑ ݅ ൑ ݉, ݅ א ܼሽ (2) 

where ܼ is the set of integers. The solution of a CSP is ݏ א ܵ when all the constraints ܿ௜ are satisfied, which can be given as: 

 ∑ ܿ௜ሺݏሻ௠௜ୀଵ ൌ ݉  (3) 

For real-valued CSPs numerical constraints can be given in two forms – equality and 
inequality functions [3, 10, 16]: 

 ݃௜ሺܺሻ ൒ 0                  ݅ ൌ 1, … , ݇ (4) 

 ௝݄ሺܺሻ ൌ 0         ݆ ൌ ݇ ൅ 1, … , ݉  (5) 
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The equality constraints cannot be solved directly using EAs so they are converted to 
inequality constraints by introducing a positive tolerance value ߜ.  

 ݃௝ሺܺሻ ൌ ߜ െ ห ௝݄ሺܺሻห ൒ 0 (6) 

Generally violation count is used as a fitness function for any CSPs. Depending on the 
strengths of constraints, individual weights is assigned to constraints in a penalty 
function to calculate the fitness value. To avoid using problem dependent penalty 
functions and utilizing some knowledge from constraints to guide the evolutionary 
search many EAs do not use violation count but use a distance function to indicate 
how far an individual is from the feasible regions [11]. It transforms the inequality 
constraint functions to a fitness function to rank individual members in the population 
generated by ICHEA. This fitness function tries to bring the individuals closer to the 
feasible space using the following functions for ݅׊ ׷ ሼ1 ൑ ݅ ൑ ݉ሽ: 

௜ሺܺሻݏݏ݁݊ݐ݂݅  ൌ  ൜g௜ሺܺሻ,    ݂݅ ݃௜ሺܺሻ ൏ 00,            ݂݅ ݃௜ሺܺሻ ൒ 0 (7) 

 ݁ ൌ  ∑ ห݂݅ݏݏ݁݊ݐ௜ሺܺሻห௠௜ୀଵ  (8) 

The fitness function ݂݅ݏݏ݁݊ݐ௜  is a measurement of euclidean distance of vector ܺ 
from the nearest point of the feasible region where constraint ܿ௜  is satisfied. The error 
function ݁ is the summation of all the fitness functions. The objective is to minimize 
the error value ݁ where the solution to a CSP is found when ݁ ൌ 0. 

For DCSPs the total number of constraints ݉ is not know a priori and the solution 
has to be produced based on constraints that come to hand. A DCSP can be defined as 
a sequence of static CSPs where each one differs from the previous one by the addi-
tion or removal of some constraints. It is indeed easy to see that all the possible 
changes to a CSP (constraint or domain modifications, variable additions or removals) 
can be expressed in terms of constraint additions or removals [17]. The same fitness 
function given in Eq. (7) and Eq. (8) are used for DCSPs. To solve such a sequence of 
CSPs, it is always possible to solve each constraint from scratch as it has been done 
for the first one but this naive method, which remembers nothing from the previous 
reasoning, has two significant drawbacks [17]: 

─ Inefficiency: which may be unacceptable in the framework of real time applica-
tions (planning, scheduling etc), where the time allowed for re-planning is limited. 

─ Instability: of the successive solutions, which may be unpleasant in the framework 
of an interactive design or a planning activity, if some work has been started on the 
basis of the previous solution. 

A DCSP is a sequence of static CSPs that are formed by constraint changes. The no-
tion of DCSP has been introduced to represent such situations by [13]. Some attempt 
has been made to solve DCSP using EA as [5] uses Multi-objective optimization 
(MOO) to transform changes in constraints as a new objective function with changes 
in so called disruption function. This function is used to estimate the effect of chang-
ing an initial constraint to a new one. The changes are reflected in pareto set and pro-
gram runs again to get the new pareto optimal set guided by previous pareto front. In 
a typical MOO problem there exists a set of solutions which are superior to the rest of 
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the solution in the search space when all objectives are considered but are inferior to 
other solutions in the space in one or more objectives. A local search is another ap-
proach to reuse previous solutions for DCSP. The previous solution can simply be 
used as a starting assignment for the new local search repair-based algorithm. DCSP 
features employing the previous related CSP to find a minimal change solution to the 
current CSP but it can be computationally challenging [9, 17].  

3 Benchmark Problems  

As mentioned above there is little research reported on real-valued DCSPs nor there is 
any benchmark problems available for it. There are some benchmark problems for 
dynamic optimization problems in [8] and [6] that are without constraints. Some re-
cently developed EAs have performed well on these benchmark problems like self-
adaptive differential evolution algorithm (jDE) [1], dynamic hybrid particle swarm 
optimization (DHPSO) [6] and triggered memory based PSO (TMPSO) [18]. Nguen 
and Yao in [12] has introduced some benchmark problems for real-valued dynamic 
COPs and a novel algorithm repair genetic algorithm (RepairGA) to solve these prob-
lems efficiently; however, none of benchmarks are for DCSPs. We took some bench-
mark CSPs from coconut benchmark [15] and converted them to DCSP by taking one 
constraint at a time that is solved as a sequence of static constraints. In this paper only 
addition of constraints are considered to make a dynamic environment. Update of 
constraints or redefinition of feasible regions has not been considered. A new con-
straint is added into the environment in every 100 generations or else if all the current 
constraints are satisfied – whichever is earlier. 

4 Enhancement to ICHEA 

ICHEA is a variation of EA that uses its own crossover operator namely intermar-
riage crossover that selects two parents from different constraint satisfaction sets ௜ܵ 
to make them come closer iteratively towards their corresponding feasible boundary 
because the CSP solutions lie in the overlapping boundary region of feasible regions 
that satisfy different constraints. Favoring individuals that satisfy higher number of 
constraints and the use of feasible regions for intermarriage crossover guide the evo-
lutionary search in finding the solution space quickly [14]. This guiding process has 
helped ICHEA to outperform other well-known EAs to solve CSPs where constraint 
strengths are very high i.e. the feasible regions are very small compared to the whole 
search space. Calculation for constraint strengths has been shown in Section 5.  

As mentioned in Section 1, even after ICHEA’s success in outperforming other 
well-known EAs to solve CSP, it is still computationally expensive as its median 
solutions for some benchmark problems generally require more than 200.0 seconds of 
a CPU time on a common machine to produce a solution [14]. Its SR is also very low 
in the range of 0.0-0.6 for some hard benchmark problems. Hence we propose the 
following enhancement that improves its performance in terms of efficiency and SR. 
The enhanced ICHEA is called ICHEA+ (ICHEA-plus) where the improvement  
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observed has been as high as 68 times over the previous ICHEA on benchmark prob-
lems. ICHEA+ is even able to produce efficient solutions with high SR of up to 1.00 
on low positive tolerance value ሺߜ ൌ  10ିଷሻ on hard CSP problems where previous 
ICHEA had low success with SR = 0.00. 

4.1 Diversity Management 

According to [10] the lower the individuals’ degree of constraint violation, the higher 
the probability that it clusters together around the current best solution and individuals 
with lower degrees of constraint violations are very difficult to jump out of current 
best individual’s adjacent region. This may cause the current best individual to stay 
on the same position for a long time leading to loss of diversity in the population. To 
avoid this scenario the ICHEA+ keeps the fair share of all degrees of constraint vio-
lating individuals in the population. If the population ݌݋݌ of size |݌݋݌| has ݉ con-
straints in the problem then the whole population is divided into equal sized ݉ slots 
where slot ݅ is allocated to individuals that violate ݅ constraints. If there are no indi-
viduals with ݅ violations then its allocated space is evenly distributed to other slots. 
Let ݌݋݌௜  indicate the population of individuals that violate ݅ constraints so the total 
population is: 

݌݋݌  ൌ ∑ ௜௠௜ୀଵ݌݋݌  

Then ݌݋݌௜  is sorted according to the fitness and the best |݌݋݌| ݉⁄  is selected for 
subpopulation ݌݋݌௜ ׵ . max ሺ|݌݋݌௜|ሻ ൌ |݌݋݌| ݉⁄  

If after allocation, ݇ slots have |݌݋݌௜| < |݌݋݌| ݉⁄ , then unallocated population of 
individuals ݌݋݌௨௡௔௟௟௢௖  is: ݌݋݌௨௡௔௟௟௢௖ ൌ ෍ ൜|݌݋݌| ݉⁄ െ |௜݌݋݌| ݂݅    ,|௜݌݋݌|  ൏ |݌݋݌|  ݉⁄ ௠௜ୀଵ                       ݁ݏ݅ݓݎ݄݁ݐ݋    ,                               0   

This unallocated population ݌݋݌௨௡௔௟௟௢௖  needs to be allocated evenly in the slots that 
have |݌݋݌௜| > |݌݋݌| ݉⁄ .  

4.2 Stalled Local Optimal Solutions Management 

The above diversity management is not sufficient to avoid the population getting 
stuck into local optimal solution for hard CSPs. This is a common problem for EAs 
when the whole population gets stuck around local optimal solution and lose its diver-
sity. We introduce the concept of forced constraint violations to tackle this issue. This 
works like tabu search algorithm where the individuals try to move away from the 
forcibly introduced new infeasible regions (tabu regions). If the population is stagnant 
for certain number of generations then the current best solution is considered as local 
optimal solution where some region around it is marked as a new infeasible region to 
move the population away from it. This region is defined as a hyper-sphere whose 
centre is the location of the current best (local optimal) solution with the radius  
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Table 1. Benchmark Quadratic Problem Chem 

ICHEA+ I-ICHEA ICHEA imp  ߜ

10ିଵ 

SR 1.00 1.00 1.00 0.0 

Best 
11 gens at 

1.8s 

19 gens at 

2.7s 

54 gens at 

0.83s 0.5 

Median 
26 gens at 

4.03s 

25 gens at 

3.5s  

238 gens 

at 4.66s 1.2 

Worst 
37 gens at 

6.7s 

33 gens at 

4.8s  

559 gens 

at 11.1s 1.7 

10ିଷ 

SR 1.00 1.00 0.30 0.7 

Best 
75 gens at 

7.3s 

34 gens at 

5.4s 

5900 gens 

at 196.4s 26.9

Median 
621 gens 

at 108.3s 

267 gens 

at 45.7s  
- 

3.1 

Worst 
740 gens 

at 122.9s 
291 gens 

at 49.6s  
- 

2.7 

 

Fig. 1. Making hyper-sphere around stalled 
local optimal solution 

Table 2. COP Benchmark problem G05 ߜ  
ICHEA+ I-

CHEA 
ICHEA 

imp 

10ିହ
SR 1.00 1.00 1.00 0.0 

Best 
26 gens 
at 0.52s 

29 gens 
at 0.53s

18 gens 
0.40s 0.77 

Median
30 gens 
at 0.57s 

34 gens 
at 0.62s

19 gens 
0.41s 0.72 

Worst 
39 gens 
at 0.72s 

36 gens 
at 0.64s

21 gens 
at 0.46s 0.64 

defined as distance from the location of current best individual with the location of 
the worst individual that has the same degree of violations as the current best individ-
ual. If the current best individual belongs to a subpopulation ݌݋݌௜  which is sorted 
according to the fitness from best to worst where an individual can be described as ௝ܺ א ሼ݌݋݌௜|1 ൑ ݆ ൑  ௜|ሽ has best individual ଵܺ and worst individual |ܺ௣௢௣೔|. The݌݋݌|

radius ܴ of the hyper-sphere can be computed as: ܴ ൌ ห ଵܺ െ |ܺ௣௢௣೔|ห and hence the 
new forced dynamic constraint is: ݃௠ାଵሺܺሻ ൌ ∑ ሺݔ௜ െ ௜ሻଶ௡௜ୀଵߤ ൐ ܴଶ where ߤ௜ א ଵܺ 
and ݔ௜ א X. Fig. 1 demonstrates the movement of the current best individual that 
starts from high violation regions towards low violation regions until it is trapped in a 
stagnant region which is then referred as stalled local optimal solution. 

5 Experiments 

ICHEA is a problem independent tool to solve any given ݊ dimensional CSP so we 
use the following parameters to solve all the problems: 
Stall threshold = 12 generations, crossover rate = 1.0, mutation rate = 0.1, maximum 

generation = 1000 and  |݌݋݌| ൌ ൜25,              n ൐ 6100,   1 ൑ n ൑ 6  

 
As one constraint is considered at a time for DCSP, we would also like to see if the 

constraint strengths of individual constraint matters in finding an efficient solution. 
Hence two different sequences of static CSPs are used where each constraint is added 
into the environment – from lowest to highest strength and vice versa. As described in 
[10] constraint strength ሺߩሻ  are computed offline by using the formula  ൌ|Ω| ⁄|݌݋݌| , where |݌݋݌| is the number of solutions randomly generated from ݌݋݌, 
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Table 3. Benchmark Trigonometric Problem HS109 Table 4. Benchmark Polynomial
Problem Broyden10 

 +ICHEA  ߜ
I-ICHEA ሺߩ ՛ሻ 

I-ICHEA ሺߩ ՝ሻ 
ICHEA 

imp

10ିଵ 

SR 0.70 0.70 0.70 0.70 0.0

Best 
54 gens 

at 81.1s 

57 gens at 

87.7s 

59 gens at 

79.8s 

53 gens 

at 71.0s 0.9

Median 
131 gens 

at 205.0s 

113 gens at 

183.0s  

66 gens at 

92.1s 

70 gens 

at 239s 1.2

Worst 
192 gens 

at 361.3s 

186 gens at 

283.6s  

150 gens at 

208.6s 
- 

2.8

10ିଷ 

SR 0.10 0.80 0.80 0.0 0.8

Best 
133 gens 

at 204.7s 

100 gens at 

155.0s  

89 gens at 

128.4s 
- 

4.9

Median - 
122 gens at 

186.0s  

125 gens at 

183.2s 
- 

0.0

Worst - 
156 gens at 

250.5s 

151 gens at 

230.6s 
- 

0.0

 

  ߜ
ICHEA+ I-

ICHEA 
ICHEA 

imp 

10ିଵ
SR 1.00 1.00 0.80 0.2 

Best 
22 gens 

at 39.6s 

31 gens 

at 45.0s 

116 gens 

at 189.1s 4.8 

Median
29 gens 

at 55.8s 

49 gens 

at 81.7  

248 gens 

at 235.1s 4.2 

Worst 
53 gens 

at 182.1s 

158 gens 

at 300.0s 
- 

5.5 

10ିଷ
SR 1.00 1.00 -  1.0 

Best 
28 gens 

at 51.8s 

36 gens 

at 59.4s 
- 

19.3 

Median
42 gens 

at 85.3s 

38 gens 

at 74.0s  
- 

11.7 

Worst 
79 gens 

at 269.3s 

174 gens 

at 385.3s 
- 

3.7 
 

 

Fig. 2. I-ICHEA and ICHEA+ 
comparison for H77 ( ߜ ൌ10ିଵ) 

  Fig. 3. I-ICHEA and 
ICHEA+ comparison for
Broyden (ߜ ൌ 10ିଷ) 

  Fig. 4. I-ICHEA and ICHEA+ 
comparison for Chem 
(δ ൌ 10ିଷ) |Ω| is the number of feasible solutions out of these |݌݋݌| solutions. In the experimental 

setup, |10,000=|݌݋݌ and ߩ value is computed as the average of five successive runs.  
It has been demonstrated in [14] that ICHEA outperforms all other tested EAs 

where other tested EAs have very low SR. Hence we are only providing the results of 
ICHEA+ with previously introduced ICHEA. ICHEA has been developed in Java 
language and the tests have been carried out on the same Windows XP machine with 
Pentium (R) i5 CPU 2.52 GHz and 3.24 GB RAM. No parallel processing or distri-
buted environment is used for the experiment. An average of 10 successive runs is 
taken into account to test the algorithms based on SR and generation count to reach to 
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Table 5. Benchmark trigonometry problem H77 

  ߜ
ICHEA+ I-ICHEA ሺߩ ՛ሻ 

I-ICHEA ሺߩ ՝ሻ 
ICHEA 

imp 

10ିଵ 

SR 1.00 1.00 1.00 1.00 0.0 

Best 
5 gens at 

0.6s 

6 gens at 

0.7s 

9 gens at 

1.1s 

8 gens at 

0.3s 0.5 

Median 
8 gens at 

1.2s 

6 gens at 

0.7s  

11 gens at 

1.5s 

22 gens at 

0.64s 0.5 

Worst 
13 gens 

at 2.0s 

8 gens at 

0.9s  

13 gens at 

2.0s 

48 gens at 

1.53s 0.8 

10ିଷ 

SR 1.00 1.00 1.00 1.00 0.0 

Best 
7 gens at 

0.91s 

8 gens at 

1.0s 

20 gens at 

3.4s 

447 gens 

at 19.0s 20.9

Median 
16 gens 

at 2.3s 

28 gens 

at 4.4s  

41 gens at 

6.8s 

3250 gens 

at 113.7s 49.4

Worst 
21 gens 

at 3.1s 

37 gens 

at 5.8s  

66 gens at 

11.3s 

6297 gens 

at 211.4s 68.2

 

 

Table 6. Constraint Strengths for H77 

Constraints ߩ 

1 6.33E-01 

2 6.14E-01 

3 6.33E-04 

the solution. SR is the rate of successful trials for each problem i.e. ܴܵ ൌ ݏ݈ܽ݅ݎݐ ݈ܽݐ݋ݐ/ ݏ݈ܽ݅ݎݐ ݈ݑ݂ݏݏ݁ܿܿݑݏ. 
Nine test cases have been created using the benchmark problems from CSP domain 

[15] and COP domain [10, 11]. Tables 1, 3, 4, 5 show CSP test results for problems 
Chem, HS109, Broyden10 and H77, and Table 2 shows test results for a COP – G05. 
Each benchmark problem has been tested on two different ߜ values ሼ10ିଵ, 10ିଷሽ  

 
except for problem G05 which only uses ߜ ൌ  10ିହ. Table 6 and Table 7 show con-
straint strengths for problems H77 and HS109 respectively. Other problems have 
same constraint strengths for all the constraints with ߩ ൌ 0. The ߩ values are sorted 
in both ascending and descending order for separate tests where constraints are in-
crementally added to the search space in that order. As described earlier DCSPs are 
basically sequence of static constraints that are incrementally added to the search 
space. Table 1 – Table 5 show test results of ICHEA+ with previous ICHEA to com-
pare their performances on different benchmark problems. The results of I-ICHEA 
(both ascendingሺ՛ሻ and descendingሺ՝ሻ order of ߩ) have also been shown on the same 
tables to compare the results of ICHEA solving both static CSPs and dynamic CSPs 
as it is important to show whether knowledge from already solved constraints has 
been utilized or not. The test results are shown with best, median and worst solutions 
for each problem in terms of SR and efficiency. Columns are left blank with “-” if 
either it is not applicable or no good results have been obtained. The last column 

 

Fig. 5. I-ICHEA and ICHEA+ compari-
son for HS109 (ߜ ൌ 10ିଷ) 

Table 7. Constraint Strengths for HS109 

Constraints 0.87662 0.87536 0 ߩ 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0.00004 0.9241 0.44 0.41442 0.41874 
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named imp shows the improvement of the ICHEA+ over ICHEA where the values for 
best, median and worst indicate how many times the ICHEA+ is better than ICHEA 
and the values for SR indicate the increase in SRs from ICHEA to ICHEA+.  

Fig.2 – Fig. 5 depict the average of all test runs to compare performances of 
ICHEA+ and I-ICHEA. The y- axis shows the error value given in Eq. (8) and x-axis 
shows the number of generations. The graphical image shows the progress of ICHEA 
in solving CSP and DC SP. The spikes in the graphs for I-ICHEA indicate that a new 
constraint has been introduced into the search space and spikes for ICHEA+ indicate 
the current best individual at that generation has been improved by solving some addi-
tional constraints. This causes the fitness value of current best individual to increase 
as ICHEA+ favors individuals with less constraint violations which results in new 
individual (generally with high error value) to be added into the population [14].  

6 Discussion 

The experimental setup in Section 5 has dual objectives. Firstly, it demonstrates the 
comparative study of previously published ICHEA in [14] with an upgraded ICHEA 
that applies some new strategies proposed in Section 4.1 and Section 4.2 and second-
ly, whether ICHEA is able to handle dynamic constraints in an incremental manner by 
reusing knowledge from previous increments. The experimental results show that the 
addition of diversity management and stalled local optimal solutions management has 
improved the performance of ICHEA to solve CSPs. Previously introduced ICHEA 
has very low SR for many benchmark problems when ߜ is 10ିଷ because of local 
optimal solutions that makes the whole population become stagnant that has been 
massively improved for problems – HS109, Broyden10 and Chem. ICHEA’s efficien-
cy has also been improved massively at different rates for all the hard problems ex-
cept G05 which is a simple problem in the perspective of CSPs. The second objective 
of the experiment is to show if I-ICHEA can perform similar to ICHEA+ where the 
experimental results show that I-ICHEA has not only performed similar to ICHEA+ 
but has outperformed it for problems – HS109 and Chem. This demonstrates that 
ICHEA makes full use of constraints solved in previous increments that are transpired 
to new increments and it is capable of handling dynamic constraints. Constraints can 
be added dynamically to ICHEA and it can still give the solution with same efficiency 
and success as of solving all the constraints concurrently. The experimental results on 
the order of constraint strength did not produce any conclusive results about the per-
formance of ICHEA as shown in problems – H77 and HS109 where results with 
mixed success have been observed. 

7 Conclusion 

This paper has proposed an improvement on ICHEA to solve CSPs together with an 
enhancement of its capacity to handle DCSPs effectively. It has been shown  
through benchmarks problems that the new strategies applied to ICHEA helps in 
maintaining the diversity of the populations and dealing with local optimal solutions 
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by dynamically creating new constraints. This has helped massively in getting higher 
SR for most of the test problems. ICHEA has also been tested to handle DCSPs on 
benchmark CSPs that have been transformed to DCSPs. It has been shown that con-
straints can be added dynamically to ICHEA without restarting the algorithm and it 
can still give the solution with similar efficiency and SR as of solving all the con-
straints concurrently because ICHEA utilizes the knowledge from constraints of pre-
vious increments. The experimental results on the order of constraint strengths have 
been inconclusive in finding a CSP solution in an incremental approach. For future 
work efficiency of ICHEA can be tested on dynamic constraints where previous con-
straints can be removed or updated that distort the previous feasible regions. ICHEA 
has been able to solve CSPs and DCSPs. It has potential to be extended to work for 
discrete data as well because it extracts knowledge from constraints for its evolutio-
nary search. ICHEA+ and I-ICHEA are currently further developed to solve real va-
lued COPs and dynamic COPs respectively. 
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