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Abstract

A low-level logic fault test simulation environment targeted towards application-specific
integrated circuits (ASICs) in particular is proposed in this paper. The simulation environment
emulates a typical built-in self-testing (BIST) environment with test pattern generator (TPG) that
sends its outputs to a circuit (core) under test (CUT) and the output streams from the CUT are fed
into an output response analyzer (ORA). The developed simulator is very suitable for testing
embedded digital intellectual property (IP) cores-based systems. The paper describes the total test
architecture environment, including the application of the logic fault simulator. Results on
simulation on some specific International Symposium on Circuits and Systems (ISCAS) 85
combinational and ISCAS 89 sequential benchmark circuits are provided as well for appraisal.

Key words: Application-specific integrated circuit, built-in self-testing, circuit under test,
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1. Introduction

With increasing complexity in systems design
concurrent with enhanced levels of integration
densities, better and more efficient methods of
testing to ensure reliable operations of chips,
mainstay of today’s many sophisticated digital
systems, are evidently a necessity (Assaf, 2003;
Bardell et al., 1987; Bellows and Hutchings, 1998;
Chakrabarty, 1995, 2005; Das et al., 1998, 2001,
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2001; Gherman et al., 2006; Guccione and Levy,
1998; Huang et al., 2001; Jone and Das, 1991;
Karpovsky and Nagvajara, 1990; Levi and Guccione,
1999; Li and Robinson, 1987; McCluskey, 1985;
Pouya and Touba, 1998; Pradhan and Gupta, 1991;
Rajsuman, 2000; Reddy et al., 1988; Saluja and
Karpovsky, 1983; Savir, 1996; Sundararajan and
Guccione, 2000). The very concept of testing has a
broad applicability, and finding the most effective
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testing techniques that can guarantee correct system
performance is of immense practical relevance.
Generally, the price of testing integrated circuits
(ICs) is rather prohibitive, accounting for 35-55%
of their total manufacturing cost. Furthermore,
testing a chip is also time-consuming, taking up to
about one-half of the total design cycle time. The
amount of time available for manufacturing, testing
and marketing a product, on the other hand, is
constantly on the decline. Also, as a result of
diminishing trade barriers and global competition,
customers now demand products of better quality at
lower cost. In order to achieve this higher quality at
reduced cost, obviously the testing methods have to
be improved. The conventional testing techniques of
digital circuits require application of test patterns
generated by a test pattern generator (TPG) to the
circuit (core) under test (CUT) and comparing the
response with known correct response (Das et al.,
1998, 2001, 2001). For large circuits, because of
higher memory requirements for the fault-free
responses, the customary test procedures hence
become rather expensive, and so alternative
approaches are sought to reduce the amount of
needed storage (Das et al., 2001). Built-in self-
testing (BIST) is a design methodology that
provides the capability of solving many of the
problems otherwise encountered in testing digital
systems. It combines the concepts of both built-in
test (BIT) and self-test (ST) into one, termed BIST.
In BIST, test generation, test application and
response verification are all accomplished through
built-in hardware, which allows different parts of a
chip to be tested in parallel, thereby reducing the
required testing time, besides eliminating the
necessity for external test equipment. As the cost of
testing is becoming the single major component of
the manufacturing expense of a new product, BIST
thus tends to reduce the manufacturing and
maintenance costs through improved diagnosis.
Several companies such as Motorola, AT&T, IBM
and Intel have incorporated BIST in many of their
products (Das et al., 2001). AT&T, for example, has
incorporated BIST into more than 200 of their IC
chips. The three large programmable logic arrays
(PLAs) and microcode read-only memory (ROM) in
the Intel 80386 microprocessor were all built-in
self-tested (Das et al., 2001). The general purpose
microprocessor chip, Alpha AXP21164 and
Motorola microprocessor 68020, were also tested
using BIST techniques (Das et al., 2001). More
recently, Intel, for its Pentium Pro architecture

microprocessor, with its unique requirements of
meeting very high production goals, superior
performance standards and impeccable test quality
put strong emphasis on its design-for-test (DFT)
direction (Das et al., 2001). A set of constraints,
however, limits Intel’s ability to tenaciously explore
DFT and test generation techniques, viz. full-scan or
partial-scan or scan-based BIST (Das et al., 2001).
AMD’s K6 processor is a reduced instruction set
computer (RISC) core named enhanced reduced
instruction set computer RISC86 microarchitecture
(Das et al., 2001). K6 processor incorporates BIST
into its DFT process. Each random-access memory
(RAM) array of K6 processor has its own BIST
controller. BIST executes simultaneously on all of
the arrays for a predefined number of clock cycles
that ensures completion for the largest array. Hence,
BIST execution time depends on the size of the
largest array (Das et al., 2001). AMD uses
commercial automatic test pattern generation tool to
create scan test patterns for stuck-faults in their
processor. The DFT framework for 500-MHz IBM
S/390 microprocessor utilizes a wide range of tests
and techniques to guarantee superb reliability of
components within a system. Register arrays are
tested through the scan chain, whereas nonregister
memories are tested with programmable RAM
BIST. Hewlett-Packard’s PA8500 is a 0.25 um
superscalar processor that achieves fast but
thorough test with its cache test hardware’s ability to
perform March tests, which is an effective way to
detect several kinds of functional faults. Digital’s
Alpha 21164 processor combines both structured
and ad hoc DFT solutions, for which a combination
of hardware and software BIST was adopted. Sun
Microsystems’ UltraSparc processor incorporates
several DFT constructs as well. The achievement of
its quality performance coupled with reduced chip
area conflicts with a design requirement that is easy
to debug, test and manufacture (Das et al., 2001).
BIST is widely used to test embedded regular
structures that exhibit a high degree of periodicity
such as memory arrays, viz. static RAMs (SRAMs),
ROMs, first-in first-outs (FIFOs) and registers. This
type of circuits does not require complex extra
hardware for test generation and response
compaction. Also, including BIST in these circuits
can guarantee high fault coverage (FC) with zero-
aliasing (Chakrabarty, 1995; Das et al., 2001).
Unlike regular circuits, random-logic circuits cannot
be adequately tested only with BIST techniques,
since generating adequate on-chip test sets using
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simple hardware is a difficult task to be
accomplished. Besides, since test responses
generated by random-logic circuits seldom exhibit
regularity, it is extremely difficult to ensure zero-
aliasing compaction. Therefore, random-logic
circuits are usually tested using a combination of
BIST, scan design techniques and external test
equipment.

A typical BIST environment, as shown in Figure 1,
uses a TPG that sends its outputs to a CUT and
output streams from the CUT are fed into an output
response analyzer (ORA). A fault is detected if the
test sequence is different from the response of the
fault-free circuit. The test data analyzer is composed
of a response compaction unit, storage for the fault-
free responses of the CUT and comparator. In order
to reduce the amount of data represented by the
fault-free and faulty CUT responses, data
compression is used to create signatures (short
binary sequences) from the CUT and its
corresponding fault-free circuit. Signatures are
compared and faults are detected if a match does not
occur.

BIST techniques may be used during normal
functional operating conditions of the unit under test
(on-line testing), as well as when a system is not
carrying out its normal functions (off-line testing).
In the case where detecting real time errors is not
that important, systems, boards and chips can be
tested in off-line BIST mode. BIST techniques use
pseudoexhaustive or pseudorandom test patterns, or
sometimes on-chip storing of reduced or compact
test sets. Today, testing logic circuits exhaustively is
seldom used, since only a few test vectors are
needed to ensure full FC for single stuck-line faults

Test patterns Test response
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Fig. 1. A typical BIST environment.

(Das et al., 2001, 2001). Reduced pattern test sets
can be generated using existing algorithms such as
FAN and others (Chakrabarty, 1995). BIT
generators can often generate such reduced test sets
at low cost, making BIST techniques suitable for
on-chip self-testing.

In the subject paper, a low-level logic fault
simulation environment for built-in self-testing of
digital IP cores-based systems is proposed.

2. Testing digital embedded cores-based

systems

The testing of ASICs and IP cores poses a serious
challenge with respect to the overall test cost. This
is particularly so due to the enormous difficulty of
test access to the embedded cores, test application
time and high test data volume (Chakrabarty, 2005).
Also, testing at speed becomes a problem for the
automatic test equipment in order to keep up with
the system clock rate. A wrapper is used to isolate
the IP cores from the environment, while a test
access mechanism (TAM) is required for accessing
and mapping the input vector patterns into the
IP cores or system-on-chips (SOCs) (Chakrabarty,
1995; Huang et al., 2001). Figure 2 illustrates the
basic SOC structure with its corresponding testing
environment.

3. Test architecture environment

An outline of the actual design and realization of
the test environment is discussed now. The testing
system tends to incorporate built-in test technology
into a chip to guarantee high testability. The test
hardware can be a collection of test circuits, power
supplies, measuring outfits and transition devices
that have digital-to-analog (D/A) and analog-to-

Wrapper

Memory
core

TPG > TAM (—»

System-on-chip

Fig. 2. An SOC structure.
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digital (A/D) functions. A buffer memory is used to
store test patterns and output response. Generally,
these circuits can be described by such hardware
description languages (HDLs) as very high speed
integrated circuit (VHSIC) hardware description
language (VHDL), Verilog HDL (Xilinx, 1999),
netlist or others. Here, the International Symposium
on Circuits and Systems or ISCAS benchmark
circuits used are described in their netlist formats.

The objective of the test software here is to
implement the automation of the computerized
testing process. The programs embedded onto the
chip can take control of the function of testing and
apply test patterns to specific ports. Also, it can
compare the produced output response with the
stored fault-free responses. The comparison results
are recorded for further analysis. Frankly, the test
software will undertake to carry out the test
automation and test simulation. In short, the primary
aim in this context is to realize the fulfilment of the
logic circuit test simulation environment, to carry
out the verification scheme and to compare the
results to desired values to make certain that the test
mechanism is working as expected.

The test environment is designed to handle both
ASICs and chips consisting of combinations of
ISCAS 85 combinational and ISCAS 89 sequential
benchmark circuits. It utilizes a pseudorandom input
test pattern generator in combination with
pseudoexhaustive input test vectors. The fault
simulation programs FSIM (Lee and Ha, 1993),
ATALANTA (Lee and Ha, 1991) and HOPE (Lee
and Ha, 1992) were used here to generate the
required input test vectors, both pseudorandomly
and deterministically. However, COMPACTEST
program (Pomeranz et al., 1991) was not used in the
current study, though it was used by the authors in
many of their prior research works. Figure 3
introduces a system level implementation of the
architecture of such a digital test environment.
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Fig. 3. Test environment.

The BIST controller selects the CUT for testing
and also monitors test scheduling in the test mode.
Each core under test has its own set of input test
vectors which feed the cores, while the produced
response is verified by the output response
analyzer.

Figure 4 provides a diagrammatic representation
of the corresponding system test architecture. The
controller is needed for test scheduling and core
selection. The role of the test access mechanism is to
help input test application and output response
observation. The wrapper is used to isolate the core
from its environment during testing. The following
is a snapshot of the test process.

If x =0 and y = 0 — normal operation mode;
If x=1and y =1 — test mode;

X= ()C], X2, X3, ey xm)’ Y= ()’1, Y25 Y35 oee s yn)’

n#+m.

The modular isolation of the various cores on the
SOC is carried out first; the output response from a
core under test is next fed to the response analyzer
for fault coverage evaluation.

4. Results on implementation

In order to study the feasibility of the proposed
logic fault test simulation environment,
experiments were conducted on various ISCAS 85
combinational and ISCAS 89 sequential
benchmark circuits. As shown in Table 1, 38
circuits from ISCAS 85 and ISCAS 89 families
were selected for simulation as digital IP cores to
implement the SOCs. The simulation results
confirm a number of interesting observations
regarding percentage fault coverage, memory
usage, simulation CPU time needed to test the core
under test and CPU time taken for testing the
SOCs. The IP cores were first isolated and the total
isolation simulation time was computed. The data
include results from individual cores that were
merged to form a modular partition while
simulated. Figure 5 provides a flow chart
representation of fault injection and fault coverage
under the proposed scheme.

Figure 6 shows fault coverage of 11 isolated
combinational  benchmark  circuits tested
pseudorandomly, the lowest coverage being
81.616%, bringing the fault coverage average to
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Fig. 4. A diagrammatic representation of the system test architecture.

ISCAS 85 and ISCAS 89 benchmark circuits

Benchmark Circuits

c17.bench $526.bench
c432.bench $635.bench
¢c499.bench s641.bench
¢880.bench s713.bench
c1355.bench $820.bench
c1908.bench s832.bench
¢2670.bench s938.bench
¢3540.bench $953.bench
c5315.bench s967.bench
¢c6288.bench s991.bench
¢7552.bench s1196.bench
s27.bench s1238.bench
s298.bench $1269.bench
s344.bench s1423.bench
$349.bench s1488.bench
s382.bench $1494 bench
$386.bench s1512.bench
s444.bench s3271.bench
s510.bench s3330.bench

92.895%. The sequential portions, however, have
fault coverage that is less than half of the
combinational average, with the lowest circuit
coverage being at 39.739%. Figure 7 furnishes the
comparative memory usage for combinational and
sequential benchmark circuits. The maximum
storage space needed is that for the core c7552
which is 169267 kilobytes, while for the core
$3271, it is 168611 kilobytes. The number of faults
detected compared to the total number of faults
injected for various benchmark circuits is portrayed
in Figure 8.

The fault coverage was measured in both the
pseudorandom and pseudoexhaustive testing modes.
The results demonstrate that the fault coverage is
higher in the pseudorandom mode as contrasted to
the pseudoexhaustive mode. The ratio of the fault
coverage is projected to be at an average of
92.695/92.895 for  pseudoexhaustive  and
pseudorandom testing modes, respectively.
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Fig. 5. Fault injection and coverage — a flow chart.

Fault coverage of sequential and
combinational circuits
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Fig. 6. Percentage fault coverage for sequential and
combinational benchmark circuits.

The CPU time taken to simulate the different
cores in pseudorandom and pseudoexhaustive
testing modes is provided in Figure 9. The
simulation CPU time for pseudorandom testing is
much higher as compared to that of the
pseudoexhaustive testing.

Memory usage for sequential and
combinational circuits

169500

—&— Sequential circuits
}+ Combinational circuits

169000

168500 A

168000

Memory usage (kbs)

167500

167000

1357911 13 15 17 19 21 23 25 27
No. of circuits

Fig. 7. Memory usage for sequential and combinational
benchmark circuits.
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Fig. 8. Percentage fault coverage in deterministic and
pseudorandom testing modes.
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Fig. 9. Simulation CPU time for deterministic and
pseudorandom testing.



Mansour H. Assaf et al./World Journal of Engineering 11(3) (2014) 279-286 285

5. Concluding remarks

To conclude, evidently further studies need to be
undertaken to develop a comprehensive fault test
simulation environment for digital IP cores with the
potential to handling faults other than single stuck-
line faults. The proposed scheme seems to advance a
powerful tool to gather statistical data for logic
circuits as well. This low-level simulation
environment can be extended to handle logic circuits
described in other hardware description languages,
viz. VHDL, Verilog HDL (Xilinx, 1999), etc. In
recent SOC designs, many independent modules can
be contained in a single chip in IP cores-based
fashion. These IP cores can be central processing
units (CPUs), memories, digital signal processors
(DSPs) and different kinds of communication
modules. One of the advantages of IP cores is that
they speed up the design cycle of large complex
system chips, achieving a shorter time-to-market.
But it raises good challenges for testing also.

Finally, there are many ways to ensure that a
design is functioning correctly in hardware, but one
of the most efficient and reliable methods is
centered upon design-for-testability approach. The
current research basically augments that philosophy
to include digital ASIC testing in differing
environments.
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