Optimization of a Stand-Alone Renewable Energy System for a Small Load Requirement

Abstract

Optimization of a stand-alone Renewable Energy (RE) system involves selecting the best RE resources and components, and sizing the system accordingly to get the most efficient and cost-effective solution. Design and optimization of an RE power system to serve the lighting in a University of the South Pacific car park was carried out using HOMER software and compared to manual calculations. Resource analysis showed that on average the site received 3.8 kWh m$^{-2}$ day$^{-1}$ of solar energy, with 1,387 full sun hours annually. Monthly average wind speed of 3.88 m s$^{-1}$ at 10 m above ground level extrapolated to 15 m (the hub height of the wind turbine) resulted in an average wind speed of 4 m s$^{-1}$, with power density of 70 Wm$^{-2}$. With this wind resource, a Whisper 100 wind turbine would be in operation for approximately 50% of the time in the year. The complementary nature of solar and wind resources showed good potential for a solar-wind hybrid system. In this study three possible systems—a PV system, a wind power system, and a hybrid power system (PV-wind)—were analyzed. It was found that a hybrid system is the best and most cost-effective option, as it is able to provide reliable power whilst minimizing the need for battery storage compared to a single RE power system. The optimum system comprised 0.270 kW$_p$ PV combined with a 900 W Whisper wind turbine with total battery storage capacity of 440 Ah at 12 V. Manual calculations yielded results similar to the HOMER simulations.

Citations

Within this Chapter

1. Short Introduction
2. Introduction
3. Methodology
4. Load Characterization and Calculation
5. Wind and Solar Resources
6. Manual System Sizing
7. PV Array Sizing
8. Battery Sizing
9. Homer
10. Results and Discussion
11. Resource Assessment
12. Monthly Wind Power Output
13. PV Array Sizing
14. Battery Sizing
15. HOMER Simulation and Optimization
16. Comparison
17. Conclusions
18. References
19. References

About this Chapter

Title
Optimization of a Stand-Alone Renewable Energy System for a Small Load Requirement

Book Title
Climate-Smart Technologies

Book Subtitle
Integrating Renewable Energy and Energy Efficiency in Mitigation and Adaptation Responses

Book Part
Part III

Pages
pp 615–628

Copyright
2013

DOI
10.1007/978-3-642-37753-2_46

Print ISBN
978-3-642-37752-5

Online ISBN
978-3-642-37753-2
Optimization of a Stand-Alone Renewable Energy System for a Small Load Requirement - Springer

Springer-Verlag Berlin Heidelberg

Additional Links

- About this Book

Topics

- Environmental Economics
- Climate Change Management and Policy
- Energy Policy, Economics and Management
- Renewable and Green Energy
- Climate Change

Keywords

- HOMER
- Hybrid systems
- Optimization
- Resource
- Whisper 100

Industry Sectors

- Finance, Business & Banking
- Energy, Utilities & Environment

eBook Packages

- eBook Package english Business & Economics
- eBook Package english full Collection

Editors

- Walter Leal Filho
- Franziska Mannke
- Romeel Mohan
- Veronika Schulte
- Dinesh Surroop

Editor Affiliations

- 2. Faculty of Life Science, Hamburg University of Applied Sciences
- 3. Faculty of Life Sciences, Hamburg University of Applied Sciences
- 4. Faculty of Engineering, Chemical and Environmental, University of Mauritius
- 5. Faculty of Life Sciences, Hamburg University of Applied Sciences
- 6. Faculty of Engineering, Chemical and Environmental, University of Mauritius

Authors

- Shivneel Prasad
- Ajay Kumar
- Anil Raturi

Author Affiliations
Optimization of a Stand-Alone Renewable Energy System for a Small Load Requirement - Springer

http://link.springer.com/chapter/10.1007/978-3-642-37753-2_46