USP Electronic Research Repository

Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms

Rao, Dhana and Webb, J.S. and Holmström, C. and Case, R. and Low, A. and Steinberg, P. and Kjelleberg, S. (2007) Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Applied and Environmental Microbiology, 73 (24). pp. 7844-7852. ISSN 0099-2240

Full text not available from this repository.
Official URL: http://aem.asm.org/

Abstract

Bacteria that produce inhibitory compounds on the surface of marine algae are thought to contribute to the defense of the host plant against colonization of fouling organisms. However, the number of bacterial cells necessary to defend against fouling on the plant surface is not known. Pseudoalteromonas tunicataand Phaeobacter sp. strain 2.10 (formerly Roseobacter gallaeciensis) are marine bacteria often found in association with the alga Ulva australis and produce a range of extracellular inhibitory compounds against common fouling organisms. P. tunicata and Phaeobacter sp. strain 2.10 biofilms with cell densities rangingfrom 102 to 108 cells cm–2 were established on polystyrene petri dishes. Attachment and settlement assays were performed with marine fungi (uncharacterized isolates from U. australis), marine bacteria (Pseudoalteromonas gracilis, Alteromonas sp., and Cellulophaga fucicola), invertebrate larvae (Bugula neritina), and algal spores (Polysiphonia sp.) and gametes (U. australis). Remarkably low cell densities (102 to 103 cells cm–2) ofP. tunicata were effective in preventing settlement of algal spores and marine fungi in petri dishes. P. tunicata also prevented settlement of invertebrate larvae at densities of 104 to 105 cells cm–2. Similarly, low cell densities (103 to 104cells cm–2) of Phaeobacter sp. strain 2.10 had antilarval and antibacterial activity. Previously, it has been shown that abundance of P. tunicata on marine eukaryotic hosts is low (<1 x 103 cells cm–2) (T. L. Skovhus et al., Appl. Environ. Microbiol. 70:2373-2382, 2004). Despite such low numbers of P. tunicata on U. australis in situ, our data suggest that P. tunicata and Phaeobacter sp. strain 2.10 are present in sufficient quantities on the plant to inhibit fouling organisms. This strongly supports the hypothesis that P. tunicata and Phaeobacter sp. strain 2.10 can play a role in defense against fouling on U. australis at cell densities that commonly occur in situ.

Item Type: Journal Article
Subjects: Q Science > QR Microbiology
Divisions: Faculty of Science, Technology and Environment (FSTE) > School of Biological and Chemical Sciences
Depositing User: Ms Mereoni Camailakeba
Date Deposited: 26 May 2007 23:35
Last Modified: 29 Aug 2012 02:24
URI: http://repository.usp.ac.fj/id/eprint/828
UNSPECIFIED

Actions (login required)

View Item View Item