
Structural bioinformatics

Highly accurate sequence-based prediction of

half-sphere exposures of amino acid residues in

proteins

Rhys Heffernan1, Abdollah Dehzangi1,2,3, James Lyons1, Kuldip Paliwal1,

Alok Sharma2,4, Jihua Wang5, Abdul Sattar2,6, Yaoqi Zhou5,7,* and

Yuedong Yang7,*

1Signal Processing Laboratory, School of Engineering, Griffith University, Brisbane, Australia, 2Institute for

Integrated and Intelligent Systems, Griffith University, Brisbane, Australia, 3Medical Research Center (MRC),

Department of Psychiatry, University of Iowa, Iowa City, USA, 4School of Engineering and Physics, University of

the South Pacific, Private Mail Bag, Laucala Campus, Suva, Fiji, 5Shandong Provincial Key Laboratory of

Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong 253023, China, 6National ICT Australia

(NICTA), Brisbane, Australia and 7Institute for Glycomics and School of Information and Communication

Technique, Griffith University, Parklands Dr. Southport, QLD 4222, Australia

*To whom correspondence should be addressed.

Associate Editor: Anna Tramontano

Received on June 30, 2015; revised on August 26, 2015; accepted on November 7, 2015

Abstract

Motivation: Solvent exposure of amino acid residues of proteins plays an important role in under-

standing and predicting protein structure, function and interactions. Solvent exposure can be charac-

terized by several measures including solvent accessible surface area (ASA), residue depth (RD) and

contact numbers (CN). More recently, an orientation-dependent contact number called half-sphere

exposure (HSE) was introduced by separating the contacts within upper and down half spheres

defined according to the Ca-Cb (HSEb) vector or neighboring Ca-Ca vectors (HSEa). HSEa calculated

from protein structures was found to better describe the solvent exposure over ASA, CN and RD

in many applications. Thus, a sequence-based prediction is desirable, as most proteins do not have

experimentally determined structures. To our best knowledge, there is no method to predict HSEa
and only one method to predict HSEb.

Results: This study developed a novel method for predicting both HSEa and HSEb (SPIDER-HSE)

that achieved a consistent performance for 10-fold cross validation and two independent tests.

The correlation coefficients between predicted and measured HSEb (0.73 for upper sphere, 0.69

for down sphere and 0.76 for contact numbers) for the independent test set of 1199 proteins are sig-

nificantly higher than existing methods. Moreover, predicted HSEa has a higher correlation coeffi-

cient (0.46) to the stability change by residue mutants than predicted HSEb (0.37) and ASA (0.43).

The results, together with its easy Ca-atom-based calculation, highlight the potential usefulness of

predicted HSEa for protein structure prediction and refinement as well as function prediction.

Availability and implementation: The method is available at http://sparks-lab.org.

Contact: yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Measuring exposure of amino acid residues of proteins to solvent is

important for understanding and predicting protein structure, func-

tion and interactions (Gilis and Rooman, 1997; Lee and Richards,

1971; Rost and Sander, 1994; Tuncbag et al., 2009). The most com-

mon measure is solvent accessible surface area (ASA) (Connolly,

1983) with applications ranging from protein structure prediction

(Bennett-Lovsey et al., 2008; Wu and Zhang, 2008; Yang et al.,

2011) to protein function prediction (Lou et al., 2014; Zhang et al.,

2010; Zhang et al., 2008; Zhao et al., 2013; Zhao et al., 2011). The

inability of ASA to discriminate deeply buried residues from those

buried just beneath the surface leads to development of residue

depth (Chakravarty and Varadarajan, 1999) by averaging the dis-

tance to the nearest atom on the protein surface. Both ASA and resi-

due depth, however, require precise evaluation of the protein

surface in full atomic details that is time consuming. Having a time-

consuming calculation and requiring an all-atomic model limited the

usefulness of ASA and residue depth in the ab initio prediction of

protein structure where protein conformation is often represented

by main-chain atoms (Bradley et al., 2003; Faraggi et al., 2009) or

only Ca atoms (Kihara et al., 2001; Yang and Liu, 2006) in initial

conformational sampling.

Another measure of residue exposure to solvent is contact num-

ber (CN), which counts the number of residues within specific dis-

tance cut offs. The distances are based on the positions of Ca or Cb
atoms. Thus, unlike ASA and residue depth, only a coarse-grained

model is needed for evaluating CNs. Different distance cut offs have

been used in earlier studies (Pollastri et al., 2002; Yuan, 2005). It

was shown that CN with a distance cut off between 12 and 14 Å is

the best for protein fold recognition (Karchin et al., 2004).

All above-mentioned solvent-exposure measures, however, do not

contain explicit information regarding the orientation of side chains

that are important for functional and structural studies. Hamelryck

designed a new measure by splitting the sphere around the Ca atom

into two half spheres along the vector of Ca-Cb atoms (Hamelryck,

2005). The half sphere containing the Cb atom was defined as upper

and the other as down half spheres. The numbers of Ca atoms

enclosed in these two half-spheres were named as Half-Sphere

Exposure (HSE)-up and HSE-down, respectively. In addition, he has

substituted the vector Ca-Cb with a pseudo vector generated from the

sum of vectors Cai-1-Cai and Caiþ1-Cai. This HSE is denoted as

HSEa (-up and -down) to distinguish from the HSE calculated based

on the Ca-Cb vector (here and hereafter, it will be annotated as

HSEb). HSEa does not require the positions of Cb-atoms. One advan-

tage of HSE is that its value is independent of amino acid type because

it describes a residue’s coordination environment rather than a quan-

tity related to its size such as ASA and RD. Interestingly, HSEa-up

outperforms other solvent exposure measures including CN, ASA,

relative ASA, residue depth and the other three HSE definitions

(HSEb-up, HSEb-down and HSEa-down) in correlation to changes in

protein stability due to mutations and to conservation of amino acid

residues (Hamelryck, 2005). More recently, HSE was found to be bet-

ter than ASA for prediction of B cell epitopes of proteins from their

three dimensional structures (Kringelum et al., 2012). HSE has also

been found useful in many other applications (Franzosa and Xia,

2009; Kringelum et al., 2012; Sweredoski and Baldi, 2008). Most of

these applications obtained HSE based on known protein structures.

Because the structures for most proteins are not known experimen-

tally, a sequence-based prediction is desirable.

Many sequence-based methods were developed for predicting

ASA (Adamczak et al., 2004; Ahmad et al., 2003; Cheng et al.,

2005; Dor and Zhou, 2007; Garg et al., 2005; Yuan and Huang,

2004) and CN (Kinjo and Nishikawa, 2006; Pollastri et al., 2002;

Yuan, 2005). However, there is no method available for prediction

of HSEa and only one (HSEpred) for the prediction of HSEb (Song

et al., 2008). We found that the correlation coefficients between ac-

tual HSEb and those predicted by HSEpred (up and down, respect-

ively) are less than 0.43 for our dataset of 1199 proteins. One

possible factor is that HSEpred was trained on a small dataset of

632 proteins and was not tested on independent datasets. Therefore,

a more accurate method is clearly needed.

Recently, we developed a method called SPIDER 2 (Heffernan

et al., 2015) that utilized predicted secondary structures, backbone

torsion angles and ASA, iteratively, in order to improve their accura-

cies. The method achieved 82% accuracy for secondary structure

prediction, 0.76 for the correlation coefficient between predicted

and actual solvent accessible surface area, 19� and 30� for mean ab-

solute errors of backbone u and w angles, respectively, and 8� and

32� for mean absolute errors of Ca-based h and s angles, respect-

ively, for an independent test dataset of 1199 proteins. Here, we

expand the iterative technique to the prediction of HSEa (-up and -

down), HSEb (-up and -down) and CN by employing a large dataset

containing 4590 protein chains. The method was independently

tested in a dataset of 1199 proteins and a dataset of 69 proteins

from the Critical Assessment of Structure Prediction technique

(CASP 11, 2014). As a result, highly accurate and robust prediction

was obtained (e.g. a correlation coefficient of 0.73 for HSEb-up,

0.69 for HSEb-down and 0.76 for contact number on the independ-

ent test set). Comparison to two previous methods for contact pre-

diction and HSEb confirmed the superior performance of the

method obtained. The HSEa and HSEb predictors are incorporated

as a package in SPIDER 2 available at http://sparks-lab.org or down-

loadable as a standalone package.

2 Methods

2.1 Datasets
We have employed the same dataset as used in our previous study

(Lyons et al., 2014), which consists of 5789 proteins (1 246 420 resi-

dues). This dataset was generated by the sequence culling server

PISCES (< 25% pairwise sequence identity and <2.0 Å resolution)

(Wang and Dunbrack, 2003). From this dataset, 4590 proteins were

randomly selected as training set (TR4590) and the remaining 1199

proteins were utilized as an independent test set (TS1199). In add-

ition, we downloaded the targets from critical assessment of structure

prediction technique (CASP 11, 2014, http://www.predictioncenter.

org/casp11/). After removing redundant sequences (30% in between

or to the training set), we obtained a set of 69 proteins (CASP11) out

of original 99 proteins. This set contains 18 617 residues.

2.2 Input features
For each amino acid, we have extracted 69 input features. The first

20 features are substitution probabilities of amino acids from the

PSSM matrix. The PSSM is generated by PSI-BLAST (Altschul et al.,

1997) with three iterations of searching against 90% non-redundant

protein database (downloaded from ftp://toolkit.genzentrum.lmu.

de/pub/HH-suite/databases/). The next 30 features are extracted

from the HMM-profile generated by HHblits with default param-

eters against Uniprot20 protein database (Remmert et al., 2011).

The HMM profile includes 10 transition probabilities between

matching, insertion and deletion states in addition to 20 substitution

probabilities. The additional 12 features represent predicted

2 R.Heffernan et al.
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structural properties of amino acids by SPIDER 2 that include pre-

dicted probabilities in three secondary structure states (Helix, Sheet

and Coil), ASA, and sine and cosine values of the main chain tor-

sional angles (u and w) and main chain angles between Ca atoms (h
and s). Here, sine and cosine of angles were employed to remove the

effect of angle periodicity (Lyons et al., 2014). The last seven fea-

tures are physicochemical representatives (PP7) of twenty standard

amino acids, namely, a steric parameter (graph shape index), hydro-

phobicity, volume, polarizability, isoelectric point, helix probability

and sheet probability. Additionally, we utilized a window size of 17

amino acids (8 amino acids at each side of the target amino acid).

Together with a global feature of the protein length, this led to a

total of 1174 input features (17�69þ1¼1174). The window size

was taken from SPIDER 2 (Heffernan et al., 2015) without further

optimization.

2.3 Parallel multiple-step iterative deep neural-network

learning
Here, we implemented the same learning scheme as previously used in

SPIDER 2. As shown in Figure 1, the features were input into the

deep learning neural network to obtain an initial prediction of HSEs

(HSE-up, HSE-down and CN). The deep artificial neural network

consists of three hidden layers, each with 150 nodes. The input data

was normalized to the range of 0–1. The weights were initialized by

unsupervised learning from stacked sparse auto-encoders, and then

refined by using standard back propagation. In this study, we em-

ployed the deep neural network from the MATLAB toolbox, imple-

mented by Palm (2012). Deep neural networks have been widely

implemented in the prediction of protein structure (Nguyen et al.,

2014). In the second iteration, the predicted values from the first iter-

ation were added into the input features to predict HSEs. This process

iterated with updated predicted values until convergence. We found

that the prediction accuracy did not increase after two iterations. The

training process was performed separately for HSEa (HSEa-up,

HSEa-down and CN) and HSEb (HSEb-up, HSEb-down and CN).

All contacts are defined with 13 Å distance cut off.

2.4 Evaluation method
The method was first examined by 10-fold cross validation where

the training set TR4590 was randomly divided into 10-folds. Nine

folds were used in turn for training and the remaining one for testing

until all 10-folds were tested. As SPIDER 2 has been trained in the

same training set, we avoided over-training by following the same

10-folds and utilizing the 10-fold cross validation results during the

training of SPIDER 2 as input features. Moreover, we tested our

method in the independent test sets TS1199 and CASP11 dataset by

using TR4590 as the training set. The prediction performance of

CN, HSEa and HSEb was measured by Pearson correlation coeffi-

cient (PCC) as used in previous studies (Song et al., 2008; Yuan,

2005).

3 Results and discussions

3.1 Overall prediction performance
Figure 2 and Table 1 show the results of 10-fold cross validation

and independent test in the first four iterations for prediction of CN,

HSEb-up and HSEb-down. For the independent test, PCCs achieve

the highest value at the second iteration with 0.734, 0.693 and

0.756 for HSEb-up, HSEb-down and CN, respectively. The same is

true for 10-fold cross valuation. Thus additional iterations are un-

necessary. We also noted that the correlation coefficients from the

10-fold cross validation and from the independent test set are essen-

tially the same. For example, PCCs for CN at the second iteration

are 0.757 and 0.756 for 10-fold cross validation and independent

test, respectively. PCC for HSEb up at the second iteration are 0.733

and 0.734 for 10-fold cross validation and independent test, respect-

ively. High consistency between 10-fold cross validation and inde-

pendent test indicates the robustness of our trained method. The

small standard deviations between ten subsets from 10-fold cross

validation further confirm a stable performance.

We further found that the accuracy for HSEa is similar to that of

HSEb. For example, The PCCs of HSEa-up and HSEb-up at the se-

cond iteration for independent test are 0.729 and 0.734, respect-

ively. The PCCs of HSEa-down and HSEb-down at the second

iteration for independent test are 0.717 and 0.693, respectively.

Because of similarity between HSEa and HSEb, here and hereafter,

we will only present the results for HSEb from the second iteration

based on the independent test unless specifically mentioned.

Fig. 1. The general flowchart for the multiple-step iterative algorithm imple-

mented for training of SPIDER-HSE
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Fig. 2. The Pearson Correlation Coefficients achieved for HSEb-up, HSEb-down and contact number by 10-fold cross validation (open bar) and on the independent

dataset TS1199 (filled bar) in different iterations
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3.2 The contribution from each feature group
It is of interest to know the contribution of each feature group to the

overall prediction performance of SPIDER-HSE. Table 2 compares

PCCs by utilizing a single feature group or by removing them indi-

vidually from SPIDER-HSE. In the first test, predicted ASA is the

single best feature as it achieved the highest PCC of 0.72, 0.69 and

0.64 for CN, HSE-up and HSE-down, respectively. This is under-

standable because ASA and CN both describe the level of solvent ex-

posure. Such high correlation confirms the suitability to substitute

ASA by the simpler representation of solvent exposure by HSE. The

performance of two conservation profiles HMM and PSSM is only

slightly worse than ASA with HMM marginally better than PSSM.

The physical parameters alone without sequence conservation infor-

mation can make a decent prediction with PCC around 0.5 for CN

and HSE-up.

One interesting observation is that predicted angles are more

useful than predicted secondary structure in predicting HSE-up

(0.58 versus 0.50) and HSE-down (0.54 versus 0.48) although they

contribute similarly in predicting CN (0.584 versus 0.586). This sug-

gests that continuous main-chain torsion angles have more orienta-

tion information than discrete states of secondary structure.

Another interesting observation is that protein length itself as a

single feature is not very useful in predicting HSE. Its combination

with other features, however, proved useful. Removing protein

length will reduce the correlation coefficient in the independent test

from 0.756 for CN to 0.740. This is the largest reduction, compared

to removing other feature groups. The relatively small change by

removing other feature groups is partly due to high redundancies be-

tween these feature groups.

For example, HHM and PSSM describe residue conservation

during evolution, whereas secondary structure and main-chain

angles both represent the main-chain conformations. In addition,

ASA, SS and main-chain angles have been obtained from PSSM and

PP7 feature groups for their prediction. Nonetheless, a drop in per-

formance by removing any single feature group indicates usefulness

of all these features for the overall performance.

3.3 Comparison to previous methods
To compare our results with previously reported methods, we repro-

duced the results of HSEpred by both its locally running version and

online server (http://sunflower.kuicr.kyoto-u.ac.jp/�sjn/hse/links.

html) on test sets TS1199 and CASP 11. In addition, we compared

with a contact number prediction method CRNpred (Kinjo and

Nishikawa, 2006) (http://ipr.pdbj.org/crnpred/). As shown in Table

3, the PCC values for HSE are less than 0.5, compared to 0.7 from

our method for both test sets. Our predicted CN (PCC¼0.76 for

the independent test set) are also significantly more accurate than ei-

ther HSEpred (PCC¼0.56) or CRNpred (PCC¼0.70). A similar

Table 1. Pearson Correlation Coefficients of CN, HSEb-up and

HSEb-down in iterations for 10-fold cross validation and independ-

ent test set TS1199

Parameter Dataset 1 2 3 4

HSEb-up 10-folda 0.731 0.733 0.731 0.730

SDb 0.009 0.008 0.008 0.008

Test 0.730 0.734 0.734 0.733

HSEb-down 10-folda 0.686 0.693 0.692 0.690

SDb 0.007 0.008 0.008 0.008

Test 0.685 0.693 0.695 0.694

CN 10-folda 0.752 0.757 0.755 0.752

SDb 0.010 0.011 0.011 0.011

Test 0.751 0.756 0.754 0.754

a The average and b the standard deviation of PCCs from the 10-fold cross

validation.

Table 2. Pearson correlation coefficients (PCCs) of predicted CN, HSEb-up and HSEb-down by using single feature group or by removing it

from SPIDER-HSE for independent test set TS1199

CN HSEb-up HSEb-down CN HSEb-up HSEb-down

– – – – SP-HSEb 0.756 0.734 0.693

ASAa 0.721 0.689 0.637 �ASAc 0.746 0.728 0.680

HMM 0.709 0.682 0.620 �HHM 0.742 0.724 0.676

PSSM 0.694 0.683 0.607 �PSSM 0.751 0.730 0.684

SS 0.586 0.495 0.477 �SS 0.751 0.729 0.685

Angles 0.584 0.584 0.536 �Angles 0.752 0.729 0.681

PP7 0.523 0.520 0.436 �PP7 0.748 0.729 0.683

Length 0.013 0.006 0.006 �Length 0.740 0.725 0.679

aPredicting by using only individual feature group.
bSPIDER2-HSE by using full features.
cPredicting by excluding one feature group.

Table 3. Comparison to HSEpred and CRNpred in the independent dataset TS1199 and CASP11

Methods TS1199 CASP11

CN HSEb-up HSEb-down CN HSEb-up HSEb-down

CRNpred 0.697 a – – 0.691 a – –

HSEpred (Local) 0.624 0.490 0.398 0.590 0.467 0.394

HSEpred (Online) 0.555 0.429 0.326 0.527 0.427 0.331

1st Iteration (This work) 0.751 0.7301 0.685 0.766 0.749 0.692

2nd Iteration (This work) 0.756 0.7343 0.693 0.770 0.751 0.699

a The contact number based on 12 Å.
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result was obtained for the CASP 11 set. CRNpred was trained with

a contact defined by a cut off 12 Å, whereas we have used 13 Å as a

cut off. To be consistent with CRNpred, we specially trained our

method based on 12 Å cut off. The accuracy of our method is un-

changed. This is not surprising as the correlation coefficient between

the contact number from the cut off of 12 Å generated from protein

structures is highly correlated to the contact number from the cut off

of 13 Å (PCC¼0.976).

3.4 Correlation of predicted HSE to the stabilities of

mutants
To examine the usefulness of sequence-based prediction of HSE, we

compared predicted HSE to the stabilities of mutants. Hamelryck

found that HSE from protein structures strongly correlates with ex-

perimentally measured stability changes due to mutation (Hamelryck,

2005). Here, we expanded the stability dataset by using protherm

database recently updated in 2013 (Kumar et al., 2006). As with

Hamelryck, we limited point mutants from VAL/ILE/LEU to ALA.

These three residues were selected because mutations from small

hydrophobic residues to ALA will not cause significant changes in

polar interaction or in global conformations. Therefore, the protein

stability change is dominated by the change of solvent accessibility,

and thus eligible for evaluating solvent exposure measures. A total of

220 mutants were found after removing two outliers with DDG above

3.0 kJ/mol (details listed in Supplementary Materials).

As shown in Table 4, HSEa-up, HSEb-up, CN and ASA calcu-

lated from experimental structures consistently have strong correl-

ation to DDG (negative correlation for HSEa-up, HSEb-up and CN

with PCC ¼ �0.595, �0.541 and �0.494 respectively, positive cor-

relation for ASA with PCC¼0.538). Negative correlation for CN

and HSE-up is because CN is negatively correlated to ASA (i.e. more

contacts mean less solvent accessible). Thus, HSEa-up has the best

correlation, which confirmed the result of the previous study

(Hamelryck, 2005) with a larger dataset. For predicted CN, HSE and

ASA, the correlations to experimental DDG become weaker.

Predicted HSEa-up has the best correlation with PCC¼�0.461.

One interesting observation is that HSE-down has no correlation

to DDG. Similar results were obtained earlier (Hamelryck, 2005).

This is consistent with our physical intuition that the contacts with

the front of the side-chain of an amino acid residue contribute most

to the interaction of this residue to other amino acid residues.

Although the correlation, as shown in Figure 3, between HSEa-up

and DDG is only slightly stronger (PCC¼�0.461) than that be-

tween ASA and DDG (PCC¼0.438), the much simpler calculation

of HSEa-up than that of ASA will make it more useful in structure

prediction. The fact that HSEa-up (PCC¼�0.46) correlates better

than HSEb-up to DDG (PCC¼�0.37) indicates the importance of a

separate predictor for HSEa developed here.

4 Conclusions

This work has developed the first sequence-based method for pre-

dicting HSEa, in addition to prediction of HSEb and contact num-

ber. Trained by a large dataset of >4000 proteins and independently

tested by two separate datasets, we showed that our predictions of

HSEb and contact numbers are significantly more accurate than

existing methods (HSEpred and CRNpred) with correlation coeffi-

cients between predicted and actual number at about 0.7 for 10-fold

cross validation and independent tests. This highly accurate predic-

tion was built on highly accurate prediction of secondary structure,

backbone angles and solvent accessible surface area by our previous

method SPIDER 2. Another contribution was from the established

iterative deep learning scheme. The deep neural network allows us

to train the server on a dataset that is >7 times larger than the previ-

ous method HSEpred, and thus avoids potential over-training of the

predictor. In addition, DNN was found to be much faster to
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Fig. 3. The predicted HSEa-up and ASA versus DDG. The line is the linear least-square fitting to the data

Table 4. Pearson correlation coefficients of HSE and ASA with

(-DDG) for 220 ILE/LEU/VAL to ALA mutants

CN HSEb-up HSEb-down HSEa-up HSEa-down ASAa

Experimental 0.494 0.541 0.088 0.595 �0.044 0.538

Predicted 0.322 0.373 0.039 0.461 �0.040 0.438

aThe PCC was calculated with (-DDG) for all measures except ASA in order

to have a positive value.
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converge with better performance than SVM and random forest

methods in training big datasets with a large number of features

(Bengio and LeCun, 2007; Schmidhuber, 2015). The usefulness

of predicted HSEa is demonstrated by its improved correlation to ex-

perimentally measured stability change due to mutation, over pre-

dicted ASA.

Fast calculation of HSEa that requires the positions of Ca atoms

only makes it an ideal sequence-specific restraint for coarse-grained

modeling, protein structure prediction and refinement. The HSEa
and HSEb predictors are incorporated as a package in SPIDER 2

available at http://sparks-lab.org. To speed up calculations, we pro-

vide another version by using all features except HMM profile. This

version leads to a slight reduction in PCCs but cuts the total running

time by half because it requires to prepare only one of the two se-

quence profiles that are the most time-consuming.
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