
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/302555593

Improving	protein	fold	recognition	and
structural	class	prediction	accuracies	using
physicochemical	properties	of	amino	acids

Article		in		Journal	of	Theoretical	Biology	·	May	2016

Impact	Factor:	2.12	·	DOI:	10.1016/j.jtbi.2016.05.002

READS

2

5	authors,	including:

Harsh	Saini

University	of	the	South	Pacific

5	PUBLICATIONS			10	CITATIONS			

SEE	PROFILE

Iman	(Abdollah)	Dehzangi

University	of	Iowa

40	PUBLICATIONS			311	CITATIONS			

SEE	PROFILE

Alok	Sharma

Jubilant	Life	Sciences

123	PUBLICATIONS			992	CITATIONS			

SEE	PROFILE

Available	from:	Iman	(Abdollah)	Dehzangi

Retrieved	on:	11	May	2016

https://www.researchgate.net/publication/302555593_Improving_protein_fold_recognition_and_structural_class_prediction_accuracies_using_physicochemical_properties_of_amino_acids?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/302555593_Improving_protein_fold_recognition_and_structural_class_prediction_accuracies_using_physicochemical_properties_of_amino_acids?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Harsh_Saini?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Harsh_Saini?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_the_South_Pacific?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Harsh_Saini?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Iman_abdollah_Dehzangi?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Iman_abdollah_Dehzangi?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Iowa?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Iman_abdollah_Dehzangi?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Alok_Sharma49?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Alok_Sharma49?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Jubilant_Life_Sciences?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Alok_Sharma49?enrichId=rgreq-98025f2e-8ac6-4479-9ef1-44996701ae66&enrichSource=Y292ZXJQYWdlOzMwMjU1NTU5MztBUzozNjAyMDU4MzAzNzc0NzJAMTQ2Mjg5MTE3MDg5NA%3D%3D&el=1_x_7


Author’s Accepted Manuscript

Improving protein fold recognition and structural
class prediction accuracies using physicochemical
properties of amino acids

Gaurav Raicar, Harsh Saini, Abdollah Dehzangi,
Sunil Lal, Alok Sharma

PII: S0022-5193(16)30074-1
DOI: http://dx.doi.org/10.1016/j.jtbi.2016.05.002
Reference: YJTBI8652

To appear in: Journal of Theoretical Biology

Received date: 21 January 2016
Revised date: 20 April 2016
Accepted date: 2 May 2016

Cite this article as: Gaurav Raicar, Harsh Saini, Abdollah Dehzangi, Sunil Lal
and Alok Sharma, Improving protein fold recognition and structural class
prediction accuracies using physicochemical properties of amino acids, Journal
of Theoretical Biology, http://dx.doi.org/10.1016/j.jtbi.2016.05.002

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/yjtbi

http://www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2016.05.002
http://dx.doi.org/10.1016/j.jtbi.2016.05.002


Title of paper: 

Improving protein fold recognition and structural class prediction accuracies using physicochemical 

properties of amino acids 

 

Authors: 

1. Mr. Gaurav Raicar (corresponding author) 

Affiliation: The University of the South Pacific, Fiji Islands 

Email: raicar_g@usp.ac.fj 

 

2. Mr. Harsh Saini 

Affiliation: The University of the South Pacific, Fiji Islands 

Email: saini_h@usp.ac.fj 

 

3. Dr. Abdollah Dehzangi 

Affiliation: University of Iowa, USA 

Email: i.dehzangi@gmail.com 

 

4. Dr. Sunil Lal 

Affiliation: Massey University, New Zealand 

Email: s.lal@massey.ac.nz 

 

 

 

 

5. Dr. Alok Sharma 

Affiliations:  

a) The University of the South Pacific, Fiji Islands 

b) IIIS, Griffith University, Australia 

c) RIKEN, Japan 

Email: sharma_al@usp.ac.fj 



 

Abstract: 

Predicting the three-dimensional (3-D) structure of a protein is an important task in the field 

of bioinformatics and biological sciences. However, directly predicting the 3-D structure from 

the primary structure is hard to achieve. Therefore, predicting the fold or structural class of a 

protein sequence is generally used as an intermediate step in determining the protein’s 3-D 

structure. For protein fold recognition (PFR) and structural class prediction (SCP), two steps 

are required – feature extraction step and classification step. Feature extraction techniques 

generally utilize syntactical-based information, evolutionary-based information and 

physicochemical-based information to extract features. In this study, we explore the 

importance of utilizing the physicochemical properties of amino acids for improving PFR and 

SCP accuracies. For this, we propose a Forward Consecutive Search (FCS) scheme which 

aims to strategically select physicochemical attributes that will supplement the existing 

feature extraction techniques for PFR and SCP.  An exhaustive search is conducted on all 

the existing 544 physicochemical attributes using the proposed FCS scheme and a subset of 

physicochemical attributes is identified. Features extracted from these selected attributes are 

then combined with existing syntactical-based and evolutionary-based features, to show an 

improvement in the recognition and prediction performance on benchmark datasets. 
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Introduction 

In the field of bioinformatics and biological sciences, predicting the three-dimensional (3-D) 

structure of a protein plays a crucial role. The functions of protein, being closely linked to its 

structure enable us to further understand the cellular functions, protein-protein interactions 



and aids the development of new drug designs and therapies (Chmielnicki and Stapor, 

2012). The multitude of protein sequences generated due to large-scale sequencing projects 

are significantly higher than the known 3-D protein structure. Computational techniques have 

to be employed to determine the structure of a protein quickly and efficiently. 

 

Directly predicting the protein 3-D structure from its sequence is hard to achieve. However, 

classifying protein sequences to their fold or structural class is a transitional stage in 

determining the 3-D structure of a protein. In order to determine the fold or structural class of 

a protein sequence, two steps are required: 1) feature extraction step and 2) classification 

step. In feature extraction step, informative features are extracted from primary protein 

sequences. These features are further used in the classification step for protein fold 

recognition (PFR) and structural class prediction (SCP). If the extracted features are well 

discriminative, it can help improving the recognition and prediction rate. This makes feature 

extraction a crucial step in the overall procedure (Dehzangi et al., 2013a, 2013b, 2013c, 

2013d, 2014a, 2014c; Deschavanne and Tuffery, 2009; Dong et al., 2009; Kavousi et al., 

2011; Lyons et al., 2014, 2015, 2016; Paliwal et al., 2014b; Sharma et al., 2013a, 2014; 

Saini et al., 2014, 2015). 

 

A lot of research has been done in the domain of protein SCP (Chou and Zhang, 1994; 

Chou, 1995; Bahar et al., 1997; Zhou, 1998; Chou and Maggiora, 1998; Zhou and Assa-

Munt, 2001; Heffernan et al., 2015a, 2015b). One of the important progresses made in this 

domain was a study conducted by Chou and Cai (2004). They proposed a scheme whereby 

the feature vector of a protein sample was represented by its functional domain composition 

to formulate the predictor. The validation was made on a very stringent benchmark dataset 

which covers the following 7 classes: (i) all-alpha, (ii) all-beta, (iii) alpha/beta, (iv) 

alpha+beta, (v) multi-domain, (vi) small protein, and (vii) peptide. The cutoff threshold was 

20%, meaning that none of proteins included in the benchmark dataset has greater than 

20% pairwise sequence identity to any other in a same subset. For such an extremely 

stringent benchmark dataset, the overall jackknife success rate by the "Functional Domain 

Composition" method was over 90%. The pseudo amino acid composition approach has 

also been widely used by many investigators (Chen et al., 2006b, 2012; Sahu and Panda, 

2010; Zhang et al., 2014; Qin, 2012) for predicting protein structural classes. 

 

In the literature, many feature extraction techniques have been developed and used for PFR 

and SCP. Features are generally extracted by utilizing syntactical-based, evolutionary-based 

and physicochemical-based information. Features which are dependent on physicochemical 

attributes can reveal global properties of proteins (Bulashevska and Eils, 2006; Chinnasamy 



et al., 2005). These features are able to maintain high discriminatory information even when 

the sequence similarity is low (Dubchak et al., 1997; Pal and Chakraborty, 2003). Therefore, 

physicochemical-based features could be a viable option when compared to syntactical and 

evolutionary based features, since the latter would perform weakly on datasets with low 

sequence similarity. This phenomenon is commonly known as the twilight zone (Kurgan and 

Homaeian, 2005; Mizianty and Kurgan, 2009). 

 

Many researchers have proposed features based on syntactical, evolutionary and 

physicochemical information. Here we cover some of the important work. Dubchak et al. 

(1997) suggested syntactical-based and physicochemical-based features. The 

physicochemical-based features were extracted from five attributes – hydrophobicity (H), 

predicted secondary structure based on normalized frequency of  -helix (X), polarity (P), 

polarizability (Z) and van der Waals volume (V). Features extracted from these attributes 

have been used extensively in PFR and SCP problems (Ding and Dubchak, 2001; Krishnaraj 

and Reddy, 2008). Other physicochemical attributes that have been used, include flexibility 

(Najmanovich et al., 2000), bulkiness (Huang and Tian, 2006) and solvent accessibility 

(Zhang et al., 2012). Dehzangi and Phon-Amnuaisuk (2011) explored four new 

physicochemical attributes in addition to the five attributes used by Ding and Dubchak 

(2001). Sharma et al. (2013b) proposed a strategic selection scheme to identify suitable 

physicochemical attributes out of a subset of 30 attributes. The selected attributes showed 

an improvement in recognition performance. Dehzangi et al. (2014b) explored the impact of 

55 different physicochemical attributes for PFR. 

On the other hand, Taguchi and Gromiha (2007) have argued that only syntactical-based 

features should be considered, since features extracted from physicochemical attributes 

have no significant information. This contradiction depicts that further research is required in 

order to fully explore the potential of physicochemical attributes (Sharma et al., 2013b). In 

this study, we explore the impact of strategically selecting physicochemical attributes to 

supplement the existing feature extraction techniques for PFR and SCP. For this, we 

propose a Forward Consecutive Search (FCS) scheme which is based on a greedy search 

algorithm (Guyon and Elisseeff, 2003; Cormen et al., 1990, Sharma et al., 2012a). The FCS 

scheme will be used to thoroughly explore all the 544 physicochemical attributes 

(Kawashima et al., 2008) (a full list of attributes can be found at link – 

http://www.genome.jp/aaindex/) and identify a subset of suitable physicochemical attributes 

that will supplement the existing feature extraction techniques for PFR and SCP.  

 



This scheme is used on the Ding and Dubchak (DD) dataset (2001), Taguchi and Gromiha 

(TG) dataset (2007) and extended Ding and Dubchak (EDD) dataset (Dong et al., 2009). For 

each syntactical-based and evolutionary-based feature, a subset of the best 

physicochemical attributes are selected. An improvement in PFR and SCP is noted after 

appending the physicochemical-based features corresponding to these selected attributes. 

The improvements in all three datasets using 10-fold cross-validation ranged from 0.5% - 

28.3% for PFR and 0.5% - 18.6% for SCP.  

 

Related Work 

Apart from features extracted from physicochemical attributes, syntactical-based and 

evolutionary-based features have also been widely used for PFR and SCP. Taguchi and 

Gromiha (2007) have proposed features that are based on the amino acid occurrence. To 

rely more on the order of the amino acids in the protein sequence, Chou (2001) proposed 

Pseudo amino acid composition (PseAAC) based features. Similarly, Huang et al. (2003) 

used bigram features based on the order of the amino acid in the protein sequence. Later 

on, based on a similar concept, Ghanty and Pal (2009) employed pairwise frequency of 

amino acids that were separated by one residue (PF1) and pairwise frequency of adjacent 

residues (PF2). These pairwise frequency features contained 400 features each. In a study 

conducted by Yang et al. (2011), these pairwise frequency features were concatenated to 

produce 800 features. Shamim et al. (2007) proposed features that are extracted from the 

structural information of amino acid residues and pairs. If after concatenation of features, the 

dimensionality of the features is too high, then this dimensionality can be controlled by 

selecting a subset of important features only (Sharma et al., 2006, 2011, 2012b, 2012c, 

2012d, 2013c; Sharma and Paliwal, 2007, 2010, 2012a, 2012b, 2012c, 2015a and 2015b). 

Liu et al. (2012) and Kurgan et al. (2008) have shown autocorrelation features for protein 

sequences.  

 

Evolutionary-based features have also gained popularity, e.g. feature based on Position 

Specific Scoring Matrix (PSSM). PSSM is a representation of a protein sequence which 

defines the probability of any given amino acid occurring at a particular position in the 

sequence. Sharma et al. (2013a) employed monogram and bigram features extracted from 

the PSSM directly, thus solving the problem of having zero components in the feature vector 

as compared to the bigram feature vector suggested by Ghanty and Pal (2009). Similarly, 

Saini et al. (2015) proposed features that consist of probabilistic expressions of amino acid 

dimers that are spatially varied. Efforts have also been made to extract features such as 

monogram and bigram occurrence on the consensus protein sequence instead of the raw 

protein sequence (Paliwal et al., 2014a). Lyons et al. (2014) compared their proposed 



feature extraction technique with features such as  AAC + HXPZV and PSSM + AAC + 

HXPZV, where HXPZV were attributes used in a study by Dubchak et al. (1997). 

 

After feature extraction step, the classification step is applied to predict the folds or structural 

classes of the protein sequences using the extracted features. Many classifiers have been 

developed and used for PFR and SCP. Classifiers such as K-Nearest Neighbor (KNN) (Ding 

and Zhang, 2008, Nanni, 2006), Bayesian classifiers (Chinnasamy et al., 2005), Artificial 

Neural Network (ANN) (Cai and Zhou, 2000, Bologna and Appel, 2002), Ensemble 

classifiers (Shen and Chou, 2006; Chmielnicki and Stąpor, 2011), Support Vector Machine 

(SVM) (Chen et al., 2006a, Zhou et al., 2008) and hierarchical classification (Lin et al., 2013, 

Sharma et al., 2016) have been implemented and used most commonly. 

As demonstrated by a series of recent publications (Jia et al., 2016a, 2016b, 2016c; Liu, B. 

et al., 2016a, 2016b; Liu, Z. et al., 2016; Chen et al., 2016) in compliance with Chou's 5-step 

rule (Chou, 2011), to establish a really useful sequence-based statistical predictor for a 

biological system, we should follow the following five guidelines: (a) construct or select a 

valid benchmark dataset to train and test the predictor; (b) formulate the biological sequence 

samples with an effective mathematical expression that can truly reflect their intrinsic 

correlation with the target to be predicted; (c) introduce or develop a powerful algorithm (or 

engine) to operate the prediction; (d) properly perform cross-validation tests to objectively 

evaluate the anticipated accuracy of the predictor; (e) establish a user-friendly web-server 

for the predictor that is accessible to the public. Below, we describe how to deal with these 

steps one-by-one. 

 

Dataset 

Three datasets were employed in this study are DD dataset (Ding and Dubchak, 2001), TG 

dataset (Taguchi and Gromiha, 2007) and EDD dataset (Dong et al., 2009). The 

benchmarked DD dataset consists of 311 protein sequences in the training set where the 

sequence identity between any given pair of protein sequences is no more than 35% for 

aligned subsequences longer than 80 residues. The test set consists of 383 protein 

sequences where the sequence identity is less than 40%. Both the training and test sets 

belong to 27 SCOP folds which represent all the major structural classes:             

(Murzin et al., 1995).  

 

The EDD dataset consists of 3418 protein sequences which have less than 40% sequence 

similarity and belong to the same 27 SCOP folds that were used in the DD dataset. The 

dataset is extracted from 1.75 SCOP in a similar fashion to Dong et al. (2009).  



The TG dataset consists of 1612 protein sequences which belong to 30 different folding 

types of globular proteins (Taguchi and Gromiha, 2007) and have less than 25% sequence 

similarity between them.  

Since there are no pre-defined training set and test set for the EDD and TG datasets, the 

latter datasets were partitioned into training and test sets at approximately 3:2 ratios, 

respectively. After partitioning, the EDD training set contains 2082 protein sequences and 

test set contains 1336 protein sequences while the TG training set contains 1010 protein 

sequences and the test set contains 602 protein sequences. The distribution of the protein 

folding classes in the training and test set were kept proportionally equal. The training set 

was used to find physicochemical attributes. 

Features 

In this study, we aim to show that PFR and SCP performance can be improved by utilizing 

information present in the physicochemical properties of amino acids when used in 

conjunction with syntactical-based and evolutionary-based features. Although Taguchi and 

Gromiha (2007) have argued that features extracted from physicochemical attributes contain 

no significant information, we have shown in this study that features extracted from selected 

physicochemical attributes have led to significant improvements in PFR and SCP when used 

with existing syntactical-based and evolutionary-based features found in the literature. The 

following features are explored in this study and are discussed below. 

 

Syntactical-based and evolutionary-based features 

1. Occurrence (O), is the frequency of amino acids (there are 20 unique amino acids) in 

a protein sequence, thus producing 20 features (Taguchi and Gromiha, 2007).  

2. Pairwise frequency (PF1) of amino acids separated by one residue, is the frequency 

of pairs of amino acids in a protein sequence, thus producing 400 features (Ghanty 

and Pal, 2009). 

3. Bigram feature represents the transitional probabilities from one amino acid to 

another and is based on PSSM, producing 400 features (Sharma et al., 2013a). 

4. Separated dimers consists of the probabilistic expressions of amino acid dimers that 

have spatial separations from             , where   denotes the upper bound of   , 

and produces 400   features (Saini et al., 2015).  

 



A prefix of PSSM  before a syntactical/evolutionary-based feature name (O, PF1) indicates 

that the feature was extracted from consensus protein sequences rather than the raw protein 

sequences. The consensus protein sequences are derived by replacing each amino acid 

from the raw protein sequence with the amino acid having the highest probability in the 

PSSM.  

 

Physicochemical-based features 

In addition to the above syntactical-based and evolutionary-based features, we also extract a 

set of physicochemical-based features. However, extracting physicochemical-based features 

directly from attributes has some drawbacks. As mentioned in the introduction, while 

physicochemical-based features are able to maintain high discriminatory information based 

on amino acid residues, they do not incorporate information regarding the positioning of 

amino acids. 

 

Therefore, in order to solve this problem, we first find the probabilistic expression of the 

residues of the physicochemical attributes by combining them with PSSM probabilities. This 

way we can incorporate information based on amino acid positions while extracting 

physicochemical-based features. Therefore, evolutionary-based information is joined with 

physicochemical-based information. This would provide more discriminatory information 

which would help in improving PFR and SCP. 

 

The PSSM probabilities   of a protein sequence is a matrix of size    20, where   is the 

length of the protein sequence and the residues   for a physicochemical attribute   is a 

vector of size      . Thus, the probabilistic expression   of the residues of a 

physicochemical attribute   can be calculated by finding the product of   and   as shown by 

equation (1) below:  

 

                                                                              
          

It should be noted that the order of the amino acids (e.g. A R N…) in matrix   and vector   

must be the same. After this step, we extract the physicochemical-based features by using 

an autocorrelation of the probabilistic residue values ( ) of the protein sequences. This can 

be illustrated mathematically by equation (2) below: 

 



   
 

 
 ∑                   

   

   

                                                                                                       

 

Where    is the probabilistic residue value of the     amino acid in a protein sequence and  

  is the average of    probabilistic residues. In this study, we use                , thus 

producing 20 autocorrelation features for each protein sequence corresponding to a given 

physicochemical attribute  . 

 

 

 

 

Methodology 

In order to show improvements in PFR and SCP by utilizing physicochemical-based 

features, we first establish a baseline by noting the  -fold cross-validation accuracy of the 

syntactical-based and evolutionary-based features (O, PF1, PSSM O, PSSM PF1, Bigram 

and Separated dimers), on all three datasets - DD, TG and EDD. 

 

After establishing the baseline, we added the physicochemical-based features successively 

to the syntactical-based and evolutionary-based features by using a simple scheme that is 

based on an exhaustive greedy search algorithm. The aim of this scheme is to identify a 

subset of physicochemical attributes and explore the performance of features extracted from 

these selected attributes in combination with the syntactical-based and evolutionary-based 

features. This scheme will be referred to as the Forward Consecutive Search scheme and is 

illustrated in Figure 1. 

 

Forward Consecutive Search Scheme 

In Figure 1, any syntactical/evolutionary-based feature is the input denoted as Feature in the 

figure, Successive Feature (   ) represents the 20 autocorrelation features 

(                    ) extracted from a physicochemical attribute   using equation (2),   

represents the  -fold cross-validation accuracy on a combination of features {Feature,   }, 

  represents the maximum number of physicochemical attributes used,   represents the total 

number of levels used in the scheme and    represents the physicochemical attribute 

selected at a given level  . The FCS scheme was employed only on the training sets of the 



datasets. Thus, the test samples were kept isolated while the search was being conducted to 

identify the subset of physicochemical attributes. 

 

In the FCS scheme, a physicochemical-based feature is taken at a time in combination with 

a syntactical/evolutionary-based feature and the average classification accuracy is computed 

on the combination of features                 using  -fold cross-validation process on the 

training set of the data. The attribute   corresponding to the physicochemical-based feature 

(   ) that exhibits the highest classification accuracy in combination with         is retained 

and progresses to the next level; i.e.,                                         .  

 

In the next level, another physicochemical-based feature is taken at a time (where     ) in 

combination with the previous set of features               
        and the average 

classification accuracy is computed. The attribute   corresponding to the physicochemical-

based feature that exhibits the highest classification accuracy in combination with the 

previous set of features is retained and progresses to the next level. This process continues 

until all the physicochemical attributes have been ranked. The number of attributes ranked is 

however dependent on the number of levels being used in the scheme. 

 

Figure 1 - Forward Consecutive Search (FCS) Scheme 

         

 

 

                      

                                          

 

 

              
              

                                       
                       

 

 



 

 

              
      

                   

                                       
      

                                    

 

Results  

In statistical prediction, the following three cross-validation methods are often used to 

examine a predictor for its effectiveness in practical application: independent dataset test, 

subsampling test, and jackknife test (Chou and Zhang, 1995). However, of the three test 

methods, the jackknife test is deemed the least arbitrary that can always yield a unique 

result for a given benchmark dataset as elaborated in (Chou, 2011) and demonstrated by 

equations 28-30 therein. Accordingly, the jackknife test has been increasingly recognized 

and widely used by investigators to examine the quality of various predictors (Chou and Cai, 

2005; Shen and Chou, 2007; Nanni et al., 2014; Mondal and Pai, 2014; Ali and Hayat, 2015; 

Kumar et al., 2015; Dehzangi et al., 2015; Chen, 2015). However, to reduce the 

computational time, we adopted the 10-fold cross-validation in this study as done by many 

investigators. 

 

In this study, we have used LibSVM (Chang and Lin, 2011) version 3.17 with Radial Basis 

Function as the kernel function. The C parameter was set to 1000 and all other parameters 

were left to its default values. In the literature, only a limited number of physicochemical 

attributes were explored for PFR and SCP. In this study, all the 544 physicochemical 

attributes (     ) are considered. The FCS scheme was run for five levels (   ), and for 

each level, 10-fold cross-validation was used to identify the best physicochemical attribute 

for that level. At the end of the five levels, a subset of the five best attributes (               

  ) were identified for each syntactical/evolutionary-based feature. 

 

To show the improvements in PFR and SCP performance, 10-fold cross-validation 

accuracies of all the syntactical-based and evolutionary-based features explored in this 

study without adding the physicochemical-based features are noted as a baseline. These 

accuracies are then compared against the 10-fold cross-validation of the combined 

features                                        
 .  

 

 



The improvements in PFR and SCP using the combined features on all three datasets, using 

10-fold cross-validation are highlighted in Tables 1 - 3. For PFR, the improvements are as 

follows: 0.6% - 14.6% on the DD dataset, 1% - 15% on the TG dataset and 0.5% - 28.3% on 

the EDD dataset. For SCP, the improvements are noted as follows: 1.1% - 13% on the DD 

dataset, 1.6% - 17.7% on the TG dataset and 0.5% - 18.6% on the EDD dataset. 

 

Discussion 

From Tables 1 –  3, it is evident that physicochemical-based features together with 

syntactical-based or evolutionary-based features improves the performance. For 

completeness, the increment in accuracy when adding physicochemical-based features to 

the syntactical-based features and evolutionary-based features over the five levels used in 

this study has been provided in Tables 4 – 6. Though, the improvement of adding 

physicochemical-based features to evolutionary-based features is less compared to the 

improvement with syntactical-based features, improvement is still observed when a subset of 

attributes was systematically selected in both the cases. 

 

We have also provided box plots which show the accuracies over twenty runs for syntactical-

based and evolutionary-based features and the improved accuracies after adding 

physicochemical-based features to the syntactical-based features and evolutionary-based 

features. Figures 2 - 7 illustrates the box plots for PFR and Figures 8 – 13 illustrates the box 

plots for SCP respectively. 

 

Furthermore, we have also conducted paired t-test with 5% significance level to show the 

statistical significance of improvements seen in this study. We compared the results (in 

terms of 10-fold cross-validation accuracies) of the structural-based features and 

evolutionary-based features for PFR and SCP with the results of the structural-based 

features and evolutionary-based features with physicochemical-based features added to 

them for PFR and SCP (the degree of freedom is 5). The paired t-test results for features 

PF1, PSSM + PF1, O, PSSM + O, Bigram and Separated Dimers are 0.001, 0.002, 0.0003, 

0.0002, 0.01 and 0.001 respectively. These results show that the improvements in 

accuracies after adding physiochemical-based features is significant. 

 

The FCS scheme used in this study, requires          search combinations, where 

        . Each level in the scheme produces 20 dimensional features, thus for   levels, 

20    dimensional features are produced. Since we consider all the 544 physicochemical 

attributes in this study, the computational resources and time needed to evaluate 10-fold 



cross-validation accuracy on the physicochemical-based features extracted in each level 

increases dramatically as the number of levels   increases (complexity:      ). Due to this 

limitation, in this study we have restricted to only five levels in the FCS scheme. 

 

After evaluating the results in this study, it can be said that information present in 

physicochemical attributes can play an important role in improving PFR and SCP. The 

physicochemical attributes selected, mostly varied for different syntactical-based and 

evolutionary-based features across the three datasets. It was seen that certain 

physicochemical attributes were selected multiple times on each dataset as well as across 

multiple datasets. This shows that these physicochemical attributes hold significant 

information compared to other physicochemical attributes but need to be used with other 

physicochemical attributes to be effective. However, the performance can be further 

increased by selecting other physicochemical properties or combination of physicochemical 

properties using different techniques or schemes (Guyon and Elisseeff, 2003; Cormen et al., 

1990) and by also using different classifiers. Table 7 summarizes the rank of attributes 

based on its frequency of selection over all the three datasets. In addition to this, the 

attributes that were selected in this study is summarized in the Appendix Section.  

As demonstrated in a series of recent publications (Jia et al., 2016a, 2016b, 2016c; Liu B. et 

al., 2016a, 2016b; Liu Z. et al., 2016; Chen et al., 2016) in developing new prediction 

methods, user-friendly and publicly accessible web-servers will significantly enhance their 

impacts (Chou, 2015), and we shall make efforts in our future work to provide a web-server 

for the prediction method presented in this study. 

 

Conclusion 

In this study, we aim to improve PFR and SCP accuracies by utilizing information present in 

the physicochemical properties of amino acids. For this, we have employed a Forward 

Consecutive Search (FCS) scheme to select the most suitable physicochemical attributes for 

improving PFR and SCP. The FCS scheme utilizes all the 544 physicochemical attributes 

and a subset of the five best physicochemical attributes is selected for each 

syntactical/evolutionary-based feature.  

 

It was shown that features extracted from these carefully selected physicochemical attributes 

led to an improvement in PFR and SCP performance when used in combination with the 

syntactical-based and evolutionary-based features. The improvements using 10-fold cross-

validation for PFR, were: 0.6% - 14.6% on the DD dataset, 1% - 15% on the TG dataset and 



0.5% - 28.3% on the EDD dataset. For SCP, the improvements were: 1.1% - 13% on the DD 

dataset, 1.6% - 17.7% on the TG dataset and 0.5% - 18.6% on the EDD dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 - DD Dataset  -fold cross validation 

  Feature  Baseline 
Accuracy 
(  = 10)  

Improved Accuracy 
(  = 10)  

Rank  

  PF1  50.6% 62.3% 537, 339, 199, 317, 466 

  PSSM + PF1  66.4% 69% 314, 453, 351, 469, 1 

PFR O 51% 65.6% 12, 535, 314, 70, 1 

  PSSM + O 64.9% 70.6% 537, 179, 399, 440, 1 

 Bigram 74.1% 74.7% 463, 394, 151, 205, 471 

  Separated dimers 
 (  = 7) 

76% 77.1% 463, 536, 16, 1, 203 

 SCP PF1 71.8% 79.1% 179, 216, 84, 466, 340 

 PSSM + PF1 81.8% 83.7% 239, 461, 442, 1, 340 

 O 67.8% 80.8% 12, 537, 179, 346, 1 

 PSSM + O 77.1% 82.9% 537, 345, 70, 472, 1 

 Bigram 83.3% 84.4% 463, 114, 308, 1, 2 

 Separated dimers 

 (  = 7) 
86.4% 87.5% 84, 536, 114, 394, 350 

*  -fold cross-validation was carried out 100 times for statistical stability 
* Improved Accuracy refers to the  -fold cross-validation accuracy of the combination of features {Feature, SF} 
  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 - TG Dataset  -fold cross validation 

  Feature  Baseline 
Accuracy 
(  = 10) 

Improved Accuracy 
 (  = 10)  

Rank  

  PF1  38.8% 50.4% 532, 341, 199, 461, 340 

  PSSM + PF1  52.7% 59% 180, 343, 465, 463, 440 

PFR O 36.3% 51.3% 535, 199, 349, 490, 491 

  PSSM + O 46.7% 57.3% 512, 348, 461, 1, 2 

 Bigram 68.1% 70.5% 494, 222, 205, 147, 81 

  Separated dimers  
(  = 3) 

73.5% 74.5% 151, 347, 460, 471, 1 

SCP PF1  69.9% 80.3% 209, 314, 346, 151, 443 

 PSSM + PF1  77.2% 84.7% 209, 355, 442, 346, 205 

 O 63.6% 81.3% 537, 209, 351, 442, 199 

 PSSM + O 73.4% 84.3% 199, 348, 343, 442, 463 

 Bigram 81.5% 86.8% 494, 351, 469, 217, 244 

 Separated dimers  
(  = 3) 

87.7% 89.3% 211, 63, 483, 3, 488 

*  -fold cross-validation was carried out 100 times for statistical stability 
* Improved Accuracy refers to the  -fold cross-validation accuracy of the combination of features {Feature, SF} 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 - EDD Dataset  -fold cross validation 

  Feature  Baseline 
Accuracy 
(  = 10)  

Improved Accuracy 
 (  = 10)  

Rank  

  PF1  50.8% 75.1% 512, 389, 341, 221, 399 

  PSSM + PF1  75.2% 82% 239, 348, 355, 340, 442 

PFR O 46.9% 75.2% 535, 177, 178, 312, 206 

  PSSM + O 68.5% 76.1% 211, 494, 466, 115, 1 

 Bigram 84.5% 87.2% 111, 394, 151, 460, 1 

 Separated dimers  
(  = 4) 

89.7% 90.2% 534, 197, 462, 347, 89 

       

SCP  PF1  71% 87.5% 206, 535, 355, 312, 179 

 PSSM + PF1  86.1% 91.3% 206, 355, 348, 469, 191 

 O 66.5% 85.1% 184, 312, 177, 399, 341 

 PSSM + O 80.7% 91.3% 206, 239, 339, 84, 355 

 Bigram 89.3% 90.6% 147, 365, 417, 131, 122 

 Separated dimers  
(  = 4) 

94% 94.5% 532, 211, 356, 115, 70 

*  -fold cross-validation was carried out 100 times for statistical stability 
* Improved Accuracy refers to the  -fold cross-validation accuracy of the combination of features {Feature, SF} 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 - Increment Accuracy for features in DD dataset 

 Feature Baseline 

Accuracy 

(  = 10) 

Accuracy 

after Level 

1 (  = 10) 

Accuracy 

after Level 

2 (  = 10) 

Accuracy 

after Level 

3 (  = 10) 

Accuracy 

after Level 

4 (  = 10) 

Accuracy 

after Level 

5 (  = 10) 

PFR PF1  50.6% 58.7% 58.9% 60.6% 61.6% 62.3% 

PSSM + PF1  66.4% 67% 67.1% 67.5% 67.8% 69% 

O 51% 61.5% 65.1% 65.5% 65.5% 65.6% 

PSSM + O 64.9% 68.3% 69.5% 70% 70% 70.6% 

Bigram 74.1% 74.3% 74.2% 74.4% 74.4% 74.7% 

Separated 

dimers 

 (  = 7) 

76% 76.6% 76.5% 76.5% 76.9% 77.1% 

SCP PF1  71.8% 76.3% 78.3% 78.5% 78.9% 79.1% 

PSSM + PF1  81.8% 82.3% 82.3% 82.5% 82.7% 83.7% 

O 67.8% 76.2% 78.8% 79.6% 79.9% 80.8% 

PSSM + O 77.1% 82.5% 83.1% 82.8% 82.9% 82.9% 

Bigram 83.3% 83.8% 84.1% 84.1% 84.1% 84.4% 

Separated 

dimers 

 (  = 7) 

86.4% 86.6% 87.1% 87.4% 87.3% 87.5% 

 

 

 



 

 

 

 

 

 

 

 

Table 5 - Increment Accuracy for features in TG dataset 

 Feature Baseline 

Accuracy 

(  = 10) 

Accuracy 

after Level 

1 (  = 10) 

Accuracy 

after Level 

2 (  = 10) 

Accuracy 

after Level 

3 (  = 10) 

Accuracy 

after Level 

4 (  = 10) 

Accuracy 

after Level 

5 (  = 10) 

PFR PF1  38.8% 46.2% 47.3% 49% 49.8% 50.4% 

PSSM + PF1  52.7% 56.1% 57.1% 58.4% 58.6% 59% 

O 36.3% 49.4% 50.4% 51% 51% 51.3% 

PSSM + O 46.7% 55.4% 56.7% 57% 57% 57.3% 

Bigram 68.1% 69.8% 69.9% 70% 69.8% 70.5% 

Separated 

dimers 

 (  = 3) 

73.5% 74.7% 74.8% 74.8% 74.7% 74.5% 

SCP PF1  69.9% 78% 78.9% 79.6% 79.7% 80.3% 

PSSM + PF1  77.2% 82.9% 84.1% 84.5% 84.6% 84.7% 

O 63.6% 76.8% 80.5% 81.1% 81.7% 81.3% 

PSSM + O 73.4% 81.3% 82.7% 83.4% 84% 84.3% 

Bigram 81.5% 85.2% 85.7% 86.2% 86.5% 86.8% 

Separated 

dimers 

 (  = 3) 

87.7% 89% 89% 89.1% 89.1% 89.3% 

 

 

 

 

 



 

 

 

 

 

 

Table 6 - Increment Accuracy for features in EDD dataset 

 Feature Baseline 

Accuracy 

(  = 10) 

Accuracy 

after Level 

1 (  = 10) 

Accuracy 

after Level 

2 (  = 10) 

Accuracy 

after Level 

3 (  = 10) 

Accuracy 

after Level 

4 (  = 10) 

Accuracy 

after Level 

5 (  = 10) 

PFR PF1  50.8% 65.2% 71% 73.1% 74.5% 75.1% 

PSSM + PF1  75.2% 80.1% 80.5% 81.8% 81.9% 82% 

O 46.9% 65.4% 70.5% 72.9% 74.8% 75.2% 

PSSM + O 68.5% 73.9% 75.4% 76% 76.1% 76.1% 

Bigram 84.5% 87.1% 87.2% 86.9% 87.2% 87.2% 

Separated 

dimers 

 (  = 4) 

89.7% 89.8% 89.9% 89.9% 89.8% 90.2% 

SCP PF1  71% 82.3% 85% 85.8% 87.3% 87.5% 

PSSM + PF1  86.1% 89.7% 90.4% 90.9% 91% 91.3% 

O 66.5% 83.2% 83.7% 84.7% 84.8% 85.1% 

PSSM + O 80.7% 88.1% 89.6% 90.6% 90.8% 91.3% 

Bigram 89.3% 90.1% 90.2% 90.3 90.3% 90.6% 

Separated 

dimers 

 (  = 4) 

94% 94.2% 94.3% 94.3% 94.4% 94.5% 

 

 

 

 

Table 7 – Rank of attributes based on its frequency counts over all the Datasets 

Attribute Total 

Frequency 

1 11 

199, 355, 442, 463, 537 5 

151, 206, 340, 348, 535 4 



70, 84, 179, 209, 211, 239, 312, 314, 341, 351, 394, 399, 461, 469, 494 3 

2, 12, 114, 115, 147, 177, 205, 339, 343, 346, 347, 440, 460, 466, 471, 491, 512, 

532, 536 

2 

3, 16, 63, 81, 89, 111, 122, 131, 178, 180, 184, 191, 197, 203, 216, 217, 221, 222, 

244, 308, 317, 345, 349, 350, 356, 365, 389, 417, 453, 462, 465, 472, 483, 488, 490, 

534 

1 

 

Figure 2 - Boxplot for PF1 Feature for PFR 

 



Figure 3 - Boxplot for PSSM + PF1 Feature for PFR 

 

Figure 4 - Boxplot for O Feature for PFR 

 



Figure 5 - Boxplot for PSSM + O Feature for PFR 

 

Figure 6 - Boxplot for Bigram Feature for PFR 

 



Figure 7 - Boxplot for Separated Dimers Feature for PFR 

 

Figure 8 - Boxplot for PF1 Feature for SCP 

 



Figure 9 - Boxplot for PSSM + PF1 Feature for SCP 

 

Figure 10 - Boxplot for O Feature for SCP 

 



Figure 11 - Boxplot for PSSM + O Feature for SCP 

 

Figure 12 - Boxplot for Bigram Feature for SCP 

 



Figure 13 - Boxplot for Separated Bigrams Feature for SCP 

 

Appendix - Physicochemical attributes selected in this study 

(The full list of attributes can be found at link – http://www.genome.jp/aaindex/) 

Number Attribute (Reference) 

1 alpha-CH chemical shifts (Andersen et al., 1992) 

2 Hydrophobicity index (Argos et al., 1982) 

3 Signal sequence helical potential (Argos et al., 1982) 

12 Retention coefficient in TFA (Browne et al., 1982) 

16 alpha-NH chemical shifts (Bundi-Wuthrich, 1979) 

63 Size (Dawson, 1972) 

70 Atom-based hydrophobic moment (Eisenberg-McLachlan, 1986) 



81 STERIMOL length of the side chain (Fauchere et al., 1988) 

84 N.m.r. chemical shift of alpha-carbon (Fauchere et al., 1988) 

89 Negative charge (Fauchere et al., 1988) 

111 Polarity (Grantham, 1974) 

114 Hydration number (Hopfinger, 1971), Cited by Charton-Charton (1982) 

115 Hydrophilicity value (Hopp-Woods, 1981) 

122 Normalized relative frequency of bend R (Isogai et al., 1980) 

131 Transfer free energy (Janin, 1979) 

147 Side chain interaction parameter (Krigbaum-Rubin, 1971) 

151 Hydropathy index (Kyte-Doolittle, 1982) 

177 Refractivity (McMeekin et al., 1964) 

178 Retention coefficient in HPLC, pH7.4 (Meek, 1980) 

179 Retention coefficient in HPLC, pH2.1 (Meek, 1980) 

180 Retention coefficient in NaClO4 (Meek-Rossetti, 1981) 

184 Average side chain orientation angle (Meirovitch et al., 1980) 

191 AA composition of mt-proteins (Nakashima et al., 1990) 

197 AA composition of membrane proteins (Nakashima et al., 1990) 

199 Transmembrane regions of non-mt-proteins (Nakashima et al., 1990) 

203 AA composition of CYT2 of single-spanning proteins (Nakashima-Nishikawa,  1992) 



205 AA composition of EXT2 of single-spanning proteins (Nakashima-Nishikawa,  1992) 

206 AA composition of MEM of single-spanning proteins (Nakashima-Nishikawa, 1992) 

209 AA composition of MEM of multi-spanning proteins (Nakashima-Nishikawa, 1992) 

211 14 A contact number (Nishikawa-Ooi, 1986) 

216 Average non-bonded energy per residue (Oobatake-Ooi, 1977) 

217 Short and medium range non-bonded energy per residue (Oobatake-Ooi, 1977) 

221 Optimized average non-bonded energy per atom (Oobatake et al., 1985) 

222 Optimized side chain interaction parameter (Oobatake et al., 1985) 

239 HPLC parameter (Parker et al., 1986) 

244 Surrounding hydrophobicity in alpha-helix (Ponnuswamy et al., 1980) 

308 Average relative fractional occurrence in AL(i-1) (Rackovsky-Scheraga, 1982) 

312 Value of theta(i) (Rackovsky-Scheraga, 1982) 

314 Transfer free energy from chx to wat (Radzicka-Wolfenden, 1988) 

317 Transfer free energy from chx to oct (Radzicka-Wolfenden, 1988) 

339 Information measure for alpha-helix (Robson-Suzuki 

340 Information measure for N-terminal helix (Robson-Suzuki, 1976) 

341 Information measure for middle helix (Robson-Suzuki, 1976) 

343 Information measure for extended (Robson-Suzuki, 1976) 

345 Information measure for extended without H-bond (Robson-Suzuki, 1976) 



346 Information measure for turn (Robson-Suzuki, 1976) 

347 Information measure for N-terminal turn (Robson-Suzuki, 1976) 

348 Information measure for middle turn (Robson-Suzuki, 1976) 

349 Information measure for C-terminal turn (Robson-Suzuki, 1976) 

350 Information measure for coil (Robson-Suzuki, 1976) 

351 Information measure for loop (Robson-Suzuki, 1976) 

355 Side chain hydropathy, uncorrected for solvation (Roseman, 1988) 

356 Side chain hydropathy, corrected for solvation (Roseman, 1988) 

365 Optimal matching hydrophobicity (Sweet-Eisenberg, 1983) 

389 Hydration potential (Wolfenden et al., 1981) 

394 Unfolding Gibbs energy in water, pH9.0 (Yutani et al., 1987) 

399 Bulkiness (Zimmerman et al., 1968) 

417 Normalized positional residue frequency at helix termini C1 (Aurora-Rose,  1998) 

440 

Distribution of amino acid residues in the 18 non-redundant families of  thermophilic 

proteins (Kumar et al., 2000) 

442 

Distribution of amino acid residues in the alpha-helices in thermophilic  proteins (Kumar 

et al., 2000) 

443 

Distribution of amino acid residues in the alpha-helices in mesophilic  proteins (Kumar 

et al., 2000) 

453 Averaged turn propensities in a transmembrane helix (Monne et al., 1999) 



460 Composition of amino acids in nuclear proteins (percent) (Cedano et al.,  1997) 

461 

Surface composition of amino acids in intracellular proteins of thermophiles  (percent) 

(Fukuchi-Nishikawa, 2001) 

462 

Surface composition of amino acids in intracellular proteins of mesophiles  (percent) 

(Fukuchi-Nishikawa, 2001) 

463 

Surface composition of amino acids in extracellular proteins of mesophiles  (percent) 

(Fukuchi-Nishikawa, 2001) 

465 

Interior composition of amino acids in intracellular proteins of thermophiles  (percent) 

(Fukuchi-Nishikawa, 2001) 

466 

Interior composition of amino acids in intracellular proteins of mesophiles  (percent) 

(Fukuchi-Nishikawa, 2001) 

469 

Entire chain composition of amino acids in intracellular proteins of  thermophiles 

(percent) (Fukuchi-Nishikawa, 2001) 

471 

Entire chain composition of amino acids in extracellular proteins of  mesophiles 

(percent) (Fukuchi-Nishikawa, 2001) 

472 

Entire chain compositino of amino acids in nuclear proteins (percent)  (Fukuchi-

Nishikawa, 2001) 

483 Amphiphilicity index (Mitaku et al., 2002) 

488 

Hydrophobicity coefficient in RP-HPLC, C18 with 0.1%TFA/MeCN/H2O (Wilce et  al. 

1995) 

490 

Hydrophobicity coefficient in RP-HPLC, C4 with 0.1%TFA/MeCN/H2O (Wilce et al.  

1995) 

491 
Hydrophobicity coefficient in RP-HPLC, C18 with 0.1%TFA/2-PrOH/MeCN/H2O  (Wilce 



et al. 1995) 

494 Modified Kyte-Doolittle hydrophobicity scale (Juretic et al., 1998) 

512 Buriability (Zhou-Zhou, 2004) 

532 PRIFT index (Cornette et al., 1987) 

534 ALTFT index (Cornette et al., 1987) 

535 ALTLS index (Cornette et al., 1987) 

536 TOTFT index (Cornette et al., 1987) 

537 TOTLS index (Cornette et al., 1987) 
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Highlights 

 A Forward Consecutive Search (FCS) scheme is proposed 

 Physicochemical attributes are strategically selected 

 Physicochemical-based features supplement existing feature extraction techniques 

 Improvements in prediction accuracies after utilizing physicochemical information 

 




