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a b s t r a c t

This first part of a paper, divided into two parts, deals with the theoretical formulation of the input–
output feedback linearization (FL) control technique as to be applied to linear induction motors (LIMs).
Linear induction motors, differently from rotating induction motors (RIMs), present other strong non-
linearities caused by the so-called dynamic end effects, leading to a space-vector model with time-
varying inductance and resistance terms and an additional braking force term. This paper, starting from a
dynamic model of the LIM taking into consideration its dynamic end effects, previously developed by the
same authors, defines a feedback linearization (FL) technique suited for LIMs, since it inherently
considers its end effects. It further emphasizes the role of the LIM dynamic end effects in the LIM control
formulation, highlighting the differences with respect to the corresponding technique for RIMs. It
describes the control design criteria, taking also into consideration the constraints on the control and
controlled variables, arising from the application of such control technique in a real scenario.

The second part of this paper describes the set of tests, both in numerical simulations and
experiments, performed to assess the correctness of the proposed control technique.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Linear induction motors (LIM) have been largely studied for
several years (Boldea & Nasar, 1997, 1999; Laithwaite, 1975; Nasar
& Boldea, 1987; Poloujadoff, 1980; Yamamura, 1979). Among the
main reasons of their interest there is the opportunity to develop a
direct linear motion without the need of any gear-box for the
motion transformation (from rotating to linear). This advantage
presents, as counterpart, the disadvantage of an increase of
complexity of the machine model, presenting the so-called end
effects and border effects. In particular, end effects are to be
divided into two categories: (a) static and (b) dynamic end effects.
Static end effects are due to asymmetries in the inductor structure
in the longitudinal direction causing different reluctances of the
magnetic paths of the three inductor phases. Dynamic end effects
are caused by the relative motion between the short inductor and
the induced part track and can be defined on the basis of the
spatial representation, on the longitudinal direction of the LIM, of
the root mean square (RMS) value of inductor MMF (magnetomotive

force) profile. They are caused by the sudden growth of new
currents in the induced part track. As a result, starting from the
assumption that the rotating induction machine (RIM) presents a
dynamic space-vector model which is non-linear (Leonhard, 2001;
Vas, 1998), the dynamic model of the LIM presents further
additional significant non-linearities, caused by the dynamic end
effects.

The definition of a space-vector dynamic model of the LIM,
taking into consideration the end effects, with a representation
suitable for control purposes is not an easy task. Gentile, Rotondale,
and Scarano (1987, 1988) propose a complete dynamic model of the
LIM, taking into consideration both the static and dynamic end
effects. It is, however, not adoptable for control purposes because of
its complexity and strong dependence on the constructional aspects
of the machine (pole pitch, air-gap length, thickness of the induced
part track, slots width and depth, number of turns for phases etc.).
Recently, a space-vector dynamic model of the LIM taking into
consideration its dynamic end effects (not the static ones) has been
developed and experimentally validated (Pucci, 2014). This last
model has been expressed in a state-space form and is therefore
particularly suitable for control purposes, in particular for the
definition of state estimators, observers or novel control techniques
taking into consideration the additional non-linearities arising from
the presence of the dynamic end effects. If the space-vector state
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model of the LIM in Pucci (2014) is considered, the additional strong
non-linearities caused by the dynamic end effects are twofold:

(1) the presence of electric parameters of the model (induc-
tances and resistance), which vary non-linearly with the
machine speed;

(2) the presence of a braking force, whose terms depend on
the square of induced part flux amplitude as well as on
the product between the induced part flux amplitude
and the inductor current components.

Although the LIM presents a far more non-linear model than the
RIM, the approach adopted in the literature for its control has been
usually to straightforwardly extend the classic control technolo-
gies developed for RIMs to LIMs.

The control system theory, however, offers an important
corpus (Isidori, 1995; Khalil, 2002; Slotine & Li, 1991) of non-
linear control methodologies for dealing with highly non-linear
system. Among all, one of the most promising is the so-called
input–output feedback linearization. Nevertheless, very few
applications of non-linear control methods to electrical drives
are provided by the scientific literature. Among these few
applications, a very limited number of papers deal with the
input–output feedback linearization of linear induction motors
(Huang & Fu, 2003; Lin & Wai, 2001, 2002; Wai & Chu, 2007). All
these papers approach the FL control of the LIM, adopting for the
controller synthesis a dynamic model of the LIM which neglects
both the static and the dynamic end effects. This corresponds to
adopt the dynamic model of the equivalent rotating induction
machine (RIM). From the controller design point of view, there-
fore, Lin and Wai (2001, 2002), Huang and Fu (2003), and Wai
and Chu (2007) present exactly the same approach of Krzeminski
et al. (1987), De Luca and Ulivi (1989), Kim, Ha, and Ko (1990),
and Marino, Peresada, and Valigi (1993, 2010), which specifically
propose the application of FL to RIM control. On the basis of the
above, the state-of-the-art of the application of FL to LIMs
corresponds to the state-of-the-art of the applications of FL to
RIMs. For this reason, the main contributions of application of FL
to RIMs should be briefly highlighted in the following. In
particular, De Luca and Ulivi (1989) present an approach to the
control of induction motors based on differential-geometric
concepts, while, Marino et al. (1993) present a nonlinear adaptive
state feedback input–output linearizing control. The current
state-of-the-art is described by Marino et al. (2010).

This paper proposes an input–output feedback linearization (FL)
technique for linear induction motors. The methodology is inspired
from Marino et al. (2010), just as theoretical framework. The
starting point of the proposed FL technique is, however, the
space-vector dynamic model of the LIM taking into consideration
its dynamic end effects recently developed by Pucci (2014). This
model is particularly suitable for the application of the FL technique,

since it is expressed in a state form. Starting from this dynamic
space-vector model, a control system has been designed which, on
the basis of the estimated induced part flux linkage and measured
linear speed, outputs two suitably defined additional control vari-
ables. The control system is designed in such a way that the
adoption of these control variables corresponds to deal with an
equivalent LIM model which is linear and expressed in canonical
control form. Finally, the real control variables of the machine,
corresponding to the direct and quadrature components of the
inductor voltages expressed in the inductor reference frame, are
obtained from the additional ones after a set of suitably defined
non-linear functions, depending on both these additional control
inputs and the LIM electric variables (inductor currents, induced
part flux linkage).

The proposed FL approach is thus able to take into considera-
tion, besides the classic non-linearities of the RIM, even the further
non-linearities caused by the dynamic end effects.

This paper is divided into two parts. The first part deals with the
theoretical formulation of the input–output feedback linearization
control technique as to be applied to linear induction motors. The
second part describes the set of tests, both in numerical simulation
and experimental, performed to assess the correctness of the
control technique, and to verify the related dynamic performance.

2. Space-vector equivalent circuit of the LIM including end
effects (Pucci, 2014)

In a LIM, differently from a RIM, the secondary (induced part),
consists of a sheet of aluminum with a back core of iron. During
the motion of the inductor, a continuous variation of the alumi-
num sheet happens, while the inductor presents a limited length.
This causes a variation of the induced currents in the sheet and
corresponding magnetic flux density in the air-gap, in proximity to
the entrance (front of the motion) and exit (back of the motion) of
the inductor. The amounts and signs of the flux modifications at
the two ending parts of the inductor, meaning its entrance (in the
direction of the motion) and its end (terminal part of the inductor
in the direction of the motion), are different. When the moving
inductor faces a new part of aluminum sheet, new induced
currents are generated starting from a null value. The induced
current, suddenly growing in a region of the induced part track
where there was not insisting any magnetic flux, for the Faraday
law arises trying to oppose to the magnetic flux increase. The
effect is a deep reduction of the resulting flux in proximity to the
entrance. At the same time, at the exit the induced current
opposes to a sudden flux reduction from the inducer, creating an
overall flux increase. The higher the speed of the inductor, the
higher the end effect phenomenon. This last has been taken into
consideration in the literature by the so-called end effect factor Q
(da Silva, dos Santos, Machado, & De Oliveira, 2003; Duncan, 1983),

List of symbols

usx;usy inductor voltages in the induced part flux
reference frame

isx; isy inductor currents in the induced part flux
reference frame

ψ rx;ψ ry induced part fluxes in the induced part flux
reference frame

Fe electromagnetic thrust
Fr load force
Feb braking force
LsðLrÞ inductor (induced part) inductance

Lm 3-phase magnetizing inductance
RsðRrÞ inductor (induced part) resistance
Tr induced part time constant
σ total leakage factor
ωr electrical angular speed of the induced part
ωmr electrical angular speed of the induced part flux
v mechanical linear speed
a mechanical linear acceleration
p pole-pairs
τp pole-pitch
τm inductor length
M inductor mass
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defined as

Q ¼ τm
Trv

ð1Þ
For the symbols, see the list at the beginning of the paper.

It can be observed that, the higher the machine speed, the
higher the air-gap thickness (higher leakage inductance) and the
lower the inductor length, the lower the factor Q. It means that the
end effects increase with the machine speed, with the air-gap
thickness and reduces with the inductor length.

Correspondingly, the three-phase magnetizing inductance var-
ies with Q in the following way:

L̂m ¼ Lmð1� f ðQ ÞÞ ð2Þ
with:

f ðQ Þ ¼ 1�e�Q

Q
ð3Þ

expressing the concept that the inductance virtually reduces with
the end effects.

A computation of the overall losses of the machine shows that a
resistance appears in the transversal branch taking into considera-
tion the eddy current joule losses. This resistance is equal to:

R̂r ¼ Rrf ðQ Þ ð4Þ
Correspondingly, the space-vector equivalent circuit of the LIM

can be deduced, as shown in Fig. 1. It could be observed that the
main differences with the equivalent circuit of the RIM are in the
magnetizing inductance and in the eddy current resistance (not to
be confused with the resistance taking into consideration the
magnetic losses of the machine), both present in the transversal
branch (Pucci, 2014).

3. Space-vector model and field oriented control of the LIM

To the aim of describing the proposal FL technique, the space-
vector dynamic model of the LIM, taking into consideration its
dynamic end effects (Pucci, 2014), is written in the induced part
flux reference frame, rotating at the angular speed ωmr, as follows:

dis
dt

¼ �γis� jωmrisþαβψ r� jβ
pπ
τp

vψ rþ
us

σ̂ L̂s
ð5Þ

dψ r

dt
¼ �ðα�ηÞψ rþαL̂mis� j ωmr�

pπ
τp

v
� �

ψ r ð6Þ

dv
dt

¼ μðψ r4isÞ�
Fr
M

�Feb
M

ð7Þ

Feb ¼ ϑ jψ rj2þL2σr jisj2þLσrðψ r � isÞ
h i

ð8Þ

where “4” is the vector product, “� ” is the scalar product and the
variables α, β, γ, η, μ and ϑ are defined as follows:

γ ¼ 1

σ̂ L̂s
Rsþ R̂r 1� L̂m

L̂r

 !
þ L̂m

L̂r

L̂m
T̂ r

� R̂r

 !" #
;

α¼ 1

T̂ r
� R̂r

L̂m

 !
; β¼ L̂m

σ̂ L̂sL̂r
; η¼ � R̂r

L̂m
;

μ¼ 3
2
p
π
τp

L̂m
L̂r

1
M
; ϑ¼ signðvÞ3

2
Lr

L̂
2
r

1�e�Q

pτp

where

L̂m ¼ Lmð1� f ðQ ÞÞ; L̂s ¼ LσsþLmð1� f ðQ ÞÞ;
L̂r ¼ LσrþLmð1� f ðQ ÞÞ; R̂r ¼ Rrf ðQ Þ;

T̂ r ¼
LσrþLmð1� f ðQ ÞÞ

Rrð1� f ðQ ÞÞ ; σ̂ ¼ 1� L̂
2
m

L̂rL̂s
:

These modified electrical parameters of the LIM have a precise
physical meaning, as explained in Pucci (2014). In Fig. 2 the
waveforms of α, β, γ and η are showed for the machine under
test in a speed range varying between 0 and 15 m/s.

In the following the feedback linearization procedure based on
the above model of LIM will be shown. The adopted linearization
approach is the same as in Marino et al. (2010) where it has been
developed and applied to the RIM. Here, however, some intriguing
mathematical issues arising from the suitable definition of the
dynamic end effects, will be focused. This will lead to the
definition of additional control terms with respect to the RIM
case, due to the dynamic end effects. In fact, differently from RIM
case, the coefficients α, β, γ, η and μ are speed depending and thus
time-variant parameters. This will lead to different feedback laws
and further interesting consideration compared with the
RIM model.

In order to obtain the feedback law for decoupling the
dynamics of flux and velocity, it is useful writing the above-
described model in terms of the space-vector direct and in-
quadrature components:

disx
dt

¼ �γisxþωmrisyþαβψ rxþβ
pπ
τp

vψ ryþ
usx

σ̂ L̂s
ð9Þ

disy
dt

¼ �γisy�ωmrisxþαβψ ry�β
pπ
τp

vψ rxþ
usy

σ̂ L̂s
ð10Þ

dψ rx

dt
¼ �ðα�ηÞψ rxþαL̂misxþ ωmr�pπ

τp
v

� �
ψ ry ð11Þ

dψ ry

dt
¼ �ðα�ηÞψ ryþαL̂misy� ωmr�

pπ
τp

v
� �

ψ rx ð12Þ

Fig. 1. Space-vector equivalent circuits of the LIM.
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Fig. 2. Waveforms of α, β, γ and η.
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dv
dt

¼ μðψ rxisy�ψ ryisxÞ�
Fr
M

�Feb
M

ð13Þ

Feb ¼ ϑ ðψ2
rxþψ2

ryÞþL2σrði2sxþ i2syÞþLσrðψ rxisx
h

þψ ryisxÞ
i

ð14Þ

In general, the rotating speed of the reference frame ωmr can be
chosen suitably. Indeed, if ωmr ¼ pπ=τpvþαL̂misy=ψ rx, Eq. (12)
become dψ ry=dt ¼ �ðα�ηÞψ ry. This implies that the flux compo-
nent ψry tends to zero exponentially with a variable time constant
equal to T̂ r . Moreover if the initial condition is ψ ryð0Þ ¼ 0, then
ψ ryðtÞ ¼ 0 8 t40.

The dynamic of the reference frame angle ρr can be written as
dρr=dt ¼ωmr ¼ pπ=τpvþαL̂misy=ψ rx.

With the above choices of ωmr and ψ ryð0Þ ¼ 0, it is ensured that
the in-quadrature flux component is always null (these two
choices from the physical point of view, can be obtained taking
ωmr equal to the speed of rotation of the induced part flux, and at
the initial instant the direct axis of the reference frame must
coincide with the space-vector of flux). The model (9)–(14)
becomes

disx
dt

¼ �γisxþ
pπ
τp

visyþ
αL̂mi

2
sy

ψ r
þβαψ rþ

usx

σ̂ L̂s
ð15Þ

disy
dt

¼ �γisy�
pπ
τp

visx�
αL̂misyisx

ψ r
�β

pπ
τp

vψ rþ
usy

σ̂ L̂s
ð16Þ

dψ r

dt
¼ �ðα�ηÞψ rþαL̂misx ð17Þ

dρ
dt

¼ pπ
τp

vþαL̂misy
jψ rj

ð18Þ

dv
dt

¼ μðψ r isyÞ�
Fr
M

�Feb
M

ð19Þ

Feb ¼ ϑ ψ2
r þL2σrði2sxþ i2syÞþLσrðψ r isxÞ

h i
ð20Þ

where ψ r ¼ψ rx.
Now, the two control inputs usx and usy are designed through a

state feedback as follows:

usx ¼ σ̂ L̂s �pπ
τp

visy�
αL̂mi

2
sy

jψ r j
�βαψ rþνx

" #
ð21Þ

usy ¼ σ̂ L̂s þpπ
τp

visxþ
αL̂misyisx

jψ r j
þβ

pπ
τp

vψ rþνy

" #
ð22Þ

where νx and νy are additional control inputs that will be designed
suitably. Replacing (21) and (22) in the model (15)–(20), the
following equations are obtained:

disx
dt

¼ �γisxþνx ð23Þ

disy
dt

¼ �γisyþνy ð24Þ

dψ r

dt
¼ �ðα�ηÞψ rþαL̂misx ð25Þ

dρ
dt

¼ pπ
τp

vþαL̂misy
jψ rj

ð26Þ

dv
dt

¼ μðψ r isyÞ�
Fr
M

�Feb
M

ð27Þ

Feb ¼ϑ ψ2
r þL2σrði2sxþ i2syÞþLσrðψ risxÞ

h i
ð28Þ

The model (23)–(28) is the basis of the field oriented control of
the LIM taking into consideration the end effects (Pucci, 2012).
Indeed with the feedback laws (21)–(22) and the suitably choice of
ωmr the dynamics of the inductor currents are made linear and
decoupled between each other (a variation of νx produces only a
variation of isx, and a variation of νy produces only a variation of
isy). Moreover the flux depends only on isx and if the machine
works at constant flux the thrust and thus the speed depends only
on isy.

The end effects, besides modifying the decoupling laws (21)–
(22), with respect to the RIM, add an additional term of braking
force Feb. As can be easily see from (28), a braking force
ϑ ψ2

r þL2σri
2
sxþLσrðψ r isxÞ

h i
is present varying with the flux level

which is not present in the RIM model. Furthermore an addition of
term ϑL2σri

2
sy appears that makes the speed dynamic nonlinear with

respect to the input isy. This is an important difference between
RIM and LIM: in the RIM the speed dynamic is linear with respect
to isy, while in the LIM an additional nonlinear term ϑL2σri

2
sy

appears. In the literature this nonlinear term has not yet been
considered in other works, to the best of the authors' knowledge.

Remark 1. Feedback laws (21)–(22) hold only if ψ ra0, otherwise
fusx;usyg-1 when ψ r-0. This is a common feature with the RIM,
where one existence condition for the linearizability of the model
is that the flux amplitude was different from zero, in order to
ensure that (21) and (22) were a diffeomorphism, i.e. it is an
invertible function that maps one differentiable manifold to
another, such that both the function and its inverse are smooth.

4. Input–output feedback linearization

As can be seen from model (23)–(28), the speed and flux
dynamics are not decoupled in each working condition. Indeed the
decoupling between speed and flux is valid only if the machine
works at constant flux and the speed dynamic presents a non-
linearity with respect to the input. To overcome this problem, and
to obtain a fully decoupled linear model, a further state feedback
loop is deduced.

Let us define a new state variable a called linear acceleration,
differently from isy:

a¼ μðψ r isyÞ�
Fr
M

�Feb
M

ð29Þ

da
dt

¼ dμ
dt
ψ risyþμ

dψ r

dt
isyþμψ r

disy
dt

þ 1
M

dϑ
dt

ψ2
r þL2σrði2sxþ i2syÞþLσrðψ risxÞ

h i

þ3
2
Lr

L̂
2
r

ð1�e�Q Þ
pτpM

2ψ r
dψ r

dt
þ2L2σr isx

isx
dt

þ isy
isy
dt

� ��

þLσr
ψ r

dt
isxþψ r

isx
dt

� ��
ð30Þ

da
dt

¼ dμ
dt
ψ risyþμ

dψ r

dt
isyþμψ r

disy
dt

þ 1
M

dϑ
dt

ψ2
r þL2σr i

2
sy

h i

þ3
2
Lr

L̂
2
r

ð1�e�Q Þ
pτpM

2ψ r
dψ r

dt
þ2L2σrisy

isy
dt

� �

¼ ½q1�μðα�ηÞ�ψ r isyþμαL̂misxisy�γμψ risy

þ q2�2
ϑ
M
ðα�ηÞ

� �
ψ2

r þ
αϑ
M

L̂misxþL2σr q2�2
γϑ
M

� �
i2sy

þ μψ rþ2
ϑ
M
L2σr

� �
νy ð31Þ
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q1 ¼
dμ
dt

¼ 3
2
p
π
τp

1
M

�LσrLm

L̂
2
r

Tra
τm

1� 1þ τm
Trv

� �
e�τm=Trv

� �2
4

3
5 ð32Þ

q2 ¼
3
2
Lr

L̂
2
r

1
pτpM

a
v

Lm

L̂
2
r

ð1�e�Q Þ f ðQ Þ�e�Q� �ðL̂r�Lmf ðQ ÞÞ�Qe�Q

2
4

3
5
ð33Þ

νy ¼
1

μψ rþ2ϑ
ML

2
σr

(
�½q1�μðα�ηÞ�ψ r isy�μαL̂misxisyþγμψ r isy

� q2�2
ϑ
M
ðα�ηÞ

� �
ψ2

r �
αϑ
M

L̂misxþ�L2σr q2�2
γϑ
M

� �
i2syþνy 0

)

ð34Þ

If the load thrust variation is assumed to be sufficiently slow,
i.e. _F r � 0, then the derivate of a can be written as in (30).

As can be seen from (30) both derivative of isx and derivative of
isy are contained in (30). If (23) and (24) are replaced in (30) in
order to compute the derivative of the acceleration, both the input
νx and νy appear in the expression. Then the model in this form
cannot be feedback linearizable since the dynamic of speed cannot be
made independent from isx. This difficulty can be, in a first instance,
overcome by exploiting a slight approximation which, however
does not affect the correctness of the approach. The expression of
Feb in (28) is characterized by four terms. The terms L2σr i

2
sx and

Lσrðψ r isxÞ due to the leakage induced part flux, could be reasonably
neglected with respect to the term ψr

2 related to the main induced
part flux, since L2r cL2σr . The expression of the braking thrust can
be approximated as follows:

~F eb ¼ ϑ ψ2
r þL2σri

2
sy

h i
ð35Þ

Note that the braking effects due to the main flux is considered
and only the effects due to the leakage induced part flux are
neglected. Moreover the very important effect, presents only in
the LIM model, of the nonlinearity of the speed dynamic with
respect to the input represented by the term with isy

2 is considered
with this approach. It should be noted that this term increases
nonlinearly with quadratic law with the load force applied to the
machine.

Remark 2. Here the consideration that the model cannot be
feedback linearizable is evident from Eq. (30), however this can
be proved with a rigorous mathematical formalism on the basis of
the approach in Isidori (1995) and Khalil (2002), where the
conditions, linked with the involutivity of the adjoint maps,
making the considered model feedback linearizable, are provided.

Using the approximation (35), (30) can be replaced by (31), where
q1 and q2 are defined in (32) and (33).

Remark 3. Note that q1 and q2 in (32) and (33) are a consequence
of the end-effects and they are different from zero only during the
acceleration and deceleration instants, that is when parameters
vary because of the speed variation. During the steady-state
dμ=dt¼ 0 and dϑ=dt¼ 0, consequently q1 ¼ q2 ¼ 0. Fig. 3 shows
the surfaces of q1 and q2 depending on the speed and acceleration
for the machine under test (see Part II for details on the test set-up).

The feedback term that linearizes the speed dynamic can be
defined as in (34).

Replacing (34) into (31) and writing the model (23)–(28) in
terms of the new state variable (29) the following formulation can
be obtained:

disx
dt

¼ �γisxþνx ð36Þ

dψ r

dt
¼ �ðα�ηÞψ rþαL̂misx ð37Þ

dv
dt

¼ a ð38Þ

da
dt

¼ νy 0 ð39Þ

dρ
dt

¼ pπ
τp

vþαL̂misy
jψ rj

ð40Þ

q3 ¼
dðα�ηÞ

dt
¼ RrL̂rþRrLmð1þ f ðQ ÞÞ

L̂
2
r

Tra
τm

1� 1þ τm
Trv

� �
e�τm=Trv

� �

ð41Þ

Fig. 3. Surfaces of q1, q2, q3 and q4 (whom analytic expressions are given respectively in (32), (33), (41) and (42) when the speed varies between 0 and 15 m/s and the
acceleration varies between 0 and 15 m/s2.
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q4 ¼
dðαL̂mÞ

dt
¼ Rr

L2m

L̂
2
r

ð1þ f 2ðQ ÞÞþ1�2
Lmf ðQ Þ

L̂r

2
4

3
5Tra
τm

1� 1þ τm
Trv

� �
e�τm=Trv

� �

ð42Þ
Now the flux and speed dynamic appear to be linear and

decoupled and can be controlled through the inputs νx and νy 0.
Indeed speed does not depend from the flux transient even during
flux variations. Finally the last step to linearize the model of the
motor is the following. Let us introduce new state variable given
by

νψ ¼ �ðα�ηÞψ rþαL̂misx ð43Þ
Using (43) the time derivative of flux is dψ r=dt ¼ νψ , and

choosing as state variable νψ instead of isx results:

dνψ
dt

¼ �dðα�ηÞ
dt

ψ r�ðα�ηÞdψ r

dt
þdðαL̂mÞ

dt
isxþαL̂m

disx
dt

¼ �q3ψ r�ðα�ηÞ �ðα�ηÞψ rþαL̂misx
� 	

þq4isxþαL̂mð�γisxþνxÞ ð44Þ
where q3 and q4 are defined in (41) and (42). For (41) and (42) the
same comment given in Remark 3 for (32) and (33) is valid. Fig. 3
shows the surfaces of q3 and q4 depending on the speed and
acceleration.

Let define also:

νx ¼
q3ψ r

αL̂m
�ðα�ηÞ2

αL̂m
ψ rþðα�ηÞisx�

q3isx
αL̂m

þγisxþ
νx 0

αL̂m
ð45Þ

such that the model (36)–(40) can be finally written as

dψ r

dt
¼ νψ ð46Þ

dνψ
dt

¼ νx 0 ð47Þ

dv
dt

¼ a ð48Þ

da
dt

¼ νy 0 ð49Þ

This model (46)–(49) is the linearized model of the linear induc-
tion motor with decoupled speed and flux dynamics.

In summary to achieve the input–output feedback linearizing
control of LIM, considering the end effects, the inputs νx 0 and νy 0

have to be chosen to fix the flux and speed dynamic of the model
(46)–(49). Then through a first state feedback νx and νy are
obtained starting from νx 0 and νy 0 by (34) and (45). Finally through
a second state feedback given by (21) and (22) the voltage source
usx and usy are obtained starting from νx and νy. Note that the only
condition to ensure the existence of this feedback is that the flux
jψ r j is different from zero (see Remark 1), while the feedback
given by (45) and (34) always exist for any working condition. This
constraint is coherent with the physical constraint that the
machine can correctly work only if magnetized.

5. Controller design

In order to make ψr and v track their references ψref and vref, the
input signals νx 0 and νy 0 are designed as

νx 0 ¼ �kψ1 ψ r�ψ ref

� 	
�kψ2 νψ �dψ ref

dt

� �
þd2ψ ref

dt2
ð50Þ

νy 0 ¼ �kv1 v�vref
� ��kv2 a�dvref

dt

� �
þd2vref

dt2
ð51Þ

where kψ1, kψ2, kv1 and kv2 are positive constant design parameters
to be determined in order to impose an exponentially stable
dynamic of the decoupled, linear, time-invariant, second order
systems (52)–(53), constituted by the flux and speed errors
eψ r

¼ψ r�ψ ref and ev ¼ v�vref .

d2eψ r

dt2
¼ �kψ1eψ r

�kψ2
deψ r

dt
ð52Þ

d2ev
dt2

¼ �kv1ev�kv2
dev
dt

ð53Þ

In order to verify the improvements in the dynamic perfor-
mance achievable with the adoption of the proposed FL control
techniques, in Part II of this paper, it will be compared with the
industrial standard in high performance control of induction
motors: field oriented control (FOC). FOC has been implemented
here in a improved form, so to take into consideration the LIM
dynamic end effects (Pucci, 2012). In particular, in order to
compare the feedback linearization control to the FOC, the para-
meters kψ1, kψ2, kv1 and kv2, and the parameters of the PI in the
FOC have to be chosen such that the two closed loop systems
present the same closed loop dynamics. In this case, the same
bandwidth and the same phase-margin of the closed loop system
are imposed. Using the controllers tuned with the parameters
given in Table 1, both for FOC and FL, the bode diagrams of the
transfer functions of the closed loop systems, plotted in Figs. 4 and
5, are obtained. From these figures can be easily observed that the
two systems, respectively LIM controlled with FL and LIM con-
trolled with FOC, have the same bandwidths and the same phase
margins, as reported in Table 2. However in order to obtain the
transfer functions in the FOC case, the assumptions of constant
parameters and constant flux amplitude have to be made. In
particular, as for the transfer function of the flux, the parameters
obtained at rated speed are considered, as for the transfer function
of the speed, the parameters obtained at rated flux are considered.

Table 1
Parameters of the controllers.

FOC FL

KP;isx ¼ 2
3250 KI;isx ¼ 2

310
5 kψ1 ¼ 100;000

KP;isy ¼ 2
3250 KI;isy ¼ 2

310
5 kψ2 ¼ 200

KP;ψ r
¼ 10 KI;ψ r

¼ 30 kv1 ¼ 10;000
KP;v ¼ 17 KI;v ¼ 8 kv2 ¼ 300

Fig. 4. Bode diagram of closed loop transfer function of the flux.
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This control design is a limitation for the FOC compared with the
FL: in the FL the specifics given in Table 2 are satisfied in all
working conditions, while in the FOC these specifics could change
if the flux and the speed are different from the rated one. They are
thus rigorously respected under one only working condition. This
fact is evident, because if the motor is controlled by FL the closed
loop transfer function can be deduced from (52) and (53) where
no physic parameters appear, while if the motor is controlled by
FOC the closed loop transfer function contains the machine
parameters that are varying with speed (due to the end effects)
and flux.

5.1. System constraints

From a theoretical point of view, no physical constraints on the
system are to be considered, however in real applications there are
limits that have to be satisfied: the currents are to be limited in
order to avoid the damage of the motor and the voltage limits
introduced by the inverter are to be taken into consideration. With
regard to the FOC, these problems can be easily solved directly by

means of saturations at the output of PIs. If FL control is used,
these problems have to be taken into consideration in an indirect
way, limiting the control input νx 0 and νy 0. In fact, by limiting νx 0

and νy 0, the currents isx and isy are indirectly limited. In particular,
the inductor current isx, in FL, as can be easily seen from Eq. (43), is
proportional to νψ , so for a fixed value of νψ , corresponds a value
of isx:

isx ¼
1

αL̂m
½νψ þðα�ηÞψ r � ð54Þ

The equality (54) has been used here to fix the maximum
current value, indirectly acting the maximum value of νψ . How-
ever (54) needs the knowledge of flux and speed, so a constant
maximum value of current corresponds to different values of νψ
depending on the working conditions. This is not problematic
since the same knowledge of flux and speed is needed to compute
the feedback laws, thus the same variables can be used to compute
instantaneously the value of isx. With regard to inductor current
term isy, the same consideration given for isx could be made, where
the variable a is considered instead of νψ . In this case the inputs
are limited such that the maximum currents in both FL case and
FOC case are the same.

Finally, in FL control there is another problem linked with the
constraints that is not present in FOC. In fact the maximum current
is not the only variable to be taken into consideration when the
limits on the variables are chosen, but it is essential that the
voltage given in input to the inverter is not bigger than the voltage
that the inverter is able to generate; if the source voltage of the
motor is smaller than the voltage given by the output of the
feedback linearization process, the linearization cannot work. This
fact is obvious because the current and flux needed in the
linearization process are not coherent with the voltages produced
from the linearization process itself.

6. Control scheme

The block diagram of the overall control scheme is drawn in
Fig. 6.

The block “input–output FL” receives in input variables the
reference and estimated induced part fluxes, the reference and
measured linear speeds, the measured direct and quadrature
current components isx, isy and provides in output the direct and
quadrature components of the inductor voltages usx, usy. The
coordinate transformation from and to the induced part flux
reference frame is performed by vector rotations on the basis of
the instantaneous knowledge of the induced part flux angle ρr. It
should be noted that the angular position ρr, needed for the
correct field orientation, is provided by the block “flux model”. In
this case, the “current model” based on the induced part equations

Fig. 5. Bode diagram of closed loop transfer function of the speed.

Table 2
Design specifics.

Control indeces Speed Flux

Bandwidth B�3db ¼ 37 rad=s B�3db ¼ 455 rad=s
Phase margin mϕ ¼ 1281 mϕ ¼ 401

Fig. 6. Block diagram of the overall control scheme of the LIM drive based on the input–output FL.
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written in the induced part flux reference frame, specifically
developed for LIM and taking into consideration its end effects
(Pucci, 2012), has been adopted because of its null sensitivity to
the variation of the inductor resistance and because of its closed-
loop integration feature. On the contrary, its significant sensitivity
versus the variations of the induced part time constant is well
known. With particular reference to phase estimation of the
induced part flux space-vector, taking into consideration the end
effects of the LIM is particularly important, since it guarantees the
conditions of correct flux orientation and therefore maintains the
full thrust capability of the drive. This flux model is described by
the following equation:

dψ r

dt
¼ � 1

T̂ r
ψ rþ

L̂m
T̂ r

� R̂r

 !
is� j ωmr�

pπ
τp

v
� �

ψ r ð55Þ

The block diagram of (55) is shown in Fig. 7.
The block diagram of the feedback control scheme is repre-

sented in Fig. 8.
Furthermore, on the direct axis (x), a voltage control loop

commands the flux loop to permit the drive to work automatically
in the field weakening region by maintaining the product of the
induced part flux amplitude and the absolute value of the angular
electrical speed of the induced part constant. On the quadrature
axis (y), the position loop controls the speed loop. If the position
control loop is disabled, the LIM drive can work in speed control
mode. The inductor voltage phase references are provided to a
space-vector pulsewidth modulator (SV-PWM), which permits the
inductor voltages to be properly synthesized. As far as both the
numerical simulations and the experiments are concerned, in both
the FL and FOC cases, a sampling frequency of 10 kHz and a PWM
frequency of 5 kHz have been set.

7. Conclusion

This is the first part of a paper divided into two parts, dealing
with the formulation and application of the input–output feedback
linearization (FL) control technique to linear induction motors
(LIM). It discusses the suitability of the adoption of the input–
output FL control for LIMs, motivated by the presence of additional

strong non-linearities with respect to the RIM case, leading to the
presence of speed-varying machine parameters and braking force
term. This paper, starting from a recently developed dynamic
model of the LIM taking into consideration its end effects, defines
the theoretical framework of the FL technique suited for LIMs,
since it inherently considers its end effects. This part of the paper
describes the design of the FL control system, obtained by the
definition of suitable control variables permitting to deal with an
equivalent LIM model which is linear and expressed in canonical
control form. The set of non-linear transformations permitting to
obtain the real LIM control variables on the basis of the additional
ones is defined and shown in the paper. Correspondingly, the
conditions under which the LIM model is feedback linearizable are
defined. In particular, this part of the paper emphasizes the role of
the LIM dynamic end effects in the LIM control formulation,
highlighting the differences with respect to the corresponding
technique for RIMs. It describes the control design criteria, taking
also into consideration the constraints on the control and con-
trolled variables, arising from the application of such control
technique in a real scenario.
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