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a b s t r a c t

This paper proposes an input–output feedback linearization techniques for linear induction motors,
taking into consideration the dynamic end-effects. As a main original content, this work proposes a new
control law based on the on-line estimation of the induced-part time constant. The estimation law is
obtained thanks to a Lyapunov based analysis and thus the stability of the entire control system, in-
cluding the estimation algorithm, is intrinsically guaranteed. Moreover, with such an approach even the
on-line variation of the induced-part time constant with the speed is retrieved, thus improving the
behavior of previously developed approaches where such a variation vs. speed is considered a priori
known. The proposed control technique, integrating the on-line induced-part time constant estimation,
is tested by means of simulations and experiments carried out on a suitably developed test set-up.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

A significant amount of research activity has been carried out
on Linear Induction Motors (LIMs) since seventies (Boldea & Nasar,
1997, 1999; Laithwaite, 1975; Nasar & Boldea, 1987; Poloujadoff,
1980; Yamamura, 1979). Although they do not require any me-
chanical apparatus which transform rotating motion in a linear
one, a significant increasing of the complexity of their dynamic
models occurs, due to the so-called end-effects. These end-effects
cause additional significant non-linearities in the LIM dynamic
model with that of the Rotating Induction Machine (RIM) (Leon-
hard, 2001; Vas, 1998).

Since the goal of this work is to propose a high performance
control system for the LIM, the dynamic model considered in this
paper is that described in Pucci (2014), which takes into account
the end-effects. As described in Pucci (2014), these effects produce
variations of the electric parameters of the model with the ma-
chine speed, and the presence of an additional braking force.
of Energy Information En-
nze, 90128 Palermo, Italy.
onge),
lito@unipa.it (F. D'Ippolito),
it,
From the other side, the control system theory offers several
control techniques to cope with non-linear systems (Isidori, 1995;
Khalil, 2002; Slotine & Li, 1991). Among such techniques, the in-
put–output Feedback Linearization (FL) is that of interests for this
work.

A restricted number of works in the literature face up to the
input–output feedback linearization of LIMs (Huang & Fu, 2003;
Lin & Wai, 2001, 2002; Wai & Chu, 2007). All these papers, how-
ever, are based on the classic RIM model, as far as the controller
design is concerned (De Luca & Ulivi, 1989; Kim, Ha, & Ko, 1990;
Krzeminski, 1987; Marino, Peresada, & Valigi, 1993, 2010). It can be
thus concluded that the state of the art of the application of FL to
LIMs is the same as that of the applications of FL to RIMs, whose
current state of the art is described in Marino et al. (2010).

Recently, Alonge, Cirrincione, Pucci, and Sferlazza (2015a,
2015b, 2016) deal with the issue of the input–output FL control of
LIM, taking into consideration the LIM additional nonlinearities
due to the end-effects in the control action. In particular, in Alonge
et al. (2015a, 2015b) it is described by the conventional FL tech-
nique that assumes all the known parameters of the motor-load
system. However, it is well known that eventual variations of the
model parameters can cause deterioration of the behavior of the
control system. A first adaptive version of FL is proposed in Alonge
et al. (2016), where an adaptation law for the stator resistance is
given. In particular an MRAS (Model Reference Adaptive System)

www.sciencedirect.com/science/journal/09670661
www.elsevier.com/locate/conengprac
http://dx.doi.org/10.1016/j.conengprac.2016.06.018
http://dx.doi.org/10.1016/j.conengprac.2016.06.018
http://dx.doi.org/10.1016/j.conengprac.2016.06.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2016.06.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2016.06.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2016.06.018&domain=pdf
mailto:francesco.alonge@unipa.it
mailto:m.cirrincione@ieee.org
mailto:filippo.dippolito@unipa.it
mailto:pucci@pa.issia.cnr.it
mailto:sferlazza@pa.issia.cnr.it
mailto:antonino.sferlazza@unipa.it
http://dx.doi.org/10.1016/j.conengprac.2016.06.018


Table 1
List of symbols.

Symbols

u u,sx sy Inductor voltages in the induced part flux reference frame

i i,sx sy Inductor currents in the induced part flux reference frame

ψ ψ,rx ry Induced part fluxes in the induced part flux reference frame

fe Electromagnetic thrust
fr Load force
feb Braking force

( )L Ls r Inductor (induced part) inductance
Lm 3-Phase magnetizing inductance

( )R Rs r Inductor (induced part) resistance
Tr Induced part time constant
s Total leakage factor
ωr Electrical angular speed of the induced part
v Mechanical linear speed
a Mechanical linear acceleration
p Pole-pairs
τp Pole-pitch
τm Inductor length
M Inductor mass
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observer for the stator resistance using a PI-based adaptation law
is used. However among all the electrical parameter variations, the
induced part time constant variation is certainly one of the most
important, since from its correct knowledge depends on the cor-
rect field orientation, and to the best Authors' knowledge it has
not never been considered in other works in the literature. It
should be noted that, while in the RIM, such rotor time constant
depends on both the heating/cooling of the rotor and the mag-
netization level inside the machine (field weakening, optimal ef-
ficiency algorithms), in the LIM it also varies with the speed, due to
the end-effects.

Starting from these considerations, this paper proposes an
adaptive input–output feedback linearization technique for LIMs,
taking into consideration the dynamic end-effects. More precisely,
as a main original content this work proposes a control law based
on the on-line estimation of the induced part time constant. The
estimation law is derived from a Lyapunov based approach so as to
intrinsically guarantee the stability of the entire control system,
including the estimation algorithm. Moreover, with such an ap-
proach even the on-line variation of the induced part time con-
stant with the speed is retrieved, with the aim of improving the
behavior of the system controlled by the FL described in Alonge
et al. (2015a, 2015b, 2016), where the function of the induced part
time constant vs. speed is considered a priori known.
2. Dynamic model of the LIM

The main difference between LIMs and RIMs lies in the so-
called end-effects. These effects could be divided into two cate-
gories: static and dynamic end-effects. Static end-effects are
caused by the asymmetric distribution of the reluctances of the
magnetic path of the three phases. This kind of effects has not
been considered in this paper, even because their presence does
not modify significantly the LIM dynamics. On the contrary, dy-
namic end-effects are caused by the motion of the limited length
inductor with a certain speed over an induced part track theore-
tically of infinite length. Consequently the magnetic flux density in
the air-gap varies.

The effect is a deep reduction of the resulting flux in proximity
of the entrance and in a deep increase of the flux at the exit of the
inductor. This has been taken into consideration in the literature
by a so-called end-effect factor Q (Da Silva, Dos Santos, Machado, &
De Oliveira, 2003; Duncan, 1983), defined as:

τ
=

( )
Q

T v
.

1
m

r

For the symbols, see Table 1.
As highlighted in Duncan (1983) and Pucci (2014), the higher

the machine speed, the higher the air-gap thickness (higher
leakage inductance) and the lower the inductor length, the lower
the factor Q. It means that the end-effects increase with the ma-
chine speed, with the air-gap thickness and reduce with the in-
ductor length. For details to the mathematical modelling of the
LIM refer to Pucci (2014).

To the aim of describing the proposal FL technique, the dy-
namic model of the LIM, taking into consideration its dynamic
end-effects (Pucci, 2014), is written in the induced part flux re-
ference frame as in Alonge et al. (2015a) where the input–output
FL of LIM is carried out without adaptation of the model para-
meters. However the model presented in Alonge et al. (2015a) is
showed here in a slightly different form in order to make possible
the adaptive FL. In particular, writing the equations in the induced
part flux reference frame, the following model for the LIM is used:
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where ψ ψ=r rx, and the variables α, β, γ, η, μ and ϑ are time varying
parameters defined as follows:
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The details for the derivation of model (2)–(4) are not given since
it is not the aim of this paper, actually the reader is addressed to
Pucci (2014) and Alonge et al. (2015a) for the modelling aspects.
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In the following the adaptive feedback linearization procedure
based on the above model of LIM will be shown. The adopted
linearization approach is inspired to Marino et al. (2010) where it
has been developed and applied to the RIM. Here, however, some
mathematical issues arising from the suitable definition of the
dynamic end-effects will be focused. This will lead to the defini-
tion of additional control terms with respect to the RIM case, due
to the dynamic end-effects. In fact, different from RIM case, the
coefficients α, β, γ, η, μ and the other machine parameters are
speed depending and thus time-variant parameters. This will lead
to a different feedback law and further interesting considerations
compared with RIM model. Moreover, because the on-line esti-
mation is integrated with the FL control law, additional control
terms with respect to Alonge et al. (2015a, 2016) arise as well.
3. Adaptive input–output feedback linearization

The goal of this paper is to reconsider the state feedback input–
output linearizing control showed in Alonge et al. (2015a) when
the parameter α is unknown. To this end, denoting by α̃ the es-
timate of the parameter α, the corresponding estimation error can
be written as follows:

α α= − ˜ ( )αe . 7

Now, the two control inputs usx and usy are designed through a
state feedback as follows:
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where νx and νy are additional control inputs that will be designed
suitably. Replacing (8) and (9) in the model (2)–(4), the following
equations are obtained:
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As can be see from model (10)–(13), the speed and flux dy-
namics are not never decoupled. This is another difference be-
tween RIM and LIM, indeed in the RIM case the decoupling be-
tween speed and flux works when the machine works at constant
flux and α α˜ = , but in this case even in these conditions the de-
coupling is not achieved. So to overcome this problem, and to
obtain a fully decoupled linear model, a further state feedback
loop is necessary.

Let us define a new state variable =a dv
dt

called linear accel-
eration, in place of isy as a new state variable:
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If the load thrust variation is assumed to be sufficiently slow,
i.e. ̇ ≈f 0r , then the derivate of a can be written as follows:
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In order to compute (15), the assumption μ ̇ ≈ 0 has been con-
sidered. Actually this approximation is a realistic assumption since

μ is the ratio between two time varying terms ( L̂r and L̂m), which
vary with the same function − ( )f Q1 . So μ is approximatively a
constant.

If the control input νy is defined as:
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As for the acceleration, a further new state variable ν̃ =ψ
ψ
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If the control input νx is defined as:
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Finally using (17) and (22) and computing the control input νy

and νx as in (16) and (21), respectively, the model (10)–(13) can be
written in terms of the state variables ψ ν( ˜ )ψ v a, , ,r as follows:
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As can be easily see from (23)–(26), if the parameter α is per-
fectly known, then =αe 0 and the perfect input–output feedback
linearization of LIM, considering the end-effects, is achieved
(Alonge et al., 2015a, Eqs. (46)–(49)). However if the parameter α is
unknown the following theorem permits us to obtain an adapta-
tion law for α and a contemporary control law such that →αe 0
(consequently the input–output feedback linearization will be
achieved). At the same time, the tracking errors of both speed and
flux are governed to zero.

To this aim the following tracking error vectors are introduced:
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and νψ ref

are respectively the reference values

of speed, acceleration, induced part flux, and derivative of the
induced part flux. Now the following result can be given:
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for some positive constant design parameters ψk 1, ψk 2, kv1 and kv2, and
let us assume that the adaptation law for parameter α is chosen as
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Proof. First of all note that the symmetric matrices ψP and Pv are
effectively positive definite because >ψk 01 , >ψk 02 , >k 0v1 and

>k 0v2 , therefore their upper-left and down-right entries are

clearly positive and their determinants satisfy >
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, so (33) is an effectively candidate Lyapu-

nov function. Computing the derivative of V along all solutions to
(23)–(26), (30), and considering that ν′x and ν′y are designed as in
(28) and (29), respectively, it is obtained:
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If α̃ ̇ is chosen as in (30) the third and the fourth terms in (35) are
cancelled from the last term α− ˜ ̇

σ
α

α
2e . Moreover it is assumed that

the parameter α keeps constant during the adaptation period. As it
is well known this is a common assumption in the adaptive sys-
tems (Landau, Lozano, & Karimi, 2011). This assumption is further
supported since usually the LIMs are controlled in order to
maintain a constant speed (constant speed means constant para-
meter α). Moreover during the transients, since the speed is a
mechanical variable, the speed variations are slower than the
convergence speed of α̃ that can be increased acting on the
parameter σα. This is particularly true for a LIM where the max-
imum acceleration is always quite limited because of the heavy
moving inductor.

Under this considerations the derivative of V in (35) becomes:
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for Pv and ψP as in (31) and (32), respectively, since their skew-
symmetric parts do not give any contribution to the quadratic
form, the following is obtained:
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(Recall that the symmetric part of a generic matrix A is )+ .A A
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In conclusion, under the particular choice of Pv and ψP as in (31)
and (32), respectively, (36) becomes:
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This concludes the proof. □

Remark 1. It is useful to note that this adaptation law works only
when speed and/or flux tracking errors occur. Actually, until

ζ ζ∥ ∥ = ∥ ∥ =ψ 0v , then α̃ ̇ = 0, so the adapted parameter keeps
constant also if it is wrong and ≠αe 0, but if the speed or flux
reference varies then the algorithm acts in order to bring to zero
the tracking error together with error on α. This fact is evident
from the proof of the theorem and will be showed also in the
experimental results in the last section of this work. Sometimes
the assumption of persistent excitation is done in order to avoid
this common problem in the adaptive systems.

Remark 2. It must be noted that, according to the strong non-
linear nature of the LIM model, the T̂r parameter cannot be directly
estimated, actually the parameter α has been estimated. However

the parameter α is equal to the difference between
T̂

1
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can be approximated with good accuracy with
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. Therefore

the subtractive term in α depending on the LIM speed is much

lower than
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1

r

. This justifies the fact that the α estimate is a good

estimate of T̂r .
Fig. 1. Reference and real speed, speed tracking error during a speed step
→0 5 m/s followed by a speed reversal → −5 5 m/s at no load (simulation).
4. Simulation results

The proposed adaptive FL control technique taking into
consideration the LIM dynamic end-effects, with integrated on-line
estimation of the parameter α, has been tested in both numerical
simulation and experimentally. The aim of the numerical simula-
tions is to show some important results, among which the co-
herence between simulation and experiments. Moreover, some
tests can be made only in numerical simulation because of con-
straints of the experimental set-up. This is the case of high speed
(rated speed of about 5 m/s) tests. As a matter of fact, such test
cannot be made experimentally because of the limited length of the
induced part track (1.6 m). For this reason the high speed test has
been carried out by simulation, and the tests at lower speed have
been carried out both experimentally and by means of simulations
in order to compare with the obtained experimental results.
A further scope of adopting numerical simulation is to prove the
effectiveness of the proposed approach; in fact, by means of
simulations it is possible to show the convergence of the adaptation
algorithm of the induced-part time constant as well as its accuracy
in the estimation. On the contrary, it cannot be done experimentally
due to the fact that the induced-part time is unknown and
unmeasurable.

Numerical simulations have been performed in
−® ®Matlab Simulink environment. With this regard, the dynamic

model of the LIM including its end-effect, the adaptive FL control
technique, the flux model and the inverter model controlled by its
SV-PWM (Space-Vector Pulse-Width Modulation) technique, have
been purposely developed. With regard to the LIM dynamic model
used as “machine under test”, the model proposed and validated in
Pucci (2014) both by means of finite element analysis and ex-
perimentally has been adopted.

To demonstrate the advantages of the adoption of the proposed
adaptive FL, it has been compared to the FL control technique pro-
posed in Alonge et al. (2015b), which does not present any robustness
versus any parameters' variation. As a matter of fact, whenever the α
estimation feature is not activated by the control system occurring
when the estimated α̃ coincides with the corresponding one of the
LIM, the proposed FL coincides with Alonge et al. (2015b).

The first test consists in a speed step from 0 to 5 m/s (t¼1 s)
followed by a speed reversal 5 to �5 m/s (t¼5 s) at no load.
Contemporary to the first speed step, a t¼1 s, a ψ| |r step variation
from 0 to 0.6 Wb (rated flux) is commanded. The LIM has been
operated so that, at the beginning, the value of α̃ provided to the FL
controller is twice the value of the real machine (detuning of the
FL controller) which is a very challenging working condition, very
rarely encountered in the real world practice. It should be further
noted that, in such tests, the flux model used to estimate ψ| |r is
adapted on-line coherently with the FL controller, in accordance
with the current estimation of α. Fig. 1 shows the reference and
real speed, speed tracking error during such a test. Fig. 2 shows the
corresponding waveforms of the reference and real ψ| |r , flux
tracking error, Fig. 3 shows the corresponding waveforms of the isx,
isy inductor currents and, finally, Fig. 4 shows the corresponding
waveforms of the reference and estimated α̃, as well as the esti-
mation tracking error. The figure of the estimated α̃ clearly high-
lights that the FL controller is initially completely detuned as far as
the knowledge of such parameter is concerned. After t¼1 s, when
the first speed step reference occurs, the estimated α̃ correctly
tracks the real one of the machine; correspondingly its estimation
errors converge to zero. It should be noted that the algorithm is
able to track the correct value of the parameter, starting from its
wrong knowledge, even if the real parameter varies during the
estimation process. This is a peculiarity of such a technique when
applied to the LIM case, because Lr varies with the machine speed
because of the dynamic end-effects independently from the
magnetizing level of the machine. Such a complication does not
exist in the RIM case, where Lr can be assumed to be constant
independently from the speed if the flux level is maintained
constant. Coherently with the α̃ adaptation law in (30), the esti-
mated parameter is adapted on-line only in the presence of al-
ternatively a flux tracking error or in the presence of a load. When
the speed reversal occurs, at t¼5 s, the estimated α̃ tend to track



Fig. 2. Reference and real flux ψ| |r , flux tracking error during a speed step →0 5 m/s
followed by a speed reversal → −5 5 m/s at no load (simulation).

Fig. 3. isx, isy inductor currents during a speed step →0 5 m/s followed by a speed
reversal → −5 5 m/s at no load (simulation).

Fig. 4. Reference α and estimated α̃ , estimation tracking error during a speed
→0 5 m/s followed by a speed reversal step → −5 5 m/s at no load (simulation).
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the real one, but its dynamics is slower than that of the real
parameter, which is governed by the speed loop dynamic. During
the speed transient, the controller is thus only partially tuned,
while at the end of the transient the estimated α̃ converges to the
real value of the machine. It should be further noted that differ-
ently from Alonge et al. (2015b) and Pucci (2012) where the var-
iation law of the Lm with the speed had been assumed correctly
modelled and known a priori (with the related approximations),
here such a variation is estimated on-line. This is a particularly
interesting characteristics of such an approach, different from that
in Alonge et al. (2015a, 2015b) where the variation law of the
parameters versus the LIM speed had been assumed perfectly a
priori known. As a matter of fact, however, the above mentioned
variation law, even if well approximated, presents some limits.
Such limits are overcome here thanks to the on-line estimation of
the variability of such parameters with the LIM speed.

Correspondingly, Fig. 1 shows that the FL controller permits us to
suitably control the speed during the entire test, with the speed
tracking error converging to zero quickly at the end of each speed
transient. Same considerations can be made for the ψ| |r waveform,
which correctly tracks its reference with zero steady-state tracking
error, thanks to the on-line α̃ estimation feature. Coherently with
what stated above, the flux presents a non-null tracking error during
speed transient, caused by the variation of Lr with the LIM speed
which is estimated on-line, and not a priori established as in Alonge
et al. (2015b) and Pucci (2012). Finally, the isx, isy waveforms are co-
herent with the speed and flux waveforms. In particular, isx is main-
tained at a constant value, because the magnetization level of the
machine is maintained constant. On the other hand, isy exhibits step-
wise waveform, which is proportional to the electromagnetic force.
It must be noted that, during the speed transients, isy presents some
oscillations. Such oscillations are caused by the fact that α̃ presents a
non-null estimation error during transients, causing a non-perfect
field orientation during transients, caused by the LIM end-effects.

Figs. 5–8 show the same kind of waveforms, obtained under
constant LIM speed operation set at 5 m/s and constant induced
part flux amplitude set at 0.6 Wb. The LIM is initially operated at
no-load, while at t¼5 s a load step load force of amplitude 80 N is
applied. As in the first test, the LIM has been operated so that, at
the beginning, the value of α̃ provided to the FL controller is twice
the value of the real machine (detuning of the FL controller). Fig. 8
clearly highlights that, coherently with the α̃ adaptation law in
(30), the estimated parameter is adapted on-line only in the pre-
sence of the application of the load force. During the first 5 s, at no
load conditions, the FL controller remains detuned. On the con-
trary, at t¼5 s, the estimated α̃ converges quickly towards its real
value, guaranteeing the correct field orientation conditions. At the
same time, the speed waveform exhibits a very fast dynamics,
with a peak value of speed tracking error which is very limited,
even during the contemporary convergence process of α̃. Even the
ψ| |r waveform correctly tracks its reference with zero steady-state
tracking error, thanks to the on-line α̃ estimation feature.

Finally, the isx, isy waveforms are coherent with the speed and flux
waveforms. In particular, isx is maintained at a constant value, be-
cause the magnetization level of the machine is maintained constant.
On the other hand, isy exhibits a step-wise waveform, which is pro-
portional to the electromagnetic force. As recalled above for the first
test, during the speed transients, isy presents some oscillations,
whose interpretation has already been given above.

Finally, as last test, Figs. 9–12 show the same kind of wave-
forms, obtained during a low speed test. Such a test is exactly the
same performed experimentally, whose results are shown in
Figs. 17–20. At t¼1 s a step reference of the induced part flux of



Fig. 5. Reference and real speed, speed tracking error with v¼5 m/s, ψ| | = 0.6 Wbr
when a step load force equal to 80 N is applied (simulation).

Fig. 6. Reference and real flux ψ| |r , flux tracking error with v¼5 m/s, ψ| | = 0.6 Wbr
when a step load force equal to 80 N is applied (simulation).

Fig. 7. isx, isy inductor currents with v¼5 m/s, ψ| | = 0.6 Wbr when a step load force
equal to 80 N is applied (simulation).

Fig. 8. Reference α and estimated α̃ , estimation tracking error with v¼5 m/s,
ψ| | = 0.6 Wbr when a step load force equal to 80 N is applied (simulation).

Fig. 9. Reference and real speed, speed tracking error with a flux step of 0.6 Wb at
t¼1 s, followed by a speed step →0 0.2 m/s at no load (simulation).
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0.6 Wb has been given to the drive. At t¼2.5 s a speed step re-
ference of 0.2 m/s has been given at no load. As in the previous
tests, at the beginning, the value of α̃ provided to the FL controller
is different from the value of the real machine. Fig. 12 clearly
highlights that, coherently with the α̃ adaptation law in (30), the
estimated parameter is adapted on-line firstly during the initial
flux transient and secondly during the speed transient. The speed
waveform exhibits a very fast dynamics, even during the con-
temporary convergence process of α̃. Even the ψ| |r waveform,
shown in Fig. 10, correctly tracks its reference with zero steady-
state tracking error, thanks to the on-line α̃ estimation feature.
Finally, the isx, isy waveforms, shown on Fig. 11, are coherent with
the speed and flux waveforms. In particular, isx is maintained at a
constant value, because the magnetization level of the machine is
maintained constant. On the other hand, isy exhibits a step-wise
waveform, which is proportional to the electromagnetic force.

With the aim of showing the improvements achievable thanks
to the adoption of the proposed adaptive FL taking into con-
sideration the LIM end-effects compared to the non-adaptive FL,
Fig. 13(a) and (b) shows, respectively, the surfaces of the speed and



Fig. 10. Reference and real flux ψ| |r , flux tracking error with a flux step of 0.6 Wb at
t¼1 s, followed by a speed step →0 0.2 m/s at no load (simulation).

Fig. 12. Reference α and estimated α̃ , estimation tracking error with a flux step of
0.6 Wb at t¼1 s, followed by a speed step →0 0.2 m/s at no load (simulation).
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flux tracking errors versus LIM speed and load force, obtained with
the non-adaptive FL for α α˜ = 0.5 (upper plots) and α α˜ = 0.75
(lower plots) (a), and for α α˜ = 1.25 (upper plots) and α α˜ = 1.5
(lower plots) (b). The underlying assumption is obviously that the
α̃ estimation feature of the proposed adaptive FL permits the
tracking speed and flux errors, caused by the Tr variation, to be
governed to zero at speed steady-state.

Fig. 13 (a) shows that for values of α̃ provided to the FL con-
troller lower than those of the real machine occurring for heating
of the induced part track or for the modelled end-effect de-

magnetization higher than that of the real machine (^ < )L Lr r , the
speed tracking error increases significantly at high values of the
load force and for low values of the LIM speed. At minimum speed
(zero) and maximum load (80 N), the speed tracking error gets
values about 30%. On the contrary, the flux tracking error increases
significantly at high values of the load force and LIM speed. At
maximum speed (5 m/s) and load (80 N), the speed tracking error
gets values about 20%. The higher is the difference between the
value of α̃ provided to the FL controller and that of the real ma-
chine, the higher is the corresponding speed and flux tracking
error, as expected. It means that when the induced part track in-
creases its temperature because of heating, speed control becomes
Fig. 11. isx, isy inductor currents with a flux step of 0.6 Wb at t¼1 s, followed by a
speed step →0 0.2 m/s at no load (simulation).
problematic at high load and low speed, while flux control be-
comes problematic at high load and high speed.

Fig. 13 (b) shows that for values of α̃ provided to the FL controller
higher than those of the real machine occurring for cooling of the
induced part track or for the modelled end-effect demagnetization

lower than that of the real machine (^ > )L Lr r , the speed tracking error
increases significantly at high values of the load while it presents a
dependence of initial reduction and further increases at increasing
LIM speeds presenting a minimum (depending from the detuning of
Tr). At minimum speed (zero) and maximum load (80 N), the speed
tracking error gets values about 15%. On the contrary, the flux
tracking error presents a negligible dependence from the load force
almost in the entire range of the LIM speed. Moreover, the flux
tracking error decreases significantly at increasing values of the LIM
speed with flux tracking error getting values about 30%.The higher is
the difference between the value of α̃ provided to the FL controller
and that of the real machine, the higher is the corresponding speed
and flux tracking error, as expected. It means that when the induced
part track decreases its temperature because of cooling, speed control
becomes problematic at high load and low speed, while flux control
becomes problematic at low speeds, independently from the load.

In order to show the improvements achievable thanks to the
adoption of the proposed adaptive FL in comparison with the non-
adaptive FL, a further test has been provided. In particular Figs. 14
and 15 show a simulation test at 5 m/s and 0.6 Wb, with a load
force of 80 N inserted at 3 s and removed at 7 s. This test is ob-
tained with the adaptive FL, and the non-adaptive FL for α α˜ = 0.5
and for α α˜ = 1.5 . Obviously the non-adaptive FL behaves as the
adaptive FL when the induced part time constant is perfectly
known, α α˜ = . So, the aim of this test is to show the effectiveness of
the proposed approach when the induced part time constant is not
perfectly known, as occurs in real cases. Such an effect is de-
monstrated by showing the deterioration of the dynamic perfor-
mance of the traditional FL with respect to the adaptive one pro-
posed here, whenever an incorrect knowledge of the parameter α
occurs.

From this test the improvements achievable thanks to the
adoption of the proposed approach is evident. In fact the adaptive
FL allows us to track the speed and flux references with negligible
errors, whereas for the non-adaptive FL the higher is the estima-
tion error of the induced part time constant, the higher is the
tracking error.



Fig. 13. Surfaces of the speed and flux tracking errors vs LIM speed and load force obtained with the non-adaptive FL for α α˜ = 0.5 (upper plots) and α α˜ = 0.75 (lower plots)
(a); and for α α˜ = 1.25 (upper plots) and α α˜ = 1.5 (lower plots) (b).

Fig. 14. Reference and measured speed (upper plot), tracking error (lower plot),
during a test when the estimated α̃ is detuned of 750% (simulation).

Fig. 15. Reference and measured flux (upper plot), tracking error (lower plot),
during a test when the estimated α̃ is detuned of 750% (simulation).
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5. Test set-up

A test setup has been suitably built to validate proposed FL
control technique. The machine under test is a LIM model Baldor
LMAC1607C23D99, whose rated data and electrical parameters are
shown in Table 2. The LIM has been equipped with a linear en-
coder Numerik Jena LIA series. The LIM presents an induced part
track on length 1.6 m. The employed test setup consists of:

� a three-phase linear induction motor with parameters shown in
Table 2;

� a frequency converter which consists of a three-phase diode
rectifier and a 7.5 kVA, three-phase VSI;

� a dSPACE card (DS1103) with a PowerPC 604e processor for fast
floating-point calculation at 400 MHz, and a fixed-point DSP
TMS320F240.

The test set-up is equipped also with a torque controlled PMSM
model Emerson Unimotor HD 067UDB305BACRA mechanically
coupled to the LIM by a pulley-strap system, to implement an
active load for the LIM. Fig. 16 shows the test setup.
6. Experimental results

The experimental tests have been performed adopting the test
set-up described in Section 5. The inverter has been driven, as in
the simulated tests, by a SV-PWM, with the PWM frequency set at
5 kHz. The entire adaptive FL control system has been im-
plemented on the DS-1103 board at the sampling frequency of
10 kHz. In the experimental test same condition of the simulation
test shown in Figs. 9–12 has been considered in order to con-
veniently compare the obtained simulation results. The high speed
test cannot be reproduced experimentally due to the limited
length of the induced part track (1.6 m). In particular at t¼0 s a
step reference of the induced part flux of 0.6 Wb has been initially
given to the drive. At t¼1.5 s a speed step reference of 0.2 m/s has
been given at no load. As in the simulated test, at the beginning,



Table 2
Parameters of the LIM.

Inductor resistance Rs (Ω) 11
Inductor inductance Ls (mH) 637.6
Induced part resistance Rr (Ω) 32.57
Induced part inductance Lr (mH) 757.8
3-phase magnetizing inductance Lm (mH) 517.5
Pole-pairs 3
Rated speed (m/s) 6.85
Mass (kg) 20

Fig. 16. Photograph of the experimental test setup.

Fig. 17. Reference and real speed, speed tracking error with constant v¼0.2 m/s,
and ψ| | = 0.6 Wbr (experimental).

Fig. 18. Reference and real flux ψ| |r , flux tracking error with constant v¼0.2 m/s,
and ψ| | = 0.6r (experimental).

Fig. 19. isx, isy inductor currents with constant v¼0.2 m/s, and ψ| | = 0.6 Wbr
(experimental).
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the value of α̃ provided to the FL controller is different from the
value of the real machine (detuning of the FL controller).

Figs. 17–20 show the same kind of waveforms as plotted in the
simulated tests, obtained under the above cited test. The same
conclusion given for the simulation results can be given here. In-
deed Fig. 20 clearly highlights the correct adaptation of the α̃
firstly during the initial flux transient and secondly during the
speed transient. At the end of the test, in a time interval of about
9 s, the value of α̃ has been correctly estimated by the system. It
should be minded that, exactly as in the simulated test, the real α
of the LIM varies with its speed because of the end-effects. The
speed waveform exhibits a very fast dynamics, even during the
contemporary convergence process of α̃. Even the ψ| |r waveform,
shown in Fig. 18, correctly tracks its reference with zero steady-
state tracking error, thanks to the on-line α̃ estimation feature.
Finally, the isx, isy waveforms, shown in Fig. 19, are coherent with
the speed and flux waveforms, and with the simulation result. In
particular, isx is maintained at a constant value. On the other hand,
isy exhibits a step-wise waveform, which is proportional to the
electromagnetic force. However, differently from the simulation
results, here there is a non-null steady state value of the isy, this is
due to the friction of the wheels and of the pulley-strap system.
7. Conclusion

This paper proposes an adaptive input–output feedback line-
arization technique for LIMs, taking into consideration the dy-
namic end-effects. As a main original content, however, this work
proposes a new control law integrating an on-line estimation of
the induced part time constant. The estimation law of the induced
part time constant has been relieved thanks to a Lyapunov based



Fig. 20. Reference α and estimated α̃ , estimation tracking error with constant
v¼0.2 m/s, and ψ| | = 0.6 Wbr (experimental).
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analysis and thus the stability of the entire control law, including
the adaptation algorithm, is intrinsically guaranteed. Moreover,
with such an approach even the real on-line variation of the in-
duced part time constant with the speed is retrieved, overcoming
thus one of the limits of previously developed approaches where
such a variation had been considered a priori known. The pro-
posed technique, integrating the on-line induced part time con-
stant estimation, has been tested in numerical simulations and
experimentally on a suitably developed test set-up.
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