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a b s t r a c t

This study examines the interdependence and contagion among US industry-level credit
markets. We use daily data of 11 industries from 17 December 2007 to 31 December
2014 for the time–frequency, namely, wavelet squared coherence analysis. The empirical
analysis reveals that Basic Materials (Utilities) industry credit market has the highest
(lowest) interdependence with other industries. Basic Materials credit market passes
cyclical effect to all other industries. The little ‘‘shift-contagion’’ as defined by Forbes
and Rigobon (2002) is examined using elliptical and Archimedean copulas on the short-
run decomposed series obtained through Variational Mode Decomposition (VMD). The
contagion effects between US industry-level credit markets mainly occurred during the
global financial crisis of 2007–08.
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1. Introduction

The financial markets contagion and interdependence is a widely studied topic in empirical finance.1 The integration of
financialmarkets is of particular importance for academics, investors and policymakers. Financialmarkets’ interdependence
and contagion is important due to many reasons. First, the higher co-movement between the markets implies less (high)
diversification (hedging) benefits. Low correlation between the markets may provide higher risk dispersion and lesser
hedging opportunities. Second, the correlation between financial markets also provides information on the spillover effects.
The shock transmission among the markets increases during the periods of financial turmoil [3]. The information regarding
the spillover effect between the financial markets also helps in effective risk management. Finally, the comovement and
contagion among financial markets provide useful information to undertake rescue measures and hence is important for
regulators and international financial institutions [2].

Credit Default Swaps (CDSs) are derivative instruments that enablemarket participants tomanage transfer or redistribute
credit risk. The substantial growth of the CDS market highlights the usefulness and the effectiveness of the CDS as a crucial
tool for hedging on credit risk. Market participants find credit derivatives to be useful for risk management. In fact, CDS
contracts play a vital role in inferring eventual defaults for traders, practitioners and regulators. Credit derivatives are
more flexible at transferring risks than are other. However, the size, structural opacity, and interconnectedness of the CDS
market may pose the systemic risk to financial intuitions and markets stability. The question that whether CDS markets are
vulnerable to contagion has got importance in the recent literature especially aftermath of US subprime and Greece crises.
The comparison of banks and no-banks show that the there is a persistent difference between their CDS premia during
normal times; however, it disappears during the crisis [4].

Literature identifies four main channels of contagion in CDS markets. The first channel suggests liquidity issue arising
during the financial crises. The investor’s reactionwhen facedwith heavy losses on their investment in a diversified portfolio
justifies this channel. The portfolio diversification across markets open-up ‘‘common creditor effect’’. A sharp fall in one
market causes a reduction in investors wealth and thereby withdrawal from risky assets [5,6]. This phenomenon can
arise even if the investors are rational and the markets are perfect. The intermediaries specifically the banks’ liabilities
overlapping across countriesmay also add vulnerability [7]. The role of financial intermediaries in riskmanagement systems
tends to feedback with asset prices and spreads contagion [8]. Illiquidity during a financial crises effects money managers
to simultaneously sell their assets and hence this fire sale spreads across the markets. Convergence traders [9,10] and
arbitrageurs [11] are forced to sell and this pressure gets intensified due tomargins calls specially in leveraged positions [12].
The efforts to reduce value-at-risk and marked to market requirement may also incite financial institutions to liquidate the
assets ([13]; Shin, 2008).

The second channel through which contagion grows is the updating of judgments and preferences. As soon as a crisis
bursts, investors suddenly start to realize the riskiness of other assets and revise (upward) their risk assessments. Change in
risk assessments trigger an increase in risk premia due to fall in risky assets prices. The rise in uncertainty drives investments
from risky to safe assets, a phenomenon known as ‘‘flight to quality’’. Caballero and Krishnamurthy [14,15] models describe
that financial intermediaries provide the necessary mechanism and facilitate this process. Kumar and Persaud [16] argue
that investors’ risk appetite suddenly drops and thus they require higher excess returns for all risky assets. Coudert and
Gex, [17] empirical confirmed the change in risk aversion indicators around a crisis episode. Notably, as risky assets are also
the ones with less liquidity, it is somewhat difficult to disentangle between ‘‘flight to liquidity’’ and ‘‘flight to quality’’ [18].
Annaert et al., [19] highlight that risk aversion level of investors is sensitive and varies with business cycle and thereby
affects credit spreads.

The behavioral finance suggests that contagion arise due to herding behavior [20]. The herding behavior stems from the
inherent emotional biases of investors. Agents and their investment decisions in a financial system are influenced by the
investment choices of others. Market participants may start to believe that trading behavior reflects the private information
and cascades through market prices. Herding may also influence the rational agents due to high information costs [21].
Kodres and Pritsker [22] argue that asymmetric information increase themarkets’ vulnerability to crises due to cross-market
rebalancing. Portfolio manager’s compensation is usually linked with performance which imitates their behavior towards
herding [23]. Finally, mimetic behavior is an intrinsic feature of human nature shared by financial market participants.

The fourth channel through which contagion may arise is the counterparty risk. The contagion within CDS market
is mainly driven by increase in counterparty credit risk. The business relations between the firms effect non-distressed
firms when other firms are in financial distress. The interdependence among the firms (suppliers or consumers of the
products) transmits the firm’s financial distress signal to other depending firms. The default intensities of these firms are
also interlinked and hence push their credit spreads to co-move during financial distress.Market participantsmay anticipate
these difficulties and therefore may bid down a whole range of CDS prices after the bankruptcy announcement. Jarrow
and Yu [24] have studies this type of counterparty risk in the bonds and CDS markets. The negative impact of Chapter 11

1 Following Forbes and Rigobon [1], the contagion is a significant increase in cross-market linkages after a shock to one country (or group of countries).
Based on this definition, contagion does not occur if two markets show a high degree of comovement during both stability and crisis periods. The
interdependence is used instead if strong linkages between the two economies exist in all states of the world. Ahmad et al. [2] define the contagion is
defined as significant increases in cross market correlations during the turmoil period, while any continued increase in cross market correlation at high
levels is referred as interdependence.
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Table 1
Summaries of some contagion papers.

Study Time period Markets Methodology Contagion findings

Hwang & Kang [38] 1/1/2006–31/7/2008 Asia, Europe, Latin America, North
America, and Oceania (Bank’s
CDS)

Regression & DCC No

Longstaff [39] 19/1/2006–31/12/2008 CDO & stock markets in US Correlation test & VAR Yes
Kim et al. [40] 1/2005–1/2009 10 Asian countries Regression Yes
Grammatikos &
Vermeulen [41]

1/1/2003–31/8/2010 15 EMU countries (Government
bond CDS)

GARCH Yes

Fong &Wong [42] 14/12/2007–30/9/2011 11 Euro area & three IFC (US, UK
and Japan) countries (sovereign
bond)

CoVaR–Value at Risk Yes

Metiu [33] 1/2008–2/2012 10 European countries (10-year
sovereign bond)

Canonical model of
contagion proposed by
Pesaran and Pick [47]

Yes

Kalbaska & Gatkowski [34] 8/2005–8/2010 Nine European countries EWMA correlation analysis
and GC

Yes

Arghyrou & Kontonikas [35] 1/1999–8/2011 10 Euro area countries Principle component
analysis

Yes

Fender et al., [43] 4/2002–12/2011 12 Emerging markets GARCH Yes
Alter & Schüler [44] 1/6/2007–31/5/2010 Seven European countries VAR & VEC Mixed
Beirne & Fratzscher [45] 1999–2011 31 advanced and emerging

economies
Regression analysis Yes

Mink & Haan [37] 2010 48 European banks Regression analysis, Event
study

Yes

Sensoy et al., [32] 2/9/2004–11/4/2013 Turkey and 13 European countries DCC Yes
Gómez-Puig &
Sosvilla-Rivero [46]

1/1/1999–31/12/2012 EMU sovereign debt markets GC and endogenous
breakpoint test

Yes

Broto & Pérez-Quirós [36] 1/1/2007–12/3/2012 US, UK and 10 European countries Dynamic factor model Yes

Abbreviations are as follows: CDO = Collateralized debt obligation; DCC = Dynamic Conditional Correlation; EWMA =

Exponential Weighted Moving Average; GARCH = Generalized Auto Regressive Conditional Heteroscedasticity; VAR = Vector Auto Regressive;
VEC = Vector Error Correction.

bankruptcy on intra-industry firms and thereafter contagion has been concluded by Jorion and Zhang [25]. Coudert and
Gex [26] empirically examined the contagion effect in the CDS market using General Motors (GM) and Ford crisis of 2005.
They used 226 CDSs on major US and European firms and studied the dynamic correlation by Exponentially Weighted
Moving Average (EWMA) and dynamic conditional correlation (DCC-GARCH) models. Their findings suggest significant
increase in correlations within CDS markets during the crisis. The risk of CDS sellers’ failure got importance since the
bankruptcy of Lehman Brothers in 2008. Jorion and Zhang [27] studied the contagion in CDS market resulting from the
bankruptcy announcements.

Naifar [28] argues that CDS indices are a higher-risk indicator and hence they are more sensitive to stock market
conditions andmacroeconomic variables during the financial crises. Due to this higher sensitivity, CDSmarkets lead the stock
markets [29]. Hence, the CDSmarkets impact the financial markets’ stability [30]. Fang et al., [31] studied the impact of CDX-
US index spreads on the stock markets in high-risk and low-risk countries. The CDS market shows a significant contagion
effects towards the stock indices of high-risk countries. More recently, Sensoy et al., [32] have examined the relationship
between time-varying risk perceptions of investors towards major European countries and Turkey. Their results suggest
increased correlation among themarkets and conclude that financial crises increase themarkets integration in terms of risk
perception.

Notably, previous empirical work has mainly focused on the increased interdependence and contagion among European
countries. Table 1 summarizes previous studies. Using Canonical model of contagion, Metiu [33] find a strong evidence of
contagion in ten European countries (10-year sovereign bond). Similar results are found by Kalbaska and Ga̧tkowski [34],
Arghyrou and Kontonikas [35], Sensoy et al. [32], and Broto and Pérez-Quirós [36], among others. In the context of financial
sector, Mink and Haan [37] use regression analysis and event study and show evidence of contagion for 48 European banks.
In contrast, Hwang and Kang [38] fail to support contagion effect for Bank’s CDS for Asia, Europe, Latin America, North
America, and Oceania.

The present study extends the debate on the role of CDSmarkets during financial crises by analyzing the interdependence
and contagion among US sectoral indices. First, we examine the dynamic dependence between CDSmarkets using time and
frequency analysis namely wavelet squared coherence (WSC) approach. The method is appropriate for useful insight on
the comovements2 among the financial markets [49]. However, to investigate contagions effect among US CDS sectoral
indices we follow Gallegati [50] and Dewandaru et al. [51]. The sudden increase in short-term interdependence is hence
considered as contagion effect. For this purpose, we use an advance multi-resolution technique known as the Variational
Mode Decomposition (VMD) to decompose the CDS series. The non-recursive VMD of Dragomiretskiy and Zosso [52]

2 See e.g. Graham et al., (2012), Ranta [48] and Albulescu et al., [49].
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decomposes a time series into different modes that collectively reproduce the input signal. Notably, the Discrete Wavelet
Transform (DWT) is also widely used to identify the contagion among stock markets (see e.g. Gallegati [50] and Dewandaru
et al. [51]). However, Lahmiri [53] highlights at least three advantages of VMD over DWT approach: (1) DWT is not adaptive
as the VMD technique; (2) DWT requires a pre-determinedwavelet function and scale of decomposition; and (3) the number
of observations decreases with level of decomposition and thus negatively affects the linear estimates. More recently,
Lahmiri [54] compares the forecasting results of VMD-general regression neural network (GRNN) with three competing
predictionmodels (the EmpiricalModel Decomposition (EMD)-GRNNmodel, feedforward neural networks (FFNN), and auto
regressive moving average (ARMA) process). Using mean absolute error (MAE), mean absolute percentage error (MAPE),
and the root mean of squared errors (RMSE), the author shows the superiority of the VMD-based method over the three
competing prediction approaches, suggesting that VMD is an effective and promising technique for analysis and prediction
of economic and financial time series. Shahzad et al., [55] have compared the properties of VMD andwavelet decomposition
while examining the interdependence of Greece and other European stockmarkets. They show that variations inVMDmodes
are relatively stable over time, compared to wavelet decomposition where the variations captured by each decomposition
level decrease as the levels increase. In what follows, we examine the symmetric and asymmetric tail dependence using
elliptical and Archimedean copulas [56], with a special focus on the change in dependence regime for short-term variational
mode series during and after the global financial crisis of 2008–2009 and the Eurozone sovereign debt crisis of 2011–2013.

Rest of the study is organized as follows; Section 2 provides the econometric framework. Section 3 describes the data
used and results of empirical analysis. Final section concludes the study.

2. Methodology

2.1. Wavelet squared coherence

The wavelet analysis can be performed using either the continuous wavelet transform (CWT) or the discrete wavelet
transform (DWT). The former hasmany advantages over DWT. It provides freedom to selectwavelets according to the length
of data. The redundancy in CWT makes interpretation and discovery of patterns or hidden information easier [63].

The ContinuousWavelet Transformation (CWT) can distribute a time series into wavelets based on different frequencies
over the time period. Aguiar-Conraria and Soares [63, p. 2872] defined wavelet squared coherence (WSC) as ‘‘the ratio of
the cross-spectrum to the product of the spectrum of each series, and can be thought of as the local (both in time and
frequency) correlation between two time-series’’. The detailed description of the CWT and WSC can be seen in Grinsted
et al., [64]; however, we provide a simplistic representation with brief description. The wavelet transform converts the
time-series using wavelet functions. This wavelet function is a small wave and can be manipulated (stretching or squeezing
over time) to extract the frequency components from a complex and non-stationary signal. The mother wavelet that is used
to produce these small waves is expressed as a function of time positions and scales and can be specified as:

ψτ ,s (t) =
1
√
s
ψ


t − τ

s


. (1)

Notably, the wavelet is a real-value or a complex value function ψ (.) that is defined over the real axis. The wavelet is
also assumed to be a square integrable function ψ(.) ∈ L2(R). In Eq. (1), τ , s and 1

√
s represent time position (translation

parameter), scale (dilation parameter related with frequencies) and normalization factor, respectively. The normalization
factor ensures that the transformation remain comparable across scales and over time. The mother, ψ(t), should also have
certain properties so that it can utilized for decomposition. It must have zero mean,


+∞

−∞
ψ (t) dt = 0; its square integrates

to unity,

+∞

−∞
ψ2 (t) dt = 1, which means that ψ (t) is limited to an interval of time; and it should also satisfy the so-

called admissibility condition, 0 < Cψ =

+∞

0
|ψ(ω)|2

ω
dω < +∞ where ψ̂(ω) is the Fourier transform of ψ (t), that is,

ψ̂ (ω) =

+∞

−∞
ψ (t) e−iωτdt .

The literature provides different types of wavelets for the decomposition of time series depending on the research topics.
We use Morlet wavelet to examine the wavelet coherence among the stock markets because it provides the best balance
between time and frequency localization [65]. Grinsted et al. [64] show that Fourier period for the Morlet wavelet is almost
equal to the scale used is given as:

ψM (t) =
1
π1/4

eiω0te−t
2/2. (2)

In Eq. (2), ω0 indicates the central frequency of the wavelet. Following the previous work by Grinsted et al. [64], Rua and
Nunes [66] and Vacha and Barunik [67], we usedω0 = 6.Morlet wavelet withω0 = 6 provides a better localization between
time and frequency. A continuouswavelet transformWx of a discrete time series (x (t) , t = 0, 1, . . . , n)with respect toψ(t),
can then be written as:

Wx (τ , s) =

+∞

−∞

x (t) ψ∗τ ,s (t) dt =
1
√
s


+∞

−∞

x (t) ψ∗

t − τ

s


dt (3)
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where * denotes the complex conjugate. Notably, wavelet transform preserves the energy of a time series that can be used
to analyze the power spectra. Thus, the variance can be seen as follows:

∥x∥2 =
1
Cψ


∞

0


+∞

−∞

Wx(τ , s)2
 dτ ds

s2
. (4)

Torrence and Compo [68] define the crosswavelet transform |Wxy (τ , s) | of two time series x(t) and y(t)with the continuous
transformsWx (τ , s) and Wy (τ , s) as follows:

Wxy (τ , s) = Wx (τ , s) .W ∗y (τ , s) . (5)

The cross wavelet power shows the areas of high common power between two time series in the time-scale space. Similarly,
the WSC for the CWT of two time seriesWx (τ , s) and Wx (τ , s) can be presented as:

R2 (τ , s) =

S s−1Wxy(τ , s)
2

S

s−1 |Wx(τ , s)|2


.S

s−1

Wy(τ , s)
2 . (6)

In Eq. (6), S(.) and R2 representwavelet squared coherency and smoothing operator, respectively. Torrence andWebster [69]
defined WSC as the squared absolute value of the smoothed cross wavelet spectra that is normalized by the product of the
smoothed individualwavelet power spectra. The values of squared coherence R2 (τ , s) range fromzero (low comovement) to
one (high comovement). TheWSC when plotted as an image provide a clear picture of comovement over time and different
frequencies.

2.2. Variational mode decomposition

Following, Gallegati [50] andDewandaru et al. [51], we consider a sudden increase in short-term (long-term) dependence
after a shock as contagion (interdependency) effect. To distinguish between short- and long-term variations of CDS indices,
we use an advancemulti-resolution technique known as the Variational Mode Decomposition (VMD) for the decomposition
of CDS index returns. The non-recursive VMD of Dragomiretskiy and Zosso [52] decomposes a time series into different
modes that collectively reproduce the input signal. These decomposed time series are compact around a center pulsation
with a limited bandwidth and is updated by Wiener filtering in Fourier domain; and a Lagrangian multiplier is used to
enforce exact signal reconstruction. Hence, the low (high) frequency modes obtained through VMD present the long (short)
term dynamics of the original signal. This mode-by-mode decomposition enables to examine the change in CDS markets
dependence on different scales.

The fundamental concept of VMD is to decompose a time series f into discrete k number of sub-series (known asmodes),
uk, and the bandwidth of each mode is limited in spectral domain [52]. Each decomposed variational mode k is assumed
to be compressed around a center pulsation, ωk, which is determined along with the decomposition [52]. The algorithm
to determine the bandwidth of a time series requires: (1) a unilateral frequency spectrum to be obtained for each mode
uk by computing the associated analytic signal by means of the Hilbert transform; (2) for each mode, the mode’s frequency
spectrum is then shifted to baseband bymixingwith an exponential tuned to the respective estimated center frequency; and
(3) the bandwidth is estimated through Gaussian smoothness of the demodulated signal (cf. Dragomiretskiy and Zosso [52]).
Thus, the resulting constrained variational problem can be given as follows:

min
{uk},{ωk}

=


k

∂t δ (t)+ j
π t


∗ uk(t)


e−jωk

t
2
2


s.t.


k

uk = f (7)

where, k indicates the set (number) of modes u of the original signal f ;ω, δ and * represent frequency, the Dirac distribution,
and convolution, respectively. Thus, {uk} := {u1, . . . , uk} and {ωk} := {ω1, . . . , ωk} are the sets of all variational modes and
their central frequency, respectively. The Eq. (1) decomposes the original signal into a set ofmodeswith a limited bandwidth
in Fourier domain. The solution to the original minimization problem is the saddle point of the following augmented
Lagrange (L) expression:

L (uk, ωk, λ) = α

k

∂t δ (t)+ j
π t


∗ uk(t)

2
2
+

f − uk

2
2
+


λ, f −


uk


(8)

where, λ is the Lagrange multiplier and ∥•∥p denotes the usual vector ℓp normwhere p = 2. The solution to Eq. (8) is found
in a sequence of k iterative sub-optimizations. Finally, the solutions for u andω are found in Fourier domain and are given by:

un+1
n =


f −


i≠k

ui +
λ

2


1

1+ 2α (ω − ωk)
2 (9)

ωn+1
n =


∞

0 ω |uk(ω)|
2 dω

∞

0 |uk(ω)|
2 dω

(10)
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where, n is the number of iterations. To examine contagion effect during the global financial crises (2007–09) and European
debt crisis (2011–13) we use the variational mode representing the short-term dynamics.

2.3. Elliptical and Archimedean copulas

Since correlationmeasure only provides linear relationship between the time series and does not capture tail dependence
i.e. the likelihood that extreme events occur jointly, the copulas approach is utilized to examine the tail dependence
between financial time series [56]. The copula approach which is based on the theorem of Sklar [57]: Let x1, . . . , xn be
the random variables, F1, . . . , Fn are the corresponding marginal distributions and H is the joint distribution, then copula
C : [0, 1]n → [0, 1] exists such that H (x1, . . . , xn) = C(F1 (x1) , . . . , Fn (xn)). On the other hand, if C is a copula and
F1, . . . , Fn are distribution functions, then H is a joint distribution with margins F1, . . . , Fn. If the F1, . . . , Fn marginal
distributions are elliptically contoured then the tail dependence of joint distribution H can be examined through elliptical
(implicit) copulas. The applicability of elliptical copulas as a multivariate dependence measure gives its widely applicability
while analyzing financial time series (cf. Embrechts et al. [58]; Berger and Missong [59]; among others). The t-copula is a
measure of symmetric tail dependence and belongs to the family of elliptical copulas. It represents the dependence structure
implicit in a multivariate t-distribution. The setup of the t-copula is as follows:

C t (x1, . . . , xn) = tρ,ν

t−1ν (x1), . . . , t−1ν (xn)


,

=

 t−1(x1)

−∞

. . .

 t−1(xn)

−∞

Γ

ν+n
2


Γ

ν
2


(νπ)

n
2 |ρ|

1
2


1+

1
ν
ztρ−1z

− ν+n2

dz1 . . . dzn (11)

where, tρ,ν represents themultivariate t-distribution having a correlationmatrix ρ with ν degrees of freedom, t−1ν indicates
the inverse of the univariate t distribution, and symmetric tail dependence is presented by ν. As ν →∞ the t-distribution
approximates to the Gaussian.

Notably, the elliptical copula family can only assess symmetric tail dependence and thus Archimedean (explicit) copulas
are used to examine the asymmetric tail dependence. The first of Archimedean copulas class is the Clayton copula which
exhibiting greater dependence in the negative tail than in the positive and is specified as:

CClayton (x1, x2) =

max


xθ1 + xθ2 − 1, 0

 1
θ , θ ∈ [−1, 8) \ {0}. (12)

The Clayton copula implies co-monotonicity as θ → ∞, and independence as θ → 0. Since the Clayton copula exhibits
higher dependence in negative tails, to examine the dependence in positive tail, the Gumbel copula (higher dependence in
the positive tail) can be used and is specified as:

CGumbel (x1, x2) = exp

−

(− ln x1)θ + (− ln x2)θ

 1
θ


, θ ∈ [1,∞). (13)

The Gumbel copula implies tail dependence as θ →∞ and independence as θ → 1. Notably, the estimation of parameters
for the higher order copulas are computationally cumbersome and hence the parameters are estimated in a two step
maximum likelihood method (also known as inference for the margins) introduced by Joe [60].

We first apply three copula functions on the raw time series to examine the tail dependence among the industry-level CDS
indices and then to explore the contagion effect, we apply elliptical and Archimedean copulas on the short-run variational
mode obtained through VMD approach.

3. Data and findings

The study examines the co-movement and contagion among CDS markets of US using sector indices. The sectors include
Banking, financial, Telecommunication, Healthcare, Oil and Gas, Materials, Consumer Goods, Utilities, Industrial, Consumer
Services and technology. This daily data is extracted from DataStream International (Thomson Financial) for the period
December 17, 2007 to December 31, 2014 as the sector level CDS indices were launched by DataStream in December 2007.
The time period is not only recent but is large enough for empirical analysis to indicate long-run relationship between the
markets. It also covers the impact of various international events (e.g., global financial crisis and European sovereign debt
crisis).

We treat banking and financial sectors as two because earlier empirical work suggests that CDS premia of these sectors
react differently tomarket conditions [61,4]. Banks have unique characteristics that distinguish them from the non-financial
or industrial firms. The balance sheet composition, their central role in an economy and different regulatory framework are
few of the reasons. The sector level CDS indices (denominated in basis points so that 100 basis points equates to 1 percentage
point) are based on 5-year tenor series contracts because the five year credits instruments are considered adequate based on
liquidity and arewidely used in empirical analysis [62]. The final data comprises of 1838 observations for each index. The CDS
index returns are calculated by natural logarithmic of differenced daily closing premia as rt = ln (Spreadt/Spreadt−1)×100.
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Table 2
Statistical properties of the CDS returns.

Banks Financial Telecom Healthcare Oil and
Gas

Basic
materials

Consumer
goods

Utilities Industrial Consumer
services

Technology

Mean −0.0204 0.0145 −0.0201 0.0062 0.0933 0.0499 −0.0078 0.0020 −0.0202 −0.0060 0.0558
Minimum −51.115 −55.759 −26.397 −17.113 −64.416 −10.136 −16.031 −148.108 −50.920 −75.553 −19.874
Maximum 37.935 52.432 20.417 26.379 66.430 12.712 22.296 146.620 52.374 76.045 42.696
Std.
Dev.

3.9709 5.6192 2.4908 2.3310 6.6109 1.7198 2.1932 6.6729 3.9005 4.4729 2.5429

Skewness −0.8277 −0.1036 0.1405 1.2193 0.6829 1.3584 0.9438 −5.9873 −0.3656 −0.7703 4.6569
Kurtosis 32.136 22.888 20.953 25.356 52.933 12.663 23.121 390.000 67.164 134.328 82.976
J–B 65223.0*** 30295.3*** 24690.0*** 38731.0*** 191089.8*** 7716.1*** 31276.4*** 1148.0*** 3150.1*** 13210.0*** 4964.3***

ADF −35.344***
−42.137***

−28.254***
−42.377***

−47.418***
−23.738***

−28.827***
−27.528***

−38.012***
−18.173***

−26.486***

PP −34.698***
−60.371***

−43.081***
−42.653***

−60.330***
−36.565***

−44.530***
−46.372***

−51.742***
−47.797***

−40.795***

KPSS 0.1321 0.2537 0.1459 0.3939 0.0622 0.2363 0.2608 0.2354 0.2432 0.2684 0.3949
Q(12) 129.43*** 229.49*** 23.07** 15.06 174.79*** 258.27*** 22.57** 132.07*** 134.11*** 187.62*** 65.88***

Q2(12) 123.83*** 564.28*** 25.51** 38.66*** 1110.89*** 197.00*** 183.95*** 201.77*** 488.12*** 365.26*** 1.3200
ARCH(12) 412.81*** 793.32*** 663.44*** 489.60*** 745.94*** 287.89*** 625.67*** 996.82*** 486.55*** 625.56*** 685.30***

Notes: ADF, PP and KPSS are the empirical statistics of the Augmented Dickey–Fuller (1979), and the Phillips–Perron (1988) unit root tests, and the
Kwiatkowski et al. [70] stationarity test, respectively. Q(12) and Q2(12) refer to the Ljung–Box test for autocorrelation in residuals and squared residuals,
respectively. ARCH(12) test of Engle [71] is to check the presence of ARCH effects up to 12 lags.
** Denote the rejection of the null hypotheses of normality, no autocorrelation, unit root, and conditional homoscedasticity at the 5% significance level.
*** Denote the rejection of the null hypotheses of normality, no autocorrelation, unit root, and conditional homoscedasticity at the 1% significance level.

The statistics properties of the industry-level CDS index returns are reported in Table 2. The average returns of Oil
and Gas, Technology and Basic Material industries are respectively higher than other industries. Banking sector CDS daily
average returns are most negative. The standard deviation is highest for the Utility industry. All the time series are
non-normal as the null hypothesis of Jarque Bera test is rejected. Notably, the non-normality stems due to leptokurtic
behavior of return distributions. Again, the excess kurtosis value is highest for the Utility industry. The fat tailed behavior
identified through fourth (kurtosis) statistical movement justifies the tail dependence measures adopted for the analysis
of contagion effect. The Augmented Dickey–Fuller (ADF) and the Phillips–Perron (PP) unit root tests as well as the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) stationarity test are also performed. The results of these tests indicate that
all the return series are stationary at the 1% level. The results of the Ljung–Box test statistics of the residuals, Q(12), and
the squared residuals, Q2(12), reject the null hypothesis of no serial correlation. Finally, the Engle [71] test for conditional
heteroscedasticity shows that ARCH effects are significantly present in all the return series.

The correlation values between the industry-level CDS returns are provided in Table 3. The correlation values various
across sectors; however, all are positive and significant at conventional levels. The positive correlation suggests that either
the credit quality of all sectors deteriorate together or may have some common factors driving the CDS premia. Notably, the
Utility industry CDS index has the lowest (positive) correlation with all other sector. The lowest four correlation of Utility
industry (underlined value) are with Financials, Oil and Gas, Industrial and Consumer Services industries. Low correlation
coupled with higher fat tailed behavior makes Utility industry stand apart from all other CDS indices. It is worth noting that
the Utility sector is regulated by state governments and is considered as defensive sector during a recession or economic
downturn. Further, the stable demand for utilities can make this sector less sensitive to changes in the economy. Basic
Material industry shows the highest correlations with all other industries where the highest four values (bold values) are
found with Technology, Banks, Consumer Goods and Health Care industries, respectively.

3.1. Interdependence through WSC and copula

To analyze the comovement (interdependence) between industry-level CDS markets, we utilize the WSC approach. The
method provides a better understanding of dynamic (evolution of association over time and across frequencies) linkage
between the time series. Notably, the Monte Carlo simulations are used to assess statistical significance of co-movement
following previous relevant studies [67].

The pair-wise wavelet coherence for all eleven industries results in 55 images which is implausible3 to show here, thus
we divide the industry pairs into twomajor groups based onwavelet coherence. TheWSC plots of CDS indices with high and
low coherence (four each, see Table 3) are shown in the Panel A and B of Fig. 1, respectively. The horizontal axis of these plots
indicates time intervals whereas the vertical axis shows the scale (i.e. frequency band). The frequency in these plots can be
referred as the daily time units. The scale on the vertical axis doubles from the previous point and range between 2–512 days
and 2–64 days are associated with short-run dynamics and long-term afterwards. The dense black outline indicates the 5%
significance level against the red noise. The lighter shade cone shows the edge effect also named as cone of influence (COI).
The color code presented on the right end of each image varies between blue (low power) and red (high power). Arrows

3 All other squared wavelet coherence plots are available on request. Notably, all the industry-level CDS pairs posit cyclical (positive) co-movements
where the long-run coherence is dominant and statistically significant.
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Fig. 1. Wavelet squared coherence. Note: This figure shows theWavelet squared coherence between the industry-level CDS pairs. Time and frequency (in
days) are on the horizontal and the vertical axis, respectively. The colourbar on the right side shows the coherence (strength of relationship), the warmer
the color of a region, the greater the coherence between the pairs. The lighter shade cone shows the edge effect also named as cone of influence (COI). The
black solid line isolates the statistical significant area at the 5% significance level. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

indicate the phase difference between the two series.→&← indicate that the CDS markets are in phase and out of phase
i.e. cyclical or counter cyclical effect on each other, respectively.↗&↙ indicate first CDS index leading.↘&↖ indicate first
CDS index is lagging. For interpretation purpose, red color at the bottom (top) of the graph indicates high interdependence
at higher (low) frequencies.

All the high correlation pairs indicate that CDS markets are in-phase i.e. pass cyclical effect on each other. It can also be
interpreted as strength of relationship is strong and there exists a positive correlation between the CDS indices. In Panel A,
first two pairs (Figs. A-b) show that the interdependence between these pairs gradually increases towards the end of sample
period. While the other two pairs (Figs. C-and d) show that association between these pairs decrease during the last two
years. The interdependence between CDS indices is higher and significant over the long-run (128–512 frequencies). Notably,
the arrows are pointing right and downward which implies that Basic Material industry is not only the highly correlated
industry, it also passes the cyclical effects to the other industries. As the interdependence between these industries varies
across time and frequency, therefore, it is difficult to make a precise conclusion regarding the impact of financial crises.

To gauge the impact of financial crises on the interdependence between different CDS markets, we next plot (Panel B)
the WSC between the CDS industry pairs where the coherence is relatively low. It is clear from the figures that although
the Utility industry has the lowest interdependence with other industries, the financial crises impact this relationship
as the small high coherence (red) regions emerge during financial crises. Putting all together, we can conclude that
interdependence among the credit markets is a dynamic phenomenon. Basic Material and Utility industry CDS indices show
high and low interdependence with other industries, respectively. Furthermore, the coherence (interdependence) between
the CDS indices is impacted by the financial crises.

As highlighted in the methodology section, linear dependence measures i.e. correlation or coherence may fail to
accurately capture the dependence structure especially when the return distributions exhibit a fat tailed behavior (see
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Fig. 1. (continued)

Table 3
Correlation metrics between industry-level CDS returns.

Banks Financial Telecom Healthcare Oil and
Gas

Basic
materials

Consumer
goods

Utilities Industrial Consumer
services

Technology

Banks 1.0000
Financial 0.1917*** 1.0000

(8.3687)
Telecom 0.3627*** 0.0970*** 1.0000

(16.676) (4.1760)
Healthcare 0.3386*** 0.1549*** 0.3636*** 1.0000

(15.421) (6.7190) (16.723)
Oil and Gas 0.1172*** 0.1002*** 0.1069*** 0.1539*** 1.0000

(5.0581) (4.3130) (4.6052) (6.6753)
Basic Materials 0.4212*** 0.2054*** 0.3734*** 0.4014*** 0.2372*** 1.0000

(19.899) (8.9947) (17.244) (18.777) (10.460)
Consumer goods 0.2845*** 0.1363*** 0.2632*** 0.2134*** 0.2127*** 0.4130*** 1.0000

(12.716) (5.8933) (11.690) (9.3572) (9.3295) (19.431)
Utilities 0.1025*** 0.0442* 0.0902*** 0.0840*** 0.0534** 0.0949*** 0.1054*** 1.0000

(4.4140) (1.8950) (3.8795) (3.6101) (2.2900) (4.0838) (4.5404)
Industrial 0.1693*** 0.0851*** 0.1380*** 0.1328*** 0.0938*** 0.2273*** 0.1163*** 0.0606** 1.0000

(7.3596) (3.6589) (5.9692) (5.7410) (4.0375) (10.000) (5.0159) (2.6009)
Consumer
services

0.1904*** 0.0750*** 0.1875*** 0.2232*** 0.0841*** 0.2034*** 0.1438*** 0.0610** 0.0572** 1.0000

(8.3114) (3.2247) (8.1788) (9.8120) (3.6156) (8.8996) (6.2267) (2.6188) (2.4563)
Technology 0.3249*** 0.2083*** 0.2736*** 0.3380*** 0.1701*** 0.5028*** 0.3018*** 0.0701*** 0.1526*** 0.1863*** 1.0000

(14.720) (9.1273) (12.187) (15.388) (7.3944) (24.923) (13.565) (3.0119) (6.6174) (8.1253)

Note: The t-statistics are in brackets.
* Indicate significance at 10% level.
** Indicate significance at 5% level.
*** Indicate significance at 1% level.
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(a) Student t copula.

(b) Clayton copula.

(c) Gumbel copula.

Fig. 2. Tail dependence coefficients. Note: This figure shows the copula based tail-dependence between the industry-level CDS pairs. The colourbar on the
right side shows the degree of tail-dependence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1). Thus, we turn our attention to tail dependence measures4. We use student t-copula to estimate the symmetric tail
dependence while the asymmetric tail behavior is captured through Clayton and Gumbel copula. The Clayton and Gumbel
copula capture the positive and negative asymmetric tail dependence, respectively. The pair-wise estimated copula co-
efficients matrix is presented in pictorial form, for consistency with wavelet images. The copula co-efficient matrix heat
maps for student t , Clayton and Gumbel copula are shown in Fig. 2, respectively.

The overall message of tail dependence measures coincide with wavelet findings. Utilities and Financial industries show
the least dependence (both symmetric and asymmetric dependence) with all other industries. Financial industry CDS index
has relatively higher interdependence with Banking industry as both sectors mainly operate in similar businesses. Utilities
industry has relatively higher dependence with Oil & Gas and Basic Material industries. The Basic Material industry’s CDS

4 The estimation of tail dependence based on copula models is done in a two-step procedure [72]. First, the marginal distribution of each time series is
obtained through univariate GJR-GARCH (1, 1) model proposed by Glosten et al. [73]. The standardized residuals for each index returns are then used for
copula estimates.
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(a) Raw series. (b) Variational mode 1.

Fig. 3. Variational modes of Banking sector CDS index.

index showhighest tail dependencewith all other industries. It isworth noting thatmajority of the previouswork tomeasure
credit risk have concentrated on estimating the default probabilities (dynamics of the term structure of credit spreads) using
corporate bond data. The assessment of tail dependence among CDS indices can be utilized by the market participants to
gauge the probability of simultaneous extreme losses. Naifar [28] highlight that ignoring the tail dependence would lead to
under-estimation of the default risk premium. Our findings of three different dependence measures highlight that Utilities
and Financial industries stand apart in terms of tail dependence form all other CDS industries and Basic Material industry
can be viewed as most dependent industry.

3.2. Contagion effects through VMD and copula

Next, we apply VMD approach to extract ten different variational modes of the standardized residuals obtained through
marginal models fitting on each CDS index return series. We arbitrarily set the number of modes k to ten for faster data
processing. Forbes and Rigobon [1] suggest that the short time period associated with higher volatilities in asset prices
should be used to examine the contagion effect hence we utilize the variational mode (VMD#10) representing the short-
run dynamics of the CDS returns to identify the contagion effect5. Fig. 3 plots the original signal along with the variational
mode representing the short-run dynamics of Banks CDS return series.

Notably, the Banking sector CDS returns exhibit higher variations during the crises episodes i.e. the global financial crisis
of 2008–2009 and the Eurozone sovereign debt crisis of 2011–2013.6 Therefore, we split the short-run time series into
four sub-periods to examine the contagion effects. We identify the different sub-samples is as follows. We extract specific
dates of the global financial crisis of 2008–2009 and the Eurozone sovereign debt crisis of 2011–2013 from the National
Bureau of Economic Research (NBER) and Centre for Economic Policy Research (CEPR), respectively. Therefore our first sub-
sample, from 17 December 2007 to 30 June 2009, is what we call the crisis period and the second sub-sample, from 1 July
2009 to 31 March 2011, is a post-global financial crisis sub-sample. We compare the tail dependence measures for these
two sub-samples to examine the contagion effects among the industry-level credit markets during global financial crisis.
Similarly, our third sub-sample, from 1 April 2011 till 31 March 2013, is the Eurozone sovereign debt crisis period while
from 1 April 2013 to 30 December 2014 is regarded as the post-Eurozone sovereign debt crisis period. We compare the tail
dependence among the industry-level credit markets for these two sub-samples to examine the contagion effects during
Eurozone sovereign debt crisis.

The decomposed tail dependence analyses (Fig. 4), both during and after the global financial crises, show that dependence
between a large number of industrial pairs increased during the crisis. This increase in tail dependence is evident for all three
copula functions i.e., symmetric and asymmetric tail dependence. The copula estimates comparing the Eurozone sovereign
debt crisis and post-crisis periods are shown in Fig. 4. Banks and Telecommunication andHealth Care and Consumer Services
pairs only show an increase in tail dependence (both symmetric and asymmetric tail dependence) during the crisis period as
compared to post-crises period. These findings suggest that contagion effect among the US industry-level mainly took place
during the global financial crises. This is not surprising as the crisis was originated from US sub-prime mortgage market
with the collapse of Lehman brothers on 15 September 2008. It was primarily caused by a combination of under-pricing
of credit risk and innovation in derivative products which allowed an explosive growth of leverage and hence affected the
credit risk of different US industries. It is worth noting that Greece’s credit rating was downgraded by Fitch from B+ to CCC
on July 13, 2011 and there were also concerns about worsening credit conditions from the start of 2011.

5 Forbes and Rigobon [1] suggest that the contagion and interdependence must be differentiated when analyzing the pre- and post-crises scenarios.
Contagion can be characterized as a sudden increase in short term correlation between the markets of interest, whereas, the increase in long term
correlation portrays the higher interdependence that may occur due to bi-lateral ties or economic linkages among the markets. Further, the contagion
effect does not only result in an increase in short term correlation but the increased turbulence (variations) may also result in lower dependence.
6 The VMDs of other CDS indices show similar patterns and for brevity of space we do not show figures for other industries; however, those are available

from the authors on request.
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Fig. 4. Contagion effect. Note: See notes to Fig. 2.

4. Conclusion

The CDS indices are considered a higher-risk indicator and hence they are more sensitive to stock market conditions and
macroeconomic variables during the financial crises. They play leading role in a financial system and impact the stability of
financial system. Due to their vital role in an economy, this paper investigates the interdependence and contagion among
the US industry-level credit markets. We utilize both wavelet squared coherence (WSC) and copula approaches for linear
and non-linear dependence analysis. Daily data from17December, 2007 to 31December 2014 is utilized and decomposition
was done using variational mode decomposition (VMD) framework.
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Fig. 4. (continued)

The empirical analysis reveals that Basic Material (Utilities) industry credit market has the highest (lowest)
interdependencewith the other industries. The dependence dynamics of these two industries provide arbitrage and hedging
prospects for the credit market investors. The Utilities industry is a natural monopoly that is regulated by policy makers and
due to low dependence with the other credit markets it can be exploited for possible arbitrage opportunities. Furthermore,
Utilities is a counter-cyclical industry and its lower dependence with other industries may also be seen as a possible credit
risk diversifier. On the other hand, Basic Materials industry is sensitive to changes in the business cycle and its higher
dependence with the other industries stems from the fact that the credits risk of most of the industries dependence on
the state of economy. The resulting higher comovement with the other industries can be useful to hedge the credit risk
across industries. On the whole, the low dependence between Utility sector and others CDS sectors implies the emergence
of diversification opportunities while the high dependence between Basic Materials economic sector, which is sensitive
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by the volatility of the price in metals, nonmetallic and construction materials, with the remaining CDS sectors indicates
evidence of contagion.

Our findings that the interdependence among the credit markets varies across investment time horizons also have
implications for the institutional investors. The investors with specific investment time horizons must consider the
coherence among the industries for that particular time and frequency while formulating their investment strategies.
Finally, we argue that dependence between the credit markets is subject to change during turbulence market conditions,
more specifically, we find that most of the US credit markets experienced little ‘‘shift-contagion’’ as defined by Forbes and
Rigobon [1].

Kapar and Olmo [74] argue that inventors’ risk perceptions differ towards the risk of financial and non-financial CDS
contracts. We suggest that the investor does not only distinguish between financial and non-financial contracts, they also
differentiate between the non-financial sectors. We posit that contagion among CDS markets may arise through both
economic channels and contractual links. The CDS markets are highly interdependent and hence the regulatory framework
should also focus on the management of risk arising from co-movement between the assets, namely the operational risk
or second-order risks of financial institutions. The second-order risks arise from the investment characteristics such as
illiquidity, leverage, concentration and market structure, among others.
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