Do NOT write outside the grey boxes. Any text or images outside the boxes will be deleted.
Do NOT alter the structure of this form. Simply enter your information into the boxes. The form will be automatically processed - if you alter its structure your submission will not be processed correctly.

Do not include keywords - you can add them when you submit the abstract online.
Title:

> Physicochemical Properties of Alkali treated kappa-carrageenan.

Authors \& affiliations:

Kushaal Raj ${ }^{1}$, Roselyn Lata ${ }^{1}$, David Rohindra ${ }^{1}$
School of Biological and Chemical Sciences, Faculty of Science Technology and Environment, the University of the South Pacific, Private Mail Bag, Suva.
*corresponding author; Tele: (+679) 9946372 e: david.rohindra@usp.ac.fj

Abstract

Your abstract must use Normal style and must fit in this box. Your abstract should be no longer than 300 words. The box will 'expand' over 2 pages as you add text/diagrams into it.) Kappa (к)-carrageenan was extracted from the seaweed Kappaphycus alvarezii, grown in Fiji, using varying concentrations of potassium hydroxide (KOH) solution: 0.1 to 0.5 M . Increasing KOH concentration increased the yield of κ-carrageenan while the sulfate content, and the viscosity average molar mass decreased. к-carrageenan solutions exhibited non-Newtonian fluid behavior. For the different alkali ($0.1,0.2,0.3 \& 0.5 \mathrm{M}$) treated κ-carrageenan, the critical gelling concentration was found to be $1.0,0.8,0.7 \& 0.6 \mathrm{w} / \mathrm{v} \%$ respectively at ambient temperature within 24 hrs. The activation energy of the viscous flow was found to decrease for the к-carrageenan extracted with increasing alkali concentration. Young's modulus was found to increase for the κ-carrageenan gels extracted with increasing alkali concentration up to 0.3 M after which a sharp decline in gel strength was observed. The melting temperature determined from Differential Scanning Calorimetry increased for gels extracted with higher KOH concentration.

