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Abstract—In this paper, we use a simple geometric approach
to control the motion of a standard tractor-trailer robot from
some initial positions to a goal position. The solution to the
motion control problem is proposed in two steps. Firstly,
the control laws are proposed that can drive the robot to a
goal position whilst observing the mechanical singularities
associated with the system. Secondly, the control laws are
adjusted so that the robot can avoid any number of fixed
obstacles in the workspace and safely reach the goal po-
sition. The proposed algorithm is verified using computer
simulations.

Index Terms— Standard Tractor-trailer robot, nonholo-
nomic, target convergence, obstacle avoidance.

I. INTRODUCTION

A tractor-trailer system consists of a tractor towing an
arbitrary number of trailers [1]. A common example in
Fiji is the railway locomotive system used for transport-
ing cane to the mill. The trailers are mostly passive so
that the overall implementation and operational costs
is reduced. The two different trailer systems found in
literature are standard and the general trailer systems.
The major difference between the two types is based
upon the hooking schemes of the trailers. In a standard
trailer system, a two-wheeled passive trailer is hitched
directly on the midpoint of the rear axle of the tractor
robot followed by any additional trailers hitched on the
midpoint of the rear axle of the preceding trailer. In
contrast, for the general trailer system, each trailer is
hitched at a distance away from the midpoint of the rear
axle of the preceding trailer / tractor. The reader can
refer to [2] for a detailed explanation of the two trailer
systems.

Tractor-trailer vehicles are mainly used in transporta-
tion industries [3] to carry load from one point to an-
other. Prominent places include airports, wharfs, farms,
mines to name a few and in environments that are
harsh, hazardous or inaccessible to humans [1]. A tractor
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trailer system will obviously operate at a low cost for
goods transportation and concurrently save time and
energy [4]. In fact, such systems can successfully com-
plete a given task in a faster, cheaper and convenient
way when compared to individual robots [3]. Example,
a locomotive system transporting cane to crushing mills
from a long distance when compared to multiple trucks.

The tractor robot and the passive trailers are all non-
holonomic in nature. Due to the amalgamation of the
nonholonomic structures, the kinematics of tractor trailer
robot are complicated, nonlinear, underactuated, and
subjected to nonholonomic constraints [5], [6]. The mo-
tion of the articulated robot is further restricted because
of the associated mechanical singularities [1]. Another
limitation associated with the movement of the multi-
body system is the amount of space it takes during
turning. Such system can face problems on narrow roads
and bridges where the safely of the robot is of high
priority [4]. Furthermore, if the workspace contains fixed
or moving obstacles, the motion control problem be-
comes more difficult and challenging [2]. In literature,
researchers have used various approaches to solve the
motion control problem of tractor-trailer systems. Some
prominent ones are H-infinity control approach [7], a
fuzzy control approach [8], [9], a Lyapunov-based ap-
proach [1], [2], to name a few.

In this paper, we will use the idea proposed in [10] to
control the motion of a standard tractor-trailer robot in a
priori known workspace containing fixed obstacles. For
simplicity we have considered circular and line obstacles
of random sizes and positions. In [10], Prasad at. al
proposed a unique and tailored technique for controlling
the motion of a car-like robot in an obstacle ridden
workspace. A velocity algorithm was developed and the
steering angle modelled using neural network so that
the car-like robot avoids obstacles and safely reach its
goal position. The method used in [10] was system-
atic, elegant, straight forward and simple compared to



other methods, for example, the Lyapunov-based control
scheme [1], [2] where there is no definite and standard
procedure of constructing a Lyapunov function from
which the controllers are extracted. We adopt the same
technique and show that it can be applied to control the
motion of a standard tractor-trailer robot.

The remainder of the paper is organized as follows. In
Section II, the kinematic model of the standard tractor-
trailer robot and the associated holonomic constraints are
given. In Section III, the definition of the target and the
system’s mechanical singularities are given. The control
laws for target convergence and adherence to the me-
chanical singularities is proposed. Section IV considers
fixed obstacles and a collision-free algorithm is proposed
where the robot moves safely from an initial position to
its target position. Section V provides a summary on the
contributions and lists the future work.

II. KINEMATIC MODEL

We consider a standard tractor-trailer robot which is
comprised of a rear wheel driven car-like vehicle and
a hitched two-wheeled passive trailer attached to the
rear axel of the vehicle. The standard 1-trailer system,
adopted from [1], is shown in Figure 1.
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Fig. 1. The schematic representation of a standard 1-trailer robot
(adopted from [1]).

Referring to Figure 1, (x1,y1) represents the cartesian
coordinates of the tractor robot, 6, gives its orientation

with respect to the z;-axis, while ¢ gives the steering an-
gle with respect to its longitudinal axis. Similarly, (z2, y2)
represents the cartesian coordinates of the passive trailer
while 6, gives its orientation with respect to the z;-axis.

Letting L; and Lo be the lengths of the mid-axle of the
tractor and trailer, respectively, the kinematic model of a
standard 1-trailer system, adopted from [1], is given by
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where v is the translational velocity of the tractor robot.
Note that we can express the position of the trailer
completely in terms of the state variables x;, y1, 61 and
05 as follows:
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These position constraints, known as the holonomic
constraints of the system, will reduce the dimension of
the configuration space [2].

We further note that since we are considering a passive
trailer, there is no need to impose any additional con-
troller for 63, hence the only controllers in system (1)
are v(t) and ¢(t). However, we need to observe any
mechanical singularities associated with the movement
of the trailer.

III. MOTION CONTROL IN THE ABSENCE OF FIXED
OBSTACLES

Our objective is to control the motion of the standard
tractor-trailer robot to a designated goal position while
observing any restrictions placed on the system due to
mechanical singularities. We therefore designate a target
(goal position) for the robot which is a disk of center
(p1,p2) and radius ry. The target is be described as

T={(z1,22) ER*: (21 —p1)* + (22 — p2)* <77}
We shall use the vector notation x(t) = (21 (¢ ) y1(t)) to
describe the position variables in (1) and e = (p1,p2)
to describe the goal position for x(¢). For x(t) # e, we
further define () be the angular position of 7" with
respect to the current position of the vehicle at time ¢.
The angle £(t) is defined implicitly as
if x(t) # e;

p2—y1(t)
p1—z1(t)’

tan(t) =

tané(t — 1), if x(t) =e.



A. Target Convergence

We want the tractor-trailer robot to start from an initial
configuration, move towards its target and converge at
the center of the target.

For the robot to maneuver from its initial position to
the goal position, we shall adopt the velocity algorithm
(modified from [10]):

v(t) = allx(t) — e, )

where o > 0 is a user-defined constant.

B. Mechanical Singularities

There are two mechanical singularities associated with
the system:

¢ Restrictions on the movement of the trailer.
o Restrictions on the steering angle ¢(t).

Firstly, the motion of the trailer is restricted in the sense
that the mid axle of the trailer should not collide with
the rear axle of the vehicle [1]. That is, the angle 6, is
restricted as

|92 —01‘ < 71'/2.

In order to adhere to this restriction, we treat the line
passing through the points (z1 — £ cos 61 — £2 sin 61,y —
L1 gin g, + % cosf) and (z1 — % cos 61 + % sinf,y; —
57 sin 61 — % cos 1) as an artificial obstacle for the trailer.
The trailer should always avoid this line during the
motion. The distance from (z2, y2) to the closest point on
the line is calculated to be Ry = % cos |01 — 03]. We see
that as |61 — 62| — 7/2, Ry — 0. Thus carefully including
Ry into the controller ¢(t) will guarantee the adherence

placed on the trailer.

Secondly, we note that the steering angle of the front
wheel is bounded according to the inequality [2]
s
‘¢(t)| < ¢max < §a
where ¢max is maximum steering angle. Using the idea
proposed in [10] and taking into account the restrictions
on the movement of the trailer, we propose the following
form of the controller ¢(t):

o) = 202t (s - 00+ B0 ) .

Ry
where
o, if Ro>uw/2
@ = { w/2— Ry, if Ry<uws2 04
B = =1, if (y2 —y1)cosby — (z2 — 1) siné, >0
o= 1, if (y2 —y1)coshy — (x2 — x1)sinfy <0

Simulation 1: The nonlinear differential equations given
in system (1) was numerically integrated using a fourth
order Runge-Kutta method and the trajectories were
plotted as shown in Figures 2 and 3. In each scenario the
robot maneuvers from an initial to a final configuration,
whilst maintaining the mechanical singularity restric-
tions. Table I gives the values of the different parameters
used in the two simulations.

TABLE I
VALUES OF THE DIFFERENT PARAMETERS USED IN THE SIMULATIONS.

Initial and Final Configuration
Initial and final position | Refer to the Figures.
Initial orientation Figure 2: §1 = w/4 rad, 62 = 0 rad.
Figure 3: 01 = 7/2 rad, 02 = w/4 rad.
Robot Parameters
Li=3m w=14m, Ly =3 m.
€1 =0.2m, e2 =0.1 m.
Other Parameters
0< 21 <50,0< 22 <50.

o = 0.05, pmax = ZZ.

Dimensions
Safety parameters

Workspace dimensions
Constants

50

45 F Target Position
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30T
251
201
151

10}
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0 10 20 30 40 50
Fig. 2. Trajectory of the tractor-trailer robot with initial position (6, 6)
and target position (45, 45)

IV. MOTION CONTROL IN THE PRESENCE OF FIXED
OBSTACLES

We now assume that the workspace is cluttered with
stationary obstacles. The two types of obstacles consid-
ered in this paper are circular (disks) and line obstacles
with known positions and sizes. To ensure that the entire
vehicle safely steers pass any obstacle, we enclose the
vehicle and the trailer by the smallest possible circles
with centers and radii given in Table II. The constants ¢;
and e, are the clearance parameters adopted from [2].
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Fig. 3. Trajectory of the tractor-trailer robot with initial position (45, 6)
and target position (5, 46)

TABLE 11
RADII AND CENTERS OF THE SMALLEST CIRCLES ENCLOSING EACH
BODY.
Body Center Radius
Vehicle | (z1,y1) | rv1 = %\/(Ll + 261)2 + (w+ 262)2
Trailer (272, y2) rUvg = %\/(LQ + 261)2 =+ (w + 262)2

A. Circular Obstacles

The [th circular obstacle with center (01, 0;2) and radius
ro; on the z12; plane is defined as

FO; = {(21,22) €R?: (21 —01)? + (22 — 012)? < ro}},
fori=1,2,...,q.

Definition 1: The set S defined by

S = {(21722) € R2: (Zl — 011)2 + (ZQ — 0[2)2

q
=1

S (TOZ + dmax)Q}

(where dmax > 0 is a predefined constant) is called the
sensing zone.

The constant d.x determines the size of the sensing
zone. A large value of dy.x would mean that the robot
avoids a fixed obstacle from a greater distance. We
therefore regard dmax as a control parameter in this paper.

In designing the control laws, we impose the following
rules:

1) The robot should slow down when it approaches an
obstacle.

2) The robot should change its direction when it enters
the sensing zone.

3) The controllers should be continuous everywhere on
its domain.

Keeping in mind the above rules, we propose the fol-
lowing forms of the controllers:

q
o
o(t) = allxt)—ellI] (1 - ) ,
=1 max
_ 2¢max 1 a a3
ot) = — tan <£<t> 01(t) + ; l ) ,
where
R, = min (\/(-Tl —on)® + (y1 — 012)* — vy,
\/(372 —on)? + (y2 —02)? — TU2) —roy,
fi = (zr—on)p2 —y1) — (y1 — o2) (1 — 1),
= 0 if B2 dmax and
@z Amax — Ry, if R; < dpmax
5 = -1, if f1>0
o 1, if f<0
q
for I =1,2,...,q. We note that the factor [] (1 — d?ﬁ)

=1
in v(t) will ensure that the robot would slow down as

soon as it enters the sensing zone. The steering angle ¢(t)
is inversely proportional to R;. This would mean that
when the robot comes close to an obstacle, the distance
R; will decrease. This will then increase |¢(t)|, deviating
the robot away from the obstacle.

Simulation 2: To illustrate the effectiveness of our pro-
posed controllers, we have generated two trajectories
of the tractor-trailer robot maneuvering from initial
position and orientation to a goal position as shown
in figures 4 and 5. In Figure 4, we have considered
one circular obstacle centered at (28,22) with radius
2. The robot with initial position (6,6) and orientation
61 = 02 = 0 maneuvers to its goal position at (45, 45)
whilst avoiding the fixed obstacle along its route. The
control parameter dp.x = 4 was used while the robot
parameters, workspace dimension, « and ¢max are given
in Table L.

In Figure 5, we have considered multiple circular obsta-
cles with random positions and sizes. We again notice
that the robot avoids all the fixed obstacle that lie on its
route and safely converge to its goal position.

Figure 10 shows the graph of the controllers v(t) and
¢(t) for the trajectory shown in Figure 5. The controllers
vanish when the robot reaches its goal position. We have
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Fig. 4. Trajectory of the tractor-trailer robot in the presence of one
fixed obstacle.

also generated the graph of 0(t) — 61(¢) versus time, ¢
as shown in Figure 7. From the graphs, we can clearly
notice that restrictions (|02 —61] < 7/2 and |¢(¢)] < Pmax)
due to the mechanical singularities of the system is
observed during the entire motion of the robot.

50

Fig. 5. Trajectory of the tractor-trailer robot in the presence of multiple
fixed obstacle.
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Fig. 6. Evolution of the controllers along the trajectory shown in Fig. 5.
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Fig. 7. Graph of 62(t) — 61(t) versus time for the trajectory shown in
Fig. 5.

B. Line Obstacles

Next, let us fix m > 0 line obstacles in the workspace.
In real-life situation, the line obstacles may be used to
represent:

« boundaries of a rectangular workspace;
« sides of a polygonal obstacle;

» boundaries of a building;

o partitions of rooms inside a building;



o boundary lines of the parking bay [2].

The kth line segment in the z;22-plane, from the point
(ak1,bx1) to the point (axe, bi2) is represented by the set

(22— Yi)* =0},

where X, = ap + (akQ — akl))\k and Y, = by + (ka —
br1) Ak is its parametric representation for 0 < A, < 1.

LOy = {(21,22) € R? : (21 — X3)* +

For each body of the robot to avoid the kth line segment,
we utilize the minimum distance technique (MDT). The
reader can refer to [2] for detailed explanations on MDT.
Minimizing the Euclidean distance between the point
(x4,9;) and the point (X;x, Yix) on the kth line segment,
we get

(i — ak1)(are — ag1) + (¥i — br1)(bre — bra)
(ap2 — ag1)? + (br2 — br1)? ’
for i = 1,2. We further note that the value of \;; should

be between 0 and 1. Hence if \;;. > 1, then we let A\, = 1
and if \;; <0, then we let A\;. = 0.

Aik =

For the tractor-trailer robot to avoid the line segments (as
well as the circular obstacles), we define the controllers
as

-l (- 2) (- 2)

¢(t) _ 2d)max tan_l f(t) _ 01(1)) + zq: O‘lﬁl + f: Yk Pk
™ ) Dy,
1=0 k=1
where
D = min (\/(331 — X11)? + (y1 — Yii)? — rog,
\/(562 — Xo)? + (y2 — Yo )? — T‘U2) ;
gk = — Xak)(p2 —y1) — (11 — Yar)(p1 — x1),
_ 7 if Dk > dmax d
e = max - Dka lf Dk < dmax an
_ 7 if gk = 0
Pe = 1, if g <O

fork=1,2,...,m

Simulation 3: Figures 8 and 9 show trajectories of the
tractor trailer robot in two different workspace cluttered
with various obstacles. In Figure 8, we have considered
four line obstacles which forms a rectangular object for
the robot to avoid on its way to the target. However,
in Figure 9, we have considered two rectangular obsta-
cles and a few circular obstacles of random sizes and
positions. The initial and target positions are given in
the graph captions. The control parameter dy.x = 4 was
used while the robot parameters, workspace dimension,
a and ¢nax are given in Table L
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Fig. 8. Trajectory of the tractor-trailer robot avoiding a rectangular
obstacle.
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Fig. 9. Trajectory of the tractor-trailer robot avoiding rectangular and
circular obstacles



Figure 10 shows the graph of the controllers v(t) and
¢(t) for the trajectory shown in Figure 9. As usual,
the controllers vanish when the robot reaches its goal
position.

Controllers

0 20 40 60 80 100 120
time

Fig. 10. Evolution of the controllers along the trajectory shown in
Fig. 9.

V. CONCLUSION

This paper presents a simple yet noble and unique tech-
nique to solve the motion control problem of a standard
tractor-trailer robot. We first considered the motion of the
robot in an obstacle-free workspace. The proposed con-
trollers ensured that the robot maneuvers from initial to
goal position while observing the mechanical singularity
restrictions. Secondly, in the presence of fixed obstacles,
the various obstacle parameters were included in the
control laws which ensured that the robot slowed down
on approach to an obstacle and safely deviate away
without colliding.

The new control laws proposed in this paper ensure
safe and smooth system trajectories and works for any
number of fixed circular and line obstacles. Computer
simulations are used to numerically verify the effective-
ness of the proposed techniques.

Future work in this research area will involve attaining a
desired final orientations of each body, inclusion of fixed
and moving obstacles of various shapes such as elliptic
and arc obstacles. Moreover, an unknown workspace,
where the positions, sizes and geometry of obstacles are
unknown, will be interesting but challenging.
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