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Abstract 

Plastic deformation is an important process to improve and obtain final product for 

sintered powder materials to compete with solid metal formed parts. The densification 

behaviour and forming limits of sintered iron-0.35% carbon steel preforms with 

different aspect ratios, during cold upsetting with two different lubricating constraints 

namely nil/no and graphite lubricant were investigated experimentally and is 

presented in this work. Powder preforms having initial theoretical density value of 

84%, with two different aspect ratios were prepared using a suitable die–set assembly 

on a 1 MN capacity hydraulic press. Sintering operation was carried in an electric 

muffle furnace at the temperature of 12000C for a holding period of 1.5 hours.  Each 

sintered compact was subjected to incremental compressive loading of 0.05 MN under 

two different lubricant conditions till a visible crack appeared at the free surface. The 

densification mechanism is developed by studying the behaviour of densification 

against induced strain and Poisson’s ratio.  Further, attained density is considered to 

establish flow stress and formability stress index behaviour. Increased frictional 

constraints produces high circumferential stress on the free surface due to barreling 

effect and hence inhibits forming limits. The present work provides a guideline for 

producing P/M components free from open surface pores.    

 

Keywords: Powder metallurgy C; Failure analysis H; Plastic behaviour F. 
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Nomenclature 

C Carbon 

Fe Iron 

θε  True hoop strain 

zε  True axial strain 

J1  First invariant of the stress tensor 

/
2J   Second invariant of the stress deviator 

Y0  Yield strength of a solid material, Pa. 

Y  Yield strength of a partially dense material, Pa.  

ρ Fractional theoretical density 

0ρ  Initial fractional theoretical density 

zσ  Axial stress, Pa 

θσ  Hoop stress, Pa 

rσ  Radial stress, Pa 

mσ  Hydrostatic stress, Pa 

effσ  Effective stress, Pa 

β  Stress formability factor  
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1. Introduction 

Powder forging have been studied extensively and raising much interest in many parts 

of the industry as economic method of producing high strength, high ductility parts 

from metal powders [1] as powder metallurgy (P/M) method competes with other 

methods on the basis of cost which can be lower for high volume production of 

complicated components. The P/M technology is conducive nearly any material that 

can be processed in powder form. This technology is sometimes the only 

manufacturing method used to produce parts using materials such as porous materials, 

composite materials, refractory materials and special high duty alloys [2]. The vast 

application of ferrous powder metallurgy material in automotive and aerospace 

industry provides reasons for researchers to analyze powder metallurgy materials 

behaviour under metal forming processes [3]. Sintered P/M compacts are made by the 

process of compacting and sintering ferrous powder and non-metal powder. A known 

limitation of this route is the large number of small voids left in components after 

sintering. Plastic deformation is a main way to improve the performance of sintered 

ferrous material and obtain the final product. In general the preform produced by the 

conventional process will undergo so large degree of plastic deformation with 

enhanced level of densification [4,5]. Though plastic deformations of powder 

preforms is similar to that of conventional fully dense material, the additional 

complications are because of substantial amount of void fractions. Because there is a 

large number of residual porosity in the sintered powder materials, plastic volume 

change of sintered compacts will result from the void reducing and closing during 

plastic deformation. During the elastic deformation of fully dense material, Poisson’s 

ratio remains constant and it is a property of the material; this ratio being 0.5 for all 

materials that conform to volume constancy. However, in the plastic deformation of 
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sintered P/M preforms, density changes occur, resulting in Poisson’s ratio remaining 

less than 0.5 and tending to approach 0.5 only in the near vicinity of the theoretical 

density. Since the primary cause of fracture in upsetting is the circumferential tensile 

stresses, it is therefore essential to investigate fracture during cold upsetting of 

sintered powder materials [5-7]. 

 

It has been reported [8,9]  that powder metallurgy route processing involves one die 

and one deformation stroke hence proper die design, processes and external 

constraints so as to produce components free from open surface pores must be 

determined. Sintered P/M preforms are particularly prone to fracture during forging 

because the presence of high amounts of pores in the preform act as stress risers hence 

lubrication also influences metal flow in a generally beneficial manner with respect to 

crack formation. Lubrication is important in most metal forming processes 

particularly in cold metal forming because good lubrication improves the quality of 

products through the reduction of defects and improvement in the dimensional 

accuracy and surface finish [9-11]. Investigation has shown that the increase of 

friction condition at die contact surface during deformation substantially increases the 

stresses. The exact shape is obtained from a final forging process, however, voids in 

sintered compacts exert a damaging effect on mechanical properties, and fracture may 

occur in workpiece as a result of major deformation in the forging process. The 

forming limit of porous preforms is a matter of great concern and the workability of 

metals is an important parameter in designing of forming operation [12,13].       

 

The important parameters controlling the metal flow during the upset forging are the 

preform shape, dimensions and density and it is well understood that increasing the 
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density of the P/M parts is the best way to increase the performance of these parts, 

however, the essential governing factor for such design is found to be that the final 

product must be free from defects such as cracks [14,15]. Thus, present investigation 

is aimed to investigate and to establish the technical relationship that exists between 

the resistance to deformation against induced height strain and the attained 

densification as well as to evaluate the effect of die lubricant conditions during cold 

deformation of sintered Fe-0.35%C preforms of constant theoretical density and two 

different lubricating constraints with two different initial aspect ratios.  

  

2. Experimental details  

2.1 Materials and characterization 

Atomized iron powder of less than or equal to 150 µm size and graphite powder of 2-

3 µm size were used in the present investigation. Analysis indicated that the purity of 

iron was 99.7 percent and the rest were insoluble impurities. The characteristic of iron 

powder and Fe-0.35%C blend are shown in Table 1 and 2. 

 
Table 1. Characterization of iron powder and Fe-0.35%C blend   

 
 

Table 2. Sieve size analysis of iron powder 
 

2.2 Blending, compaction and sintering 

A powder mix corresponding to the aforementioned system was taken in a stainless 

steel pot with the powder mixed to porcelain balls (10 mm – 15 mm diameter) with a 

ratio of 1:1 by weight. The pot containing the blended powder was subjected to the 

blending operation by securely tightening and then fixing it to the pot mill. The mill 

was operated for 20 hours to obtain a homogenous mix. Green compacts of 26 mm 

diameter with 9 mm and 16 mm of length were prepared. The powder blend was 
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compacted on a 1.0 MN hydraulic press using a suitable die, a punch and a bottom 

insert in the pressure range of 430 ± 10 MPa to obtain an initial theoretical density of 

0.84 ± 0.01. In order to avoid oxidation during sintering and cooling, the entire 

surface of the compacts were indigenously formed ceramic coated. These ceramic 

coated compacts were heated in the electric muffle furnace with temperature of 

12000C ± 100C. At this temperature the compacts were sintered for 90 minutes 

followed by furnace cooling. 

  

2.3 Cold deformation 

Sintered and furnace cooled preforms were machined to such a dimension so as to 

provide height–to–diameter ratio of 0.40 and 0.6 respectively. The initial dimensions 

of the cylindrical preforms were measure and recorded and used to calculate the initial 

density. Each specimen was compressively deformed between a flat die-set in the 

incremental loading step of 0.05 MN using 1 MN capacity hydraulic press under 

friction conditions, which included dry, unlubricated dies called nil/no lubricant 

condition and lubrication consisting of graphite paste (i.e. graphite with acetone) 

called graphite lubricant condition. The deformation process was stopped once a 

visible crack appeared at the free surface. Dimensional measurements such as 

deformed height, deformed diameters (including bulged and contact) were carried out 

after every step of deformation using digital vernier caliper and the density 

measurements being carried out using the Archimedes principle. Experimental results 

were used to calculate the flow stress, true height strain, true diameter strain, 

percentage theoretical density and Poisson’s ratio. 
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3. Theoretical analysis 

A typical theorem is that the plastic deformation occurs when the elasticity strain 

energy reaches a critical value. The formulation can be written as  

2
0

22
1

/
2 YYBJAJ δ==+         (1) 

where A, B, δ are yield criterion parameters and are functions of fractional theoretical 

density, J1 is the first invariant of the stress tensor, /
2J   is the second invariant of the 

stress deviator and Y0 and Y are yield strength of a solid and partially dense material 

having fractional theoretical density ρ, respectively [16]. The parameters J1 and /
2J  in 

the cylindrical coordinate system where the axis represents radial, circular and axial 

direction can be expressed as follows 

( ) ( ) ( )[ ]222/
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1
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zrJ σσσ θ ++=1          (3) 

Here for axisymmetric forging, θσσ =r , /
2J  and 2

1J  can be written as 
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Substituting Eq. (4) and Eq. (5) into Eq. (1) gives 

( ) ( ) 2
0

2222 44422
6

YB
A

zzzz δσσσσσσσσ θθθθ =+++−+     (6) 

L. Hua et al. [4] has investigated and presented the values for yield criterion 

parameters based on plastic Poisson’s ratio, relative density and flow stress of the 

matrix material and several yield criterion for sintered powder material were also 

compared with each other. The following yield criteria parameters are chosen in this 
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5.0

2
0

2222
0

0 )(
))2(2()1(
�
�

�
�
�

�

−
−−−−

==
ρρ

σσσρσσρσ θθθ zz
effY     (7) 

Eq. (7) gives the expression for effective stress in terms of cylindrical coordinates.  

According to Narayansamy et al. [17], the hoop stress ( θσ ) under triaxial stress state 

condition can be determined as given below: 
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where, 
zd

d
ε
εα θ=  

The stress formability factor [10] is given as  
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where, 
3

2
3

zzr
m

σσσσσσ θθ +
=

++
= , is the hydrostatic stress.  

The stress formability factor as expressed in Eq. (9) is used to describe the effect of 

mean stress and the effective stress on the forming limit of P/M compacts in 

upsetting. 

 

4. Results and discussion 

4.1 Densification 

During the deformation process, such as the one carried out during this research, it is 

well established [6-9,17] that densification is continuously enhanced; therefore, 

densification is a function of induced strain. In this view, the relationship between 

fractional theoretical density and induced height strain during cold upsetting is 
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studied. A plot has been presented as shown in Fig. 1 between true height strain and 

percentage fractional theoretical density for Fe-0.35%C steel preforms for two 

different initial aspect ratios, namely, 0.40 and 0.60, these plots being drawn for two 

different lubricants namely no/nil and graphite lubricant conditions. The general 

observations of curves show that with the increasing height strain, densification is 

also continuously increasing irrespective of initial aspect ratio and lubricant condition. 

It is noted that the densification is higher during the initial stages of deformation with 

reduced height strain. During the initial stages of deformation large number of pores 

are present, thus bigger pores collapse and close with little enhancement in true height 

strain. The second stage follows steady state response indicating the pore closing rate 

has decreased with enhancement in axial deformation and at the final stage very little 

increase in densification is achieved. This is because during the final stages of 

deformation the cylindrical pores whose axis is aligned in the direction of pressing 

acts as stress risers and are difficult to deform and collapse hence very little 

enhancement in density is achieved. This behaviour is true irrespective of the initial 

aspect ratio and frictional constraints. Further, it is found that 0.40 aspect ratio 

preforms densification values are improved for any true height stain value when 

compared to the 0.6 aspect ratio provided the preforms initial theoretical density are 

same, however the final densification achieved before crack initiation on the free 

surface of the preforms is marginally different. The pore closure mechanism is faster 

in lower aspect ratio preform due to the lower pore bed height in comparison to higher 

aspect ratio preform and hence densification increases for lower aspect ratio preform.  

 

The careful examination of Fig. 1 reveal that the densification rate of preform of 

aspect ratio of 0.4 is significantly higher for the graphite lubricant condition from the 
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start of the deformation process when compared to preform of aspect ratio of 0.6 

however, during nil/no lubricant condition this phenomenon is only evident after 

mechanism 1. However, at the final stages of deformation the difference in 

densification achieved is small. This proves the fact that lower initial aspect ratio 

preform has better densification compared to higher aspect ratio preform for a given 

height strain level irrespective of the lubricant conditions. 

 

Further it is found that nil/no lubricant condition (Fig. 1) exhibits higher densification 

rate right from the start of deformation (84% theoretical) to around 96% theoretical 

density when compared to the graphite lubricant condition. Thereafter, irrespective of 

the aspect ratio and lubricants employed, the achieved density is almost equal. A 

possible technical reason is that friction at die contact surfaces provides resistance to 

lateral deformation, which reinforces the vertical forming pressure and thus increases 

the densification of the material. This frictional condition during cold deformation in 

the lateral direction induces barreling in the preform which is the root cause of 

evolving the crack at free surface of the preform. Further, the deformation under 

graphite lubricant condition increases the height strain to fracture for both aspect 

ratios, hence the intensity of barreling increases with increasing frictional constraints. 

Also it is seen from Fig. 1 that the higher aspect ratio facilitates an increase in height 

strain to fracture irrespective of lubricant employed during cold deformation.  

 

Figure 1: Influence of aspect ratios on the densification of iron-0.35% carbon sintered 

alloy powder preform during cold deformation under nil/no & graphite lubricants. 
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Cold working is one of the methods to promote strength in metals; in this case strain 

induced will be the prominent factor for a fully dense material.  The same is true for 

P/M material too, however the additional factor that governs is pore closure or density 

attained.  It is well established [18] that attaining full density besides the mode by 

which it is attained is the significant phenomenon that governs strength of P/M 

material.  Thus a plot constructed for flow stress against attained density for Fe-

0.35%C steel preforms during cold deformation under the influence of preforms 

geometries and lubricating conditions and is shown in Figure 2. It is seen that three 

different stages exists for flow stress against densification plot. There is little rise in 

stress values during the initial stage from its initial density (84% theoretical) to 87-

88% theoretical density as the initial application of axial load is not sufficient to 

deform the preform. As the pores close (due to continued application of load) in the 

P/M preform higher levels of densification is achieved and the strength of the material 

is enhanced which in turn increases the stress values. The slope of the curve during 

the intermediate stage is lower than that of the initial stage due to the lateral 

deformation being pronounced after 88% theoretical density. However, the reason for 

an increase in flow stress values with little densification during the final stages of 

deformation is that the material is expected to strain harden. Further, it is observed for 

any value of percent fractional theoretical density, the lower aspect ratio preform 

deformed under nil/no lubricant condition experience higher stress values compared 

to higher aspect ratio preform. Further, the effect of frictional constraints is only 

evident during the final stages of deformation. 
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Figure 2: Influence of aspect ratios and lubricants on the relationship between the 

flow stress and percent fractional theoretical density of iron-0.35% carbon sintered 

alloy powder preform during cold deformation. 

 

4.2 Poisson’s ratio 

During cold upsetting of powder metallurgy parts a substantial material flow occurs in 

lateral direction as well as axial direction due to the presence of voids. Poisson’s ratio 

is defined as ratio between the lateral strain and axial strain and during the plastic 

deformation of conventional material the Poisson’s ratio is equal to 0.5 to retain the 

volume constancy, however, this is not the case in powder metallurgy materials. 

Figure 3 has been drawn to demonstrate the relationship that exists between true 

diameter strain and true height strain. The initial aspect ratio is kept constant. It can be 

noted that the dashed line representing the relationship between diameter strain and 

height strain for a fully dense material and the curves for porous material are below 

the dashed line. Further, it can be seen that for a given height strain the diameter strain 

is more for graphite employed lubricant compared to nil/no lubricant condition 

indicating lateral deformation is pronounced in the case of graphite lubricated 

preform. In powder preform forging the present pores collapse and close reducing the 

volume hence, during the plastic deformation of P/M material the rate of change of 

diameter is less than that of a fully dense material resulting in Poisson’s ratio values 

to be less than 0.5.  

 

Figure 3: Relationship between true diameter strain and true height strain with the 

influence of lubricants of iron-0.35% carbon sintered alloy powder preform during 

cold deformation. 
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Further, a plot has been constructed to show the relationship between Poisson’s ratio 

and percent fractional theoretical density achieved during powder preform forging of 

sintered iron-0.35% carbon alloy powder preforms, these plots being drawn for two 

different lubricants keeping the initial theoretical density and aspect ratio constant as 

shown in Figure 4. The characteristics nature of these curves follows three distinct 

stages. During the initial stages of deformation the Poisson’s ratio values increases 

rapidly with little densification irrespective of the lubricants used. The intermediate 

stage of densification is treated as a steady state condition, where most of the 

densification occurs with very gradual increase in Poisson’s ratio and during the final 

stages of deformation a rapid increase in Poisson’s ratio occurred without much 

enhancement in densification. Further, it exhibits the tendency to approach a limiting 

value of 0.5. Further observation reveals that for a given percent theoretical density 

the Poisson’s ratio value are higher for graphite lubricant condition compared to the 

nil/no lubricant condition as the lateral deformation in enhanced in the case of 

graphite lubricant. It can be concluded that graphite employed lubricant has enhanced 

the deformation when compared to the nil/no lubricant condition during cold upset 

forging.  

 

Figure 4: Variation of Poisson’s ratio with percent fractional theoretical density of 

iron-0.35% carbon sintered alloy powder preforms with different lubricants. 

 

4.3 Micrograph analysis 

Further, to understand the deformation behaviour of Fe-0.35%C the microstructure 

view of 1000X magnification is shown in Fig. 5(a), 5(b), 6(a) and 6(b) respectively. 
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Particularly, the view was selected one at the centre and other one at the extreme 

diametric side of each of the preforms in order to view the presence of porosities.  The 

presence of porosity at the centre (refer Fig, 5(a) and 6(a)) was very little in 

comparison to extreme diametric view (refer Fig, 5(b) and 6(b)). Further, the pores 

present at the centre have round shape whilst the pores at extreme diametric side are 

elongated in the direction of metal flow. It can be said that effective closure of pores 

of a cylindrical preform at the centre is much higher in comparison to extreme 

diametric side. The effective closure of pores diminishes laterally outwards.  

 
Figure 5(a) and 5(b): Microstructure view at centre and diametric extreme of the 

preform deformed under dry friction conditions respectively 

 
Figure 6(a) and 6(b): Microstructure view at centre and diametric extreme of the 

preform deformed under graphite employed friction conditions respectively 

 

4.4 Forming limit  

In powder preform forging the upsetting operation is terminated or the repressing 

process is employed once the crack appears on the free surface to produce defect free 

parts [9]. Hence, the forming limit of powder metallurgy materials has significant 

implications in design of the preform geometry as well as dies. Figure 7 demonstrate 

the relationship between the height strain at fracture and initial aspect ratio. This 

figure also shows the effect of the lubricant on the aforesaid relationship. It can be 

seen from Figure 7 that an increase in initial aspect ratio from 0.4 to 0.6 increases the 

true height strain at fracture irrespective of the lubricant employed, however, the true 

height strain to fracture values are enhanced in the case of graphite lubricant condition 

compared to the nil/no lubricant condition. It can be concluded that increasing the 
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initial aspect ratio and reducing frictional constraints promotes height strain to 

fracture.  

 

Figure 7: Relationship between height strain at fracture in cold deformation of iron-

0.35% carbon sintered alloy powder preform with initial aspect ratios. 

 

The relationship between true diameter strain at fracture and true height strain at 

fracture is shown in Figure 8. It is noted that under the application of graphite 

lubricant condition both true diameter strain at fracture and true height strain at 

fracture is enhanced for a given initial aspect ratio when compared to nil/no lubricant 

condition. Further, it is noted that the slope of the curve in the case of graphite 

lubricant condition is higher for true diameter strain at fracture against true height 

strain at fracture. Hence, it can be said that an increase of aspect ratio in graphite 

employed lubricant promotes substantial lateral deformation when compared to nil/no 

lubricant condition.  However, this substantial lateral deformation only elongates the 

voids but not effectively closes; this is the reason graphite lubricant employed 

preforms not effectively promoted densification at the intermediate stages 

nevertheless before fracture the maximum density attained is in par with nil/no 

lubricant employed preforms (refer Fig 1).  These plots are essential in designing of 

preform geometries and dies for cold upsetting operations.  

 

Figure 8: Relationship between true diameter strain and true height strain at fracture 

in cold deformation of iron-0.35% carbon sintered alloy powder preform with the 

influence of initial aspect ratio and frictional condition. 
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4.5 Formability stress index 

Formability is a measure of the extent of deformation that a material can withstand the 

induced internal stresses of forming prior to fracture occurred [17].  It has been 

reported [10] that the effect of relative density (fractional theoretical density) is a 

major concern on formability of P/M material.  It is imperative to note that the extent 

to which P/M material are formed as well as maximum density been achieved are the 

major concerns for structural applications.  Therefore formability stress index as a 

function of fractional theoretical density and strain induced is constructed and shown 

in Fig. 9 and Fig. 10 respectively. These curves are plotted for two initial aspect ratios 

for two different frictional constraints. From Fig. 9 it is seen as the densification 

increases, the formability stress index increase and as the relative density approaches 

1.0, there is significant increase in the formability stress index due to the closing of 

pores during densification or plastic deformation. The characteristics nature of the 

curve is similar irrespective of the aspect ratio and lubricant employed.     

 

Figure 9: Relationship between formability stress index and fractional theoretical 

density of iron-0.35% carbon sintered alloy powder preform with the influence of 

initial aspect ratio and frictional condition. 

 

From Fig. 10 for all aspect ratio and frictional constraints, the axial strain increases 

with increasing values of formability stress index. For equal height strain level, the 

lower aspect ratio preform exhibits improved formability stress index compared to 

that of larger aspect ratio irrespective of the lubricant employed.  Further interesting 
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point to note is that increasing the aspect ratio and decreasing the friction conditions 

are obviously increasing the deformation, however the maximum formability stress 

index value attained by the Fe-0.35%C preforms are almost same irrespective of 

variables considered in this investigation but at various strain values. 

 

Figure 10: Relationship between formability stress index and true height strain of 

iron-0.35% carbon sintered alloy powder preform with the influence of initial aspect 

ratio and frictional condition. 

 

5. Conclusions 

The preform geometry and frictional constraints during cold upsetting operations 

affects the densification behaviour, the forming limit and the formability 

characteristics of Fe-0.35%C P/M steels.  Accordingly the major conclusions have 

been drawn that are as follows.  

• The amount of densification is found to be high when decreasing aspect ratio 

and increasing friction conditions, however the final achievements of 

densification were almost same irrespective of the variables used in the 

investigation. Further Poisson’s ratio showed a tendency to a limiting value of 

0.5 as densification progresses towards the vicinity of near theoretical density.  

• Fracture strains include height and diameter strain found to increase 

substantially when friction condition decreases but it is not for granted to 

promote densification, the similar phenomena is true when aspect ratio 

increased, however the effect is mild. 
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• Formability stress index was computed and its behavior against promoted 

densification with respect to the considered variables is literally negligible, 

however against strain induced is prominent.  

• The porosity presented at the centre are small in amount and round in shape 

while at the extreme diametric side more porosities are seen and it is elongated 

in the direction of metal flow which in turn will appear as visible crack at the 

free surface.   
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Figure 1: Influence of aspect ratios on the densification of iron-0.35% carbon sintered 

alloy powder preform during cold deformation under nil/no & graphite lubricants. 
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Figure 2: Influence of aspect ratios and lubricants on the relationship between the 

flow stress and percent fractional theoretical density of iron-0.35% carbon sintered 

alloy powder preform during cold deformation. 
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Figure 3: Relationship between true diameter strain and true height strain with the 

influence of lubricants of iron-0.35% carbon sintered alloy powder preform during 

cold deformation. 
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Figure 4: Variation of Poisson’s ratio with percent fractional theoretical density of 

iron-0.35% carbon sintered alloy powder preforms with different lubricants. 
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Figure 5(a) Figure 5(b) 
 

Figure 5(a) and 5(b): Microstructure view at centre and diametric extreme of the 
preform deformed under dry friction conditions respectively 
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Figure 6(a) Figure 6(b) 
 

Figure 6(a) and 6(b): Microstructure view at centre and diametric extreme of the 

preform deformed under graphite employed friction conditions respectively 
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Figure 7: Relationship between height strain at fracture in cold deformation of iron-

0.35% carbon sintered alloy powder preform with initial aspect ratios. 
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Figure 8: Relationship between true diameter strain and true height strain at fracture 

in cold deformation of iron-0.35% carbon sintered alloy powder preform with the 

influence of initial aspect ratio and frictional condition. 
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Figure 9: Relationship between formability stress index and fractional theoretical 

density of iron-0.35% carbon sintered alloy powder preform with the influence of 

initial aspect ratio and frictional condition. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0 0.2 0.4 0.6 0.8 1.0
True Height Strain

Fo
rm

ab
ilit

y 
S

tre
ss

 In
de

x

N 0.4
N 0.6
G 0.4
G 0.6

 

Figure 10: Relationship between formability stress index and true height strain of 

iron-0.35% carbon sintered alloy powder preform with the influence of initial aspect 

ratio and frictional condition. 
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Table 1. Characterization of iron powder and Fe-0.35%C blend 
 

Si. No. Property Iron Fe-0.35%C Blend 

1. Apparent Density (g/cc) 3.38 3.37 
2. Flow rate, (s/50g) by Hall Flow Meter 26.3 28.1 
3. Compressibility (g/cc) at pressure of 

430±10MPa 6.46 6.26 

   
 

 
Table 2. Sieve size analysis of iron powder 

 
Sieve size (µm) 

 150 +125 +100 +75 +63 +45 -45 

Wt % Ret. 10.60 24.54 15.46 19.90 11.10 8.40 10.00 

 

 


