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Abstract—This paper is dealing with the problem of tissue 

characterization of the plaque in the coronary arteries by 

processing the data from the intravascular ultrasound catheter. 

Two similarity-based methods are proposed in the paper, 

namely the histogram-based and the center-of-gravity-based 

method. Both of them use the general computational strategy of 

the moving window with fixed size and maximal overlapping 

ratio. The obtained similarity results are graphically displayed 

in two modes: hard decision with a given threshold and soft 

decision with gradual changes in the dissimilarity values.  

Simulation results from the tissue characterization of two 

real data sets - training and test data set, are shown and 

discussed in the paper with suggestions for further 

improvement of the method. 

Index Terms — moving window, similarity analysis, tissue 

characterization, normalized histogram, intravascular 

ultrasound.  

I. INTRODUCTION 

HE coronary arteries play vital role for the normal 

functioning of the human heart by supplying fresh blood 

to the muscular tissue of the heart. Therefore a gradual 

build-up of a plaque in the inner surface of the artery could 

lead in some circumstances to severe heart diseases (acute 

coronary syndrome) such as myocardial infarction and 

angina.   

   The inner structure of the plaque tissue is directly related to 

the risk of a heart failure. The most important are two types 

of structures in the plaque, namely the lipid and the fibrous 

structure. A plaque prone to collapse usually has a large lipid 

core covered by a thin and small fibrous cap. This condition 

is very likely to cause breaking of the fibrous cap, which 

allows the lipid core to enter the blood stream and create 

dangerous blood clots. Therefore it is of utmost importance to 

analyze the structure of the plaque and find out the so called 

lipid and fibrous regions of interest, abbreviated as Lipid 

ROI and Fibrous ROI.  
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The analysis and estimation of the size shape and location 

of the Lipid ROI and Fibrous ROI is usually called tissue 

characterization in medical terms, which falls into the 

research area of pattern recognition and pattern 

classification.  

One of the most frequently used techniques to get reliable 

information from the coronary artery for further visualization 

and tissue characterization is the Intravascular Ultrasound 

(IVUS) method [1]. The IVUS method uses a small rotating 

catheter with a probe inserted into the coronary artery that 

emits a high frequency ultra-sonic signal to the tissue. The 

reflected radio-frequency (RF) signal is measured and saved 

in computer memory for further analysis and visualization. 

The IVUS is essentially a tomographic imaging 

technology, in which the reflected RF signal is preprocessed 

to produce a gray-scale image with a circular shape, called a 

B-mode image that is used by medical doctors for observation 

and analysis of the artery occlusion. One B-mode image 

corresponds to one cross-section of the coronary artery with a 

given depth-range in all 256 directions (angles) of rotation of 

the IVUS probe.  

In this paper we do not have a special interest in data 

visualizing, but rather in the appropriate data analysis for 

tissue characterization. Therefore we represent the data and 

the respective results in a rectangular X-Y shape, instead of in 

circular shape. The axis X denotes the angle (direction) of the 

IVUS probe within the range of [0, 255], while the ordinate Y 

denotes the depth of the measurement. i.e. the distance 

between the probe and the current measured signal. The 

depth-of-interest in our investigations is within the range: [0, 

400] since any lipid ROI found in the deeper inner areas of 

the coronary artery is considered as “not so risky”.  

A graphical illustration of the matrix-type information 

obtained by the IVUS probe is presented in Fig. 1. The 

obtained large size matrix is called RF matrix and is further 

on saved in the computer memory  It consists of every single 

measurement obtained for the IVUS probe for one cross 

section in the coronary artery.. 

A long term research and data analysis have been done 

until now [1] – [4] to utilize the information obtained from 

the IVUS method for a proper tissue characterization of the 

plaque in the coronary artery. As a result, different 

classification techniques and algorithms have been proposed, 

developed and used for various simulations and comparisons. 

However, currently no “ideal” and easy-to-apply method still 

exists.  
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Fig. 1.  Information obtained from the IVUS probe for one cross-section of the 

coronary artery. This is a rectangular X-Y matrix of data with X denoting the 

rotation angle and Y denoting the depth of the measurement. 

In this paper we propose two similarity-based tissue 

characterization methods. Both of them are based on the 

same general concept of the moving window computation, but 

use different methods and models for similarity analysis, 

namely the histogram-based method and the 

center-of-gravity method. The work in this paper is a more 

advanced step of our previous results in [4] that also use the 

concept of moving window and similarity analysis. In this 

paper we present a moving window with maximal 

overlapping ration and a new method for similarity analysis.  

The rest of the paper is organized as follows. In Section II 

the general concept of the moving window, combined with 

different similarity analysis methods is presented. Section III 

explains two models used for similarity analysis and Section 

IV gives details about the similarity analysis calculations.  

Section V shows and explains the tissue characterization 

results obtained by using the two different methods. Finally, 

Section VI concludes the research results in this paper.  

II. THE MOVING WINDOW-BASED SIMILARITY ANALYSIS 

A. The General Moving Window Approach 

We propose here a general Moving Window approach to 

similarity analysis, which was tested and shown to be a 

suitable and practical tool for solving the problem of tissue 

characterization of the coronary artery plaque. A graphical 

explanation of this approach is given in Fig. 2.  
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Fig. 2.  The general concept of the Moving Window approach to similarity 

analysis. The fixed-size window scans the entire rectangular area of data from 

the top-left corner (angle 0 and depth 0) to the bottom-right corner (angle 255, 

depth = Dmax) , with one step at a time.  

First of all, the rectangular RF data matrix that 

corresponds to the whole examination area of one cross 

section of the artery is extracted. This matrix consists of all 

the values of the reflected RF signal and has a size of 256 x 

Dmax, with the value of Dmax = 400 considered as a 

sufficient maximal depth for examination.  

The next preparation step is to select a rectangular window 

with size X YN N , with the following “reasonable” values for 

the Angle_Range: 2 60XN   and for the Depth_Range: 

5 100YN  . 

The window with the predefined size performs scanning of 

the whole data matrix, starting from the upper-left corner to 

the bottom-right corner of the matrix. At each step, the 

window is shifted just one angle position to the right until the 

end of the current horizontal line. After that the window 

returns to its leftmost angle position, but is shifted one depth 

position below and resumes the scan to the right of the data 

RF matrix. This process is continued until the window 

reaches the bottom-right corner of the data matrix.  

It is worth noting that in such way, every two neighboring 

windows are overlapped with a maximal overlapping ratio, 

because they differ from each other by only one position. This 

way of movement of the windows is different from our 

previous moving window approach in [4] where no 

overlapping between the neighboring windows was assumed. 

Our assumption was that by using the maximal possible 

overlapping ratio, better classification (characterization) 

results could be achieved. Such assumption has been later on 

proven experimentally to be true.    

For the proposed moving window approach with maximal 

overlapping ratio, it is calculated that the following large 

number of windows will be generated during the whole 

scanning: max( )W YN 256 D N 1    . 

B. Similarity Analysis by Using the Moving Window 

We define here the similarity analysis as a method for 

comparing in a numerical way the structure (characteristics) 

of two data sets. The first data set is usually fixed (constant) 

and corresponds to a given region of interest, such as Lipid 

ROI or Fibrous ROI. The second data set is generated 

(extracted) from the current window , 1,2,...,i WW i N during 

the Moving Window process.  

Therefore the similarity analysis is essentially a supervised 

procedure for decision making, in which the so called 

Dissimilarity Degree DS is calculated between the given data 

sets. The value of DS is usually bounded: [0, ]iDS T  and 

shows how close is the data structure from the current 

window , 1,2,...,i WW i N to the data structure in the 

predefined ROI. Then, a value of dissimilarity, close to zero 

suggests that the two data sets are very similar and a bigger 

value (closer to T) stands for a bigger difference (bigger 

discrepancy) between the two data sets. For the purpose of 

fair quantitative comparison between the data sets, the 

dissimilarity value is often normalized as: [0,1]iDS  .  

 It is obvious that the calculated value of dissimilarity 

would depend on the type of the assumed model for 

describing the structure of the data set at each window. This 

topic is covered in more details in the next Section II and 

Section IV of the paper.   



 

When using the similarity analysis in the frame of the 

moving windows approach, the similarity value iDS will be 

calculated many times, namely for each current position of 

the window iW . Then the natural question is where (at which 

location) to assign the currently calculated value of iDS ?  

This problem arises because all X YN N  
data in the current 

window iW have been used for calculation of the 

dissimilarity.  

In this paper we take the following decision, namely the 

same dissimilarity degree iDS will be assigned to all 

coordinates (all cells) within the window iW that have been 

used in the calculations. In order to keep in a memory all 

these values, we create a new rectangular matrix called 

Dissimilarity Matrix DM, with the same dimension as the 

Data Matrix RF, i.e. 245 x Dmax. 

It is easy to realize that each data item (each cell) in the 

original data matrix RF will be visited many times by the 

moving window. If N denotes the number of all visits of a 

given cell at location { , }; [ , ]; [ , ]i j i 0 255 j 0 Dmax   by a 

moving window with size X YN N , then this number is 

calculated as:  
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The DM matrix is actually an additive matrix that 

accumulates all the calculated values for the dissimilarity 

degrees at the same location {i,j},  as follows:  

, ,...,i j i j kdm dm DS k 1,2 N                        (2) 

Finally, the true dissimilarity degree for this {i,j} location 

is taken as a mean value of the accumulated similarity 

degrees in DM, namely: 

max/ , [ , ]; [ , ]i j i jdm dm N i 0 255 j 0 D              (3) 

 Now all true dissimilarity degrees are saved in the DM 

matrix and are ready to be displayed in at least two different 

ways for the final decision making.  

 A Hard Decision making. It applies a user-defined 

threshold Th for separation of all the values into 2 

crisp classes, namely: Similar (with i jdm Th ) and 

Not Similar  (with i jdm Th ) to the respective 

reference region of interest, such as Lipid ROI or 

Fibrous ROI. Then the Similar only class can be 

visualized in an easy-to-see way to the medical doctor 

for his final decision. Here it is worth noting that the 

proper selection of the threshold is not an easy task, 

which can lead sometimes to ambiguous results.   

 A Soft Decision making. It is a kind of fuzzy way of 

displaying the results, in which all calculated values 

in (3) are visualized with different color intensity. The 

values closer to zero are shown in an easy-to-notice 

darker color. Reversely, the areas containing larger 

values of dissimilarity degrees will be shown in very 

thin (or almost white) color and can be neglected by 

the final doctor’s decision. 

III. MODELS USED FOR SIMILARITY ANALYSIS 

Before calculating the similarity analysis between two data 

sets, we have to decide what type of model would be best 

suited for describing the data structure. Then, according to 

the illustration in Fig. 3., we have to compute (once only) the 

Reference Models LRM  and 
FRM for the predefined Lipid 

ROI and Fibrous ROI., by using their respective data: LM   

and  
FM . 
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Fig. 3.  Illustration of three different data sets to be compared by the similarity 

analysis. One is the data set from the Lipid ROI, the other is the data set from the 

Fibrous ROI and the shadowed rectangular data set belongs to the current 

moving window. All these data set use the same type of model for structure 

representation.  

After that another model calculation is needed for each of 

the moving windows, by using the data W X YM N N   

contained in this window.  

In this section we explain two simple types of models, 

which are convenient for similarity analysis and therefore 

used in further simulations and experiments.  

A. The Normalized Histogram (NH) Model  

This model represents the normalized distribution of the 

RF signal intensity (strength) within the whole range of 

intensities max[ , ]0 R . If M denotes the data number in a given 

ROI or in a given window W and N is the number of the 

pre-selected intervals with equal width  , then the 

normalized histogram is calculated as follows:   

1

/ [0,1]; 1
N

i i i

i

h m N h


                     (4) 

where  , ,...,im i 1,2 N denotes the number of measured RF 

intensities within the i-th interval. Here the following 

conditions hold:    

                

1

0 ;
N

i i

i

m M m M


                        (5) 

Fig.  4. depicts an example of a raw RF signal intensity for 

a given angle and all depths between 0 and 400. The next Fig. 

5. illustrates two normalized histograms that belong to a 

given ROI and to one arbitrary selected window. 



 

 
Fig. 4.  The raw reflected RF signal at one fixed angle (100) of the IVUS 

catheter and all depths, starting from 0 to 400. 
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Fig. 5.  Illustration of two histograms and their difference (the shadowed area). 

The left histogram is obtained from the Lipid ROI and the right histogram is 

obtained from one arbitrary selected window.  

B. The Center-of-Gravity (COG) Model  

This model evaluates the structure of a given data set by 

using two parameters with clear physical understanding, 

namely the Center-of-Gravity (COG) and the Standard 

Deviation (SD). Data sets with different structures have 

different values of COG and SD, so the difference between 

the two parameters can be used for similarity analysis.  

The next Fig. 6. serves as a graphical illustration of two 

different data structures, namely a Fibrous ROI and a Lipid 

ROI, extracted from the original data in the RF matrix, as 

shown in the example in Fig. 3. It is easy to notice that the 

Fibrous ROI consists of data (i.e. RF signal intensities) with 

higher value and bigger variations, that the data from the 

Lipid ROI, which are lower in values and smoother.  

The main reason for such difference is that the lipid tissue 

is softer and absorbs a large amount of the RF signal, while 

the fibrous tissue has higher elasticity and as a result reflects 

a large part of the signal.  

Let M denotes the number of data, i.e. the number of 

extracted RF signal intensities , 1,2,...,iR i M from a 

given ROI or a given window W. Then the two model 

parameters COG and SD are easily calculated as follows:  

- The Center-of-Gravity of the model is simply calculated 

as a mean value of the one-dimensional RF signal:   

          

1

M

i

i

COG R M


 
                                        (6)  

   -The Standard Deviation is calculated as:  

2

1
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i
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Fig. 6.  Two different 3-dimensional data structures; (a) The data from the 

Fibrous ROI; (b) The data from the Lipid ROI; The difference can be visually 

noticed.  
 

The calculated values of COG and SD for the Fibrous ROI 

and the Lipid ROI, extracted from the experimental RF data 

matrix are as follows:  

Fibrous ROI:  COG = 1990.5;    SD = 57.90; 

Lipid ROI    :  COG = 1954.7;    SD = 17.20. 

IV. SIMILARITY ANALYSIS CALCULATIONS 

As we have already mentioned in Section II, the similarity 

analysis is based on calculating the Dissimilarity Degree 
[0, ]DS T  between two selected data sets. It is obviously 

that this calculation would depend on the assumed model for 

describing the data sets. Since we have assumed two models 

in Section III, namely the Normalized Histogram (NH) 

Model and the Center-of-Gravity (COG) Model, the 

respective calculation of DS is as follows:   

A. Dissimilarity Calculation by Use of the NH Model 

Basically, it is a comparison of two curves (two 

histograms) that have been created from two data sets by 

using (4) and (5).  Let 0H  and iH denote the normalized 

histograms of a given ROI and the i-th moving window 

respectively. Then the normalized value of dissimilarity is 

calculated as:  

0

0

1

( , ) 2 [0,1]
N

i

i i j j

j

DS DS H H h h


   
            (8) 

The denominator of 2 is used, because the largest possible 

discrepancy between the two histograms (when they do not 

overlap at all) will be 2.   

B. Dissimilarity Calculation by Use of the COG Model 

We assume here the easiest and the most practical way for 

comparing the two data sets, by calculating the Euclidean 

distance between the two parameters of the respective COG 

models, namely: 
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       (9) 

Since the maximal distance maxT  is usually data dependent 

value, the original dissimilarity (9) is not normalized 

between 0 and 1 .However, it is possible to make some 

specific practical assumptions, in order to curb the 

non-interesting high vales of dissimilarity and to display anly 

the similarities closer to zero (i.e the most interesting cases).  

V. SIMULATION RESULTS FROM TISSUE CHARACTERIZATION  

A. Simulation Details and Conditions 

The above described moving window approach for 

similarity analysis was used for tissue characterization of 

several sets of real data, in the form of respective RF matrices, 

each of them with X-Y size: 256 x 400 (the maximal depth: 

Dmax = 400). For each matrix, the respective Lipid ROI and 

Fibrous ROI have been properly identified and marked by a 

medical doctor through a microscopic analysis. These ROI 

data were used for creating the Reference Lipid and Fibrous 

models for similarity analysis and also for testing and 

analyzing the correctness of the simulation results.  

In all the simulations, a moving window with fixed-size of 

30 x 40 was used, which means that totally 92426 windows 

were generated and used for similarity analysis. Despite the 

large number of the windows, the calculations were relatively 

fast, because of the simple structure of the proposed NH and 

COG models. The CPU time for all RF sets did not exceed 40 

sec. This fact suggests that if the proposed tissue 

characterization method is “accurate enough”, it could be 

applied in near real-time mode.     

B. Simulation Results from the Training Set 

First, we used one RF set as a Training Set for obtaining 

the Reference models for the Fibrous and Lipid ROI. Here 

both models were calculated, namely the NH and the COG 

model. They were used for similarity analysis with two types 

of decisions: Hard decision and Soft decision, as described in 

Section II with user defined thresholds. The results are 

shown in the following 4 figures: Fig. 7, 8, 9 and 10. 

It is easy to notice that the characterization results show 

much larger areas for both Lipid and Fibrous ROI than the 

actual identified ROI by the doctor. There could be different 

reasons for such “far from ideal” results. One of them is 

“hidden” in the threshold choice and the other is that the 

doctor actually identified one only ROI and did not check for 

existence of other ROI within the sane cross section.   
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Fig. 7.  Hard-Decision Results from the tissue characterization of the Fibrous (a) 

and Lipid (b) ROI by using the Histogram-based Model (NH). The threshold 

used is: Th = 0.2. 
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Fig. 8.  Soft-Decision Results from the tissue characterization of the Fibrous (a) 

and Lipid (b) ROI by using the Histogram-based Model (NH). The threshold 

used is: Th = 0.2. 
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Fig. 9.  Hard-Decision Results from the tissue characterization of the Fibrous (a) 

and Lipid (b) ROI by using the COG Model with a threshold used: Th = 20. 



 

a) 

0

400

350

300

250

200

150

100

50

2500 20015010050

Fibrous

 

b) 

0

400

350

300

250

200

150

100

50

2500 20015010050

Lipid

 

Fig. 10.  Soft-Decision Results from the tissue characterization of the Fibrous 

(a) and Lipid (b) ROI by using the COG Model with a threshold used: Th = 30. 

C. Simulation Results from a Test Data Set 

In order to test the reliability of the proposed methods for 

tissue characterization, we need another data set that has not 

been used for training, but for which we “know the answer”. 

Therefore we selected another RF matrix from our available 

experimental data and used it as a Test Data set. When 

calculating the results for tissue characterization of this new 

Test Data set, we used the same NH and COG ROI models, 

which were created from the previous Training Data set. And 

since we know the actual and properly identified Lipid and 

Fibrous ROI for the Test Data set, it was possible to make 

visual estimation of the characterization results.   

Because of space limitation in this paper, we present here 

the soft decisions only, for both models - the NH and the 

COG model. The results are seen in Fig. 11 and Fig. 12.   
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Fig. 11.  Soft-Decision Results from the tissue characterization of the Fibrous 

(a) and Lipid (b) ROI by using the Normalized Histogram-based Model (NH). 

The threshold used is: Th = 0.3. 
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Fig. 12.  Soft-Decision Results from the tissue characterization of the Fibrous 

(a) and Lipid (b) ROI by using the COG Model with a threshold used: Th = 30. 

As seen from these figures, the characterization results are 

similar as quaity to the results from the Trainig Data set. 

VI. CONCLUSION 

We proposed in this paper a general Moving Window 

computational approach with maximal overlapping ratio for 

tissue characterization of coronary arteries. This approach 

uses data obtained from the IVUS catheter and allows 

implementation of different methods and models for 

similarity analysis. Two of them, the Normalized-Histogram 

based and the Center-of-Gravity based models were proposed 

and used in the paper. They calculate the dissimilarity degree 

DS for taking the final characterization decision, which can 

be visualized in two forms, namely as Hard or Soft decision.   

 The simulation results by using Training and Test Data 

sets show positive, but still “far from perfect” results. They 

usually detect a large part of the actual Lipid and Fibrous ROI, 

but at the same time show also some other areas, as “looking 

very similar” to those ROI. Therefore further improvements 

of the proposed methods are needed.  

   Possible further improvements include optimization of 

the window size and the threshold for decision making, as 

well as constructing some different methods for similarity 

analysis and for calculation of the dissimilarity degree.  
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