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Abstract—The breaking down of a particular problem through
problem decomposition has enabled complex problems to be
solved efficiently. The two major problem decomposition methods
used in cooperative coevolution are synapse and neuron level.
The combination of both the problem decomposition as a hybrid
problem decomposition has been seen applied in time series
prediction. The different problem decomposition methods applied
at particular area of a network can share its strengths to solve the
problem better, which forms the major motivation. In this paper,
we are proposing a combination utilization of two hybrid problem
decomposition method for Elman recurrent neural networks and
applied to time series prediction. The results reveal that the
proposed method has got better results in some datasets when
compared to its standalone methods. The results are better in
selected cases for proposed method when compared to several
other approaches from the literature.

Index Terms—Cooperative coevolution, problem decomposi-
tion, recurrent network

I. INTRODUCTION

Coevolutionary algorithms are becoming a prevalent prac-
tice in solving computationally difficult problems. The dy-
namic nature of many real world problems and applications
have inspired many researchers to develop algorithms that
search for optimal solutions [1]. The cooperative coevolution-
ary algorithms (CCAs) are evolutionary architectures which
solve large problems by disintegrating them into smaller
subcomponents and then solving these subcomponents indi-
vidually to find solution to the larger problem [2], [3]. Here
a number of species are evolved together to achieve optimal
solutions where individuals are rewarded based on how well
they cooperate with one another [4]. Applications of coopera-
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tive coevolutionary algorithms have shown encouraging results
in training recurrent neural networks [3], [5]-[8].

An issue of cooperative coevolution is its sensitivity towards
problem decomposition [9]. According to [10], [11], decompo-
sition strategies have pronounced impact on the performance
of cooperative coevolutionary architectures. As such, extensive
experimentation is required to identify an ideal decomposition
strategy.

Recently, various problem decomposition strategies have
been utilized in the field of cooperative neuro-evolution such
as the neuron and synapse level decomposition [9] in time
series prediction [3], [5], [7]. The adaptive modularity co-
operative coevolution framework (AMCC) introduced in [7]
uses the strength of different problem decomposition methods
at different stages of evolution to solve chaotic time series
problem. The work in [3] combines the neuron and synapse
decomposition technique to form a hybrid problem decompo-
sition called the Neuron-Synapse Level decomposition (NSL)
which produced better results in selected benchmark data
sets. Another hybrid problem decomposition was introduced in
[12], where neuron and network level problem decomposition
were used. Even here, the results produced seemed better in
selected datasets.

The results of the Competitive Island based Cooperative
Coevolution (CICC) used in [10] shows that competition and
collaboration can produce better solutions than the regular
decomposition strategies. The combination of two problem
decomposition has also produced good results on certain
number of datasets.

In this paper, we utilize a combination of two hybrid
problem decomposition namely neuron-synapse level problem
decomposition and neuron-network level problem decomposi-



tion with Elman recurrent network for time series prediction.
One problem decomposition is used for certain number of
iterations and then the other is run for the same number of
iteration, subsequently the best one is selected for training
and testings of the network.

The rest of the paper is organized as follows. In Section
2, the proposed problem decomposition is discussed in detail.
The Section 3 shows the experimental setup. In Section 4 and
5, the results and discussion are given respectively. Section 6
concludes the paper with a discussion of future extensions of
the research.

II. PROPOSED METHOD

There is clearly an important role that hybridization or
combination plays in everyday life, and the same applies to
time series prediction. Using combination of problem decom-
position in time series prediction, better results can be sought
from each decomposition techniques by refining the training
and testing processes.

In this paper, inspired by the research done in [13] where
competitive model was used a combinational model is pro-
posed where hybrid problem decomposition algorithms are
used to solve a particular problem. In [13], the author used
standalone problem decomposition method’s in his competitive
model, which motivated the use of multiple problem decom-
position methods where elimination and selection are done.
The model we propose is called Combinational Hybrid Model
(CHM) and is shown in Fig.1. CHM breaks down the problem
into a lower level using Neuron-Synapse and Neuron-Network
level problem decomposition.

In the proposed model, the best solutions are not changed
with different methods as done in [13], rather best solutions
are just used to train and test the dataset. Initially, the model
used one decomposition for certain number of iterations and
the other for left over iterations. This way the network was
not fully utilizing the potential of both the problem decom-
position. Therefore, both were run one after the other for full
iteration allowing for best to proceed further and since both
decompositions were best for certain times, the combinational
result was sorted.

Algorithm 1 shows the proposed method used for training
the recurrent network. In the first step of the algorithm, all the
subpopulations of both the algorithms are initialized and co-
operatively evaluated according to the problem decomposition
technique applied.

In the second step, the evolution of the different decompo-
sition method takes place. Here, each method is evolved for a
predefined time given by the number of fitness evaluations in
a round-robin fashion. This is called decomposition evolution
time which is given by the number of function evaluations in
the respective method. As soon as both decomposition meth-
ods have been evolved for the evolution time, the algorithm
proceeds to step 3.

In step 3,the two solutions are compared during every run
and one solution is eliminated while the best gets selected.
This phase is called the Elimination and Selection. If both

Algorithm 1: Combinational Hybrid Model for training
Recurrent Neural Networks
Step 1: Initialisation:
1. Cooperatively evaluate network according to NSL
method
ii. Cooperatively evaluate network according to NNL
method
Step 2: Evolution:
while FuncEval < GlobalEvolutionTime do
while FuncEval < Decomposition-Evolution-Time do
foreach Sub-population at NSL do

foreach Depth of n Generations do
Create new individuals using genetic

operators

Cooperative Evaluation
end

end

end
while FuncEval < Decomposition-Evolution-Time do
foreach Sub-population at NNL do

foreach Depth of n Generations do
Create new individuals using genetic
operators
Cooperative Evaluation
end
end

end

Step 3: Elimination and selection: Compare the two
results. Best solution selected and used for training
and testing.

end

have same results then first decomposition solution is regarded
as best and used for training and testing.

Once the best solution is selected, it is then used for
training and testing of the dataset, and it continues to run
until the number of runs are completed. Apparently, both
decompositions collaborate as a team to give a better solution;
both decomposition techniques combines as a result.

III. EXPERIMENTAL SETUP

In this section, the experimental setup conducted using co-
operative coevolution to train recurrent networks is presented.

Taken’s embedding theorem [14] allows reconstruction of
the dataset before it can be used. The two important conditions
of reconstruction of the chaotic time series data into a state
space vector are time delay (T) and embedding dimension (D)
[14]. For training and testing the proposed method, the five
different datasets are used which are initially split into half.
The cooperative coevolution algorithm used in this research is
part of the algorithms provided in Smart Bilo Computational
Intelligence Framework [15] which provides better comparison
with the literature.

The first two datasets used are the Mackey-Glass time series
dataset [16] and Lorenz time series [17] which are simulated
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Fig. 1. Combinational Hybrid Model Problem Decomposition method (CHM)
problem decomposition method applied and eliminates and selects best solution

datasets. The third dataset used is Sunspot time series [18].
This dataset gives an indication of the solar activities for solar
cycles which impact Earth’s climate change and is a real world
problem [18]. The ACI Worldwide Inc. time series is the fourth
data set that is used [19]. To obtain the ACI Worldwide Inc.
financial time series data set, the NASDAQ stock exchange
is used [19]. The Seagate Technology PLC is the last dataset
that is used [19]. It is also a financial time series dataset and
contains daily closing stock prices.

With reference to literature, the scaling of the five time
series dataset is done in the range of [0,1] and [-1,1] in order
to provide a fair comparison. The embedding dimensions are
kept same as done in literature [3], [12]. Sigmoid units are
employed by the recurrent neural network for the Mackey-
Glass, Seagate, and ACI Worldwide Inc. time series whereas
the hyperbolic tangent unit is used for Lorenz and Sunspot
time series.

The algorithm is run 50 times. To terminate each run of the
algorithm, the maximum number of function evaluations was
set at 50,000 for each decomposition technique. With reference
to literature [8], a pool size of 2 parents and 2 offsprings are
put in the G3-PCX algorithm. For evolution of all the sup-
populations in the proposed method, the G3-PCX evolutionary
model which uses the generation gap model [20] for selection
is used since it has shown good results with cooperative neuro-
evolution [21].

The population size was kept at 300 and the number
of generations for each sub-population was kept at 1. To

breaks down the neural network into separate subpopulation based on the
for training and testing.

compute the prediction performance of the proposed method,
the Normalized Mean Squared Error (NMSE) and Root Mean
Squared Error (RMSE) are used, similar to that of [8], [13].

N ~
NMSE — (zi_xyi - yi>2> 0

N i )2

i=1\Yi — Y

N
1
- | = 0.2
RMSE = N ;:1(% ) 2)

,where y; is observed data, ¢; is predicted data and ¥; is
average of observed data, and IV is the observed data’s length.
These two performance measures are used to compare the
results from that of the literature.

IV. RESULTS

The experimental results based on the performance of
proposed method are given in this section:

Tables 1 - V showcase the results for different number of
hidden neurons on the proposed method CHM compared to
two standalone (NSL and NNL) methods. The results given in
the Tables I - V are based on 95 percent confidence interval on
RMSE and the best results for each algorithm are highlighted
in bold. The Training shows the train average with train error
sum while Generalization is based on test average with test
error sum and Best shows the best test RMSE.

The Mackey-Glass time series problem is evaluated in the
Table I. It was seen that CHM has similar performance as



TABLE I
THE PREDICTION TRAINING AND GENERALIZATION PERFORMANCE
(RMSE) BASED ON MACKEY-GLASS TIME SERIES

TABLE III
THE PREDICTION TRAINING AND GENERALIZATION PERFORMANCE
(RMSE) BASED ON THE SUNSPOT TIME SERIES

Method H  Training Generalization Best
RNN-NSL 3 0.0237 £ 0.0021  0.0237 £ 0.0021  0.007
5 0.0188 + 0.0018  0.0188 £ 0.0019  0.006
7 0.0175 &+ 0.0012  0.0175 £ 0.0013  0.006
RNN-NNL 3 0.0275 £ 0.0026  0.0275 4+ 0.0026  0.011
5 0.0378 £ 0.0083  0.0378 £ 0.0083  0.014
7 0.0164 £ 0.0012  0.0164+ 0.0012 0.009
RNN-CHM 3 0.0210 + 0.0046  0.0211 £ 0.0046  0.006
5  0.0164 £+ 0.0028  0.0168 + 0.0028 0.007
7 0.0232 £ 0.0039  0.0233+ 0.0039 0.005

THE PREDICTION TRAINING AND GENERALIZATION PERFORMANCE

TABLE 11

(RMSE) BASED ON THE LORENZ TIME SERIES

Method H  Training Generalization Best
RNN-NSL 3 0.0348 £ 0.0169  0.0358 £ 0.0168  0.010
5 0.0200 £ 0.0029  0.0202 £ 0.0030 0.009
7 0.0199 £ 0.0031 0.0213 £ 0.0034  0.008
RNN-NNL 3 0.0369 £ 0.0041  0.0374 £+ 0.0041  0.015
5 0.0357 £ 0.0100 0.0358 £ 0.0099  0.009
7 0.0223 £+ 0.0023  0.0226 £ 0.0024  0.007
RNN-CHM 3 0.0238 £ 0.0050 0.0244 + 0.0051  0.006
5 0.0358 £0.0119 0.0365 £+ 0.0120  0.008
7 0.0406 £ 0.0114  0.0416 £+ 0.0116  0.007

Method H  Training Generalization Best
RNN-NSL 3 0.0284 £ 0.0044  0.0612 £ 0.0153  0.016
5 0.0250 £ 0.0027 0.0703 £+ 0.0221  0.020
7 0.0273 £0.0112  0.1334 £+ 0.0400  0.025
RNN-NNL 3 0.0332 £ 0.0064 0.0682 + 0.0132  0.026
5 0.0246 £ 0.0024  0.0772 £ 0.0184  0.021
7 0.0203 £ 0.0022 0.077 & 0.0238 0.019
RNN-CHM 3 0.0270 &+ 0.0071  0.0520 £ 0.0124  0.015
5 0.0269 £ 0.0066  0.0756 £+ 0.0196  0.018
7 0.0269 £ 0.0046 0.0793 £+ 0.0230  0.017

TABLE IV

THE PREDICTION TRAINING AND GENERALIZATION PERFORMANCE
(RMSE) BASED ON THE ACI WORLDWIDE INC. TIME SERIES

Method H  Training Generalization Best
RNN-NSL 3 0.0247 £ 0.0010  0.0198 £ 0.0013  0.015
5 0.0238 £ 0.0018 0.0187 £ 0.0017  0.015
7 0.0225 £ 0.0007  0.0173 £ 0.0008  0.015
RNN-NNL 3 0.0255 £ 0.0009  0.0212 £+ 0.0014  0.015
5 0.0297 £ 0.0027  0.0222 £+ 0.0020  0.014
7 0.0220 £ 0.0008 0.0171 £ 0.0009 0.015
RNN-CHM 3 0.0227 £ 0.0019  0.0224 £+ 0.0030  0.015
5 0.0285 £ 0.0032  0.0285 £+ 0.0059  0.015
7 0.0222 £ 0.0011  0.0211 £ 0.0020 0.014

NNL method. It has got the lowest best value in comparison
to other two methods. The proposed method recorded better
generalization performance and best training value with five
hidden neurons.

In Table II, the Lorenz time series problem has been
evaluated. It was observed that the CHM has poor performance
than NSL method and had similar generalization as NNL
method. The generalization performance and training of the
CHM decreases as the number of the hidden neuron increases.
Three hidden neurons for CHM gave the best result.

Table III illustrates the evaluation of the Sunspot time series
problem that has presence of noise since it is real-world data.
The proposed CHM method was unable to outperform both
of the methods (NSL and NNL) in terms of training. The
proposed method was better than both the methods in terms
of generalization and best value. The best result for CHM was
given by three hidden neurons.

In Table IV, the ACI time series problem results are
reported. This time series problem also has presence of noise
like the Sunspot time series problem. For the given problem,
the CHM had similar performance as other methods in terms
of training and generalization. It had better best value in
comparison to the other two methods. Seven hidden neurons
have given the best result for the proposed method.

The Seagate time series problem is evaluated in Table V. For
this time series, the CHM method outperformed the other two
methods in terms of training, generalization and best value.
For CHM, seven hidden neurons gave best results.

Figures 2 and 3 shows predicted results and error graph of
RNN-CHM method with original results on Sunspot dataset
for a typical run.

The best results from Table I - V with some of the related
methods in literature are given in Table VI. The RMSE best
run together with NMSE are given for comparison purposes.
The proposed CHM method has shown good performance in
nearly all the datasets when compared to other methods in the
literature.

The best result on Mackey-Glass time series problem is
being compared to works in literature under problem Mackey-

TABLE V

THE PREDICTION TRAINING AND GENERALIZATION PERFORMANCE
(RMSE) oF NL, SL AND NNL FOR THE SEAGATE TIME SERIES

Method H  Training Generalization Best
RNN-NSL 3 0.0209 £+ 0.0009  0.1850 £ 0.0359  0.028
5 0.0193 £ 0.0004 0.2293 £+ 0.0519  0.055
7 0.0195 £ 0.0004 0.1987 £+ 0.0470  0.034
RNN-NNL 3 0.0234 £ 0.0015  0.1841 £+ 0.0395  0.030
5 0.0241 £ 0.0038  0.2121 £ 0.0495  0.049
7 0.0199+0.0004 0.1764-0.0333 0.021
RNN-CHM 3 0.0208 4+ 0.0033  0.2158 £ 0.0329  0.023
5 0.0190 £ 0.0008 0.2081 £ 0.0377  0.036
7 0.0197 £ 0.0010 0.1745 £+ 0.0310  0.026




TABLE VI
A COMPARISON WITH THE RESULTS FROM LITERATURE ON DIFFERENT TIME SERIES DATASETS

Problem  Prediction Method RMSE NMSE
Mackey = AMCC-RNN [7] 7.53E-03  3.90E-04
Glass Locally linear neuro-fuzzy model (2006) [22] 9.61E-04
SL-CCRNN [8] 6.33E-03  2.79E-04
NL-CCRNN [8] 8.28E-03  4.77E-04
CICC-RNN [13] 3.99E-03 1.11E-04
Proposed CHM 5.48E-03  2.09E-04
Lorenz ~ RBF with orthogonal least squares (2006) [22] 1.41E-09
Locally linear neuro-fuzzy model (2006) [22] 9.80E-10
SL-CCRNN [8] 6.36E-03  7.72E-04
NL-CCRNN [8] 8.20E-03  1.28E-03
CICC-RNN [13] 3.55E-03 2.41E-04
Proposed CHM 6.22E-03  7.37E-04
Sunspot ~ RBF with orthogonal least squares (2006) [22] 4.60E-02
Locally linear neuro-fuzzy model (2006) [22] 3.20E-02
SL-CCRNN [8] 1.66E-02  1.47E-03
NL-CCRNN [8] 2.60E-02  3.62E-03
CICC-RNN [13] 1.57E-02  1.31E-03
Proposed CHM 1.47E-02  1.15E-03
ACI FNN-SL [11] 1.92E-02
Worldwide  FNN-NL [11] 1.91E-02
MO-CCFNN-T=2 [23] 1.94E-02
MO-CCFNN-T=3 [23] 1.47E-02
Neuron-Synapse Level method FNN-NSL [3]  1.51E-02  1.24E-03
Proposed CHM 1.46E-02  2.04E-03
Seagate  FNN-SL [11] 3.74E-02
FNN-NL [11] 2.24E-02
Neuron-Synapse Level method FNN-NSL [3]  2.45E-02  3.56E-03
Proposed CHM 2.32E-02  5.62E-03
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Fig. 2. Performance given by CHM on the testing set for Sunspot dataset.

Glass in Table VI. The proposed method was able to only
beat AMCC-RNN, SL-CCRNN and NL-CCRNN in terms of
both RMSE and NMSE. Under problem Lorenz, it shows the
best result of Lorenz time series problem being compared to
works in literature. It has been seen that the proposed method
outperformed all the methods expect for CICC model in terms
of RMSE.

Again in Table VI, under problem Sunspot, the best result of
the Sunspot time series problem is compared with results in the
literature where the proposed method has shown to outperform
the rest of the methods it has been compared to in terms of

Time

Fig. 3. Error on the test dataset given by CHM for Sunspot dataset .

RMSE. The method has given competitive results.

The best result of the ACI Worldwide Inc. time series
problem is compared to works in literature under problem ACI
Worldwide. The proposed hybrid method has outperformed all
the methods expect for FNN-NSL methods in terms of NMSE.
Better and stable performance has been achieved by the CHM.

Again in Table VI, the best result of the Seagate time
series problem is compared with results in the literature under
problem Seagate. The proposed method has outperformed all
the methods expect for FNN-NL in terms of RMSE and FNN-



NSL methods in terms of NMSE. The method had similar
performance as in ACI Worldwide Inc. dataset.

V. DISCUSSION

The results obtained for the proposed method are compet-
itive when compared to works from literature involving five
different data sets. The application of different decomposition
method at different stages of network helps in the prediction.

The proposed hybrid model has given better performances
in some of the datasets used when compared to CICC and
FNN-NSL. The results for CHM method on Sunspot and
financial datasets are better in terms of RMSE. In some
cases, CHM gave better performance than standalone methods
based on cooperative coevolution (CCRNN-Synapse Level
and CCRNN-Neuron Level). The proposed method has also
given better performance in comparison to adaptive modu-
larity cooperative coevolution (AMCC), where the problem
decomposition method varied with given time.

One of the advantages of the proposed competitive hybrid
method (CHM) is the use of two different hybrid problem
decomposition. The combination of two hybrid problem de-
composition (NSL and NNL) in CHM, allows NSL to be
used for decision making and NNL for diversity in the search.
Therefore, CHM performs better than other methods in some
of the cases. The cases where the method was unable to
perform is due to either over training or over fitting.

VI. CONCLUSIONS

This paper has applied a new hybrid model called the Com-
bination Hybrid Model (CHM) which was formed by using
Neuron-Synapse level problem decomposition method (NSL)
and Neuron-Network level problem decomposition method
(NNL). CHM was used with Elman recurrent neural network
for time series prediction.

The research began with the testing of the proposed hybrid
method with benchmark datasets and later on the financial
datasets. The application of different decomposition method
at different stages of network helped in decision making and
assisted in diversity of search.

The results obtained for the proposed method were com-
petitive when compared to works from literature involving
the five different datasets. In general, CHM has shown better
optimization performance in time and success rate than other
methods on financial datasets. The chaotic nature of the dataset
was best suited with the proposed method.

In future work, the proposed method can be applied to feed-
forward network, pattern classification problems and global
optimization problems as well as on different datasets. Some
applications of the method could be in economics and educa-
tion as well as to tackle climate change issues.

REFERENCES

[1] 1. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fister, “A brief
review of nature-inspired algorithms for optimization,” arXiv preprint
arXiv:1307.4186, 2013.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]
[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]

M. Potter and K. De Jong, “A cooperative coevolutionary approach to
function optimization,” in Parallel Problem Solving from Nature PPSN
111, ser. Lecture Notes in Computer Science, Y. Davidor, H.-P. Schwefel,
and R. Mnner, Eds.  Springer Berlin Heidelberg, 1994, vol. 866, pp.
249-257.

R. Nand and R. Chandra, “Neuron-synapse level problem decomposition
method for cooperative neuro-evolution of feedforward networks for
time series prediction,” in Neural Information Processing.  Springer,
2015, pp. 90-100.

N. Garcia-Pedrajas, E. Sanz-Tapia, D. Ortiz-Boyer, and C. Hervis-
Martinez, “Introducing multi-objective optimization in cooperative co-
evolution of neural networks,” in Connectionist Models of Neurons,
Learning Processes, and Artificial Intelligence.  Springer, 2001, pp.
645-652.

R. Nand, “Neuron-synapse level problem decomposition method for
cooperative coevolution of recurrent networks for time series prediction,”
in 2016 IEEE Congress on Evolutionary Computation (CEC), July 2016,
pp. 3102-3109.

R. Chandra and M. Zhang, “Cooperative coevolution of elman recurrent
neural networks for chaotic time series prediction,” Neurocomputing,
vol. 86, pp. 116-123, 2012.

R. Chandra, “Adaptive problem decomposition in cooperative coevolu-
tion of recurrent networks for time series prediction,” in International
Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, Aug.
2013, pp. 1-8.

R. Chandra and M. Zhang, “Cooperative coevolution of Elman recurrent
neural networks for chaotic time series prediction,” Neurocomputing,
vol. 186, pp. 116 — 123, 2012.

R. Chandra, “Problem decomposition and adaptation in cooperative
neuro-evolution,” 2012.

K. K. Bali, R. Chandra, and M. N. Omidvar, “Competitive island-based
cooperative coevolution for efficient optimization of large-scale fully-
separable continuous functions,” in International Conference on Neural
Information Processing. Springer, 2015, pp. 137-147.

S. Chand and R. Chandra, “Cooperative coevolution of feed forward
neural networks for financial time series problem,” in International Joint
Conference on Neural Networks (IJCNN), Beijing, China, July 2014, pp.
202-2009.

R. Nand, E. Reddy, and M. Naseem, “Neuron-network level problem
decomposition method for cooperative coevolution of recurrent networks
for time series prediction,” in International Conference on Neural
Information Processing. Springer, 2016, pp. 38-48.

R. Chandra, “Competitive two-island cooperative coevolution for train-
ing Elman recurrent networks for time series prediction,” in International
Joint Conference on Neural Networks (IJCNN), Beijing, China, Jul.
2014, pp. 565 — 572.

F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence, Warwick 1980, ser. Lecture Notes in Mathe-
matics, 1981, pp. 366-381.

Smart bilo: An open source computational intelligence framework. 2015.
[Online]. Available: http://smartbilo.aicrg.softwarefoundationfiji.org/
M. Mackey and L. Glass, “Oscillation and chaos in physiological control
systems,” Science, vol. 197, no. 4300, pp. 287-289, 1977.

E. Lorenz, “Deterministic non-periodic flows,” Journal of Atmospheric
Science, vol. 20, pp. 267 — 285, 1963.

S. S., “Solar cycle forecasting: A nonlinear dynamics approach,” As-
tronomy and Astrophysics, vol. 377, pp. 312-320, 2001.

“NASDAQ Exchange Daily: 1970-2010 Open, Close, High,
Low and Volume,” accessed: 02-02-2015. [Online]. Awvailable:
http://www.nasdaq.com/symbol/aciw/stock-chart

K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolution-
ary algorithm for real-parameter optimization,” Evol. Comput., vol. 10,
no. 4, pp. 371-395, 2002.

R. Chandra, “Problem decomposition and adaptation in cooperative
neuro-evolution,” 2012.

A. Gholipour, B. N. Araabi, and C. Lucas, “Predicting chaotic time series
using neural and neurofuzzy models: A comparative study,” Neural
Process. Lett., vol. 24, pp. 217-239, 2006.

S. Chand and R. Chandra, “Multi-objective cooperative coevolution of
neural networks for time series prediction,” in 2014 International Joint
Conference on Neural Networks (IJCNN), July 2014, pp. 190-197.



