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Abstract—In this paper we utilize the Lyapunov-based Con-
trol Scheme (LbCS) to solve the motion control problem of
a pair of cylindrical manipulators working in a constrained
3-dimensional workspace. The end-effectors of each manipu-
lator is required to move from initial to final positions whilst
obeying all singularities and constraints associated with the
system. We also consider fixed and moving obstacles in the
workspace which the robots have to avoid at all times. The
stability of the system is studied using the Direct Method of
Lyapunov, where as computer simulations are used to verify
the effectiveness of the proposed nonlinear control laws.

Keywords: Cylindrical manipulators, Lyapunov-based
Control Scheme, Minimum Distance Technique, Stability.

I. INTRODUCTION

A robot manipulator is an electronically controlled mech-
anism made up of multiple rigid links connected by
different joints [1]. The two basic types of joints com-
monly found in literature are (i) revolute (R) that allows
relative rotation between two links and (ii) prismatic (P)
that provides a linear sliding (translational) movement
between two links [2]. The joint combinations give rise to
various 3-dimensional manipulator configuration which
are categorized as cartesian (PPP), cylindrical (RPP),
spherical (RRP), SCARA (RRP) and articulated (RRR)
manipulators. The reader can refer to [3] for a detailed
explanation of these categories of manipulators.

The robot manipulators nowadays play a vital role in
the manufacturing industries. Jobs that require high
precision and repeatability such as packaging, labelling
and assembling of products are carried out by robots.
In the recent years, there has been a high demand for
industrial robots to perform repetitious (such as pick
and place of objects), dirty (such as repairing sewage
pipes), hazardous (such as welding and spray painting)
and difficult tasks (such as assembly or replacement of
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electronic parts). The robot manipulators have the ability
to perform a given task with high accuracy, autonomy,
reliability, independently and responsibly.

Autonomous motion control of manipulator arms is not
an easy task due to the system and workspace con-
straints, non-reachability of end-effectors and the asso-
ciated mechanical singularities. Moreover, if workspace
contains fixed and moving obstacles, then the motion
control becomes more difficult since each body of the
robot needs to avoid an obstacle. Researchers have used
various methods to construct the kinematics model of
manipulator arms. The kinematic model appearing in
literature are mainly constructed through (but not lim-
ited to): (i) forward kinematics where the coordinates
of the end-effector is determined using the joint angles;
and (ii) inverse kinematics where the joint angles is
determined using the coordinates of the end-effector;
and (iii) velocity kinematics which involve translational
and angular velocities of the joints.

We present a few relevant and prominent works from
literature. Dahari et.al in [4] modelled the forward and
inverse kinematics of a KUKA KR-16KS robotic arm in
the application of a simple welding process. Liging et.al
in [5] solved the inverse kinematics for 6-DOF manip-
ulator by the method of sequential retrieval. Altintas
et.al [6] designed and implemented the 3-axis cylindrical
and cartesian coordinate robot manipulators actuated
with stepper motors and developed Matlab program
for controlling the designed robot manipulators. Gonz
et.al [7] designed a sliding mode controller that was
robust against perturbations and parameter variations,
had finite time convergence, and was easy to implement.
Other noteworthy works involving the motion control of
manipulator arms include that of Gupta [8], Seraji and
Bon [9], Ohashi et al. [10] and Petar et al. [13].



In this paper, we plan and control the motion of a pair
of cylindrical manipulators working in a constrained
workspace whilst obeying system constraints and singu-
larities, and simultaneously avoiding fixed and moving
obstacles. The motion of the manipulators are modelled
as a system of first-order nonlinear differential equations.
We then utilize the Lyapunov-based Control Scheme
to extract a set of nonlinear, time-invariant, continuous
control laws to generate collision-free motions of the
cylindrical manipulators. The reasons for utilizing this
scheme is mainly due to its simplicity and elegance.
Moreover, the analytic representation of system singu-
larities and constraints are easy, and the extraction of
control laws is straightforward.

The reminder of the paper is organized as follows: The
kinematic model describing the motion of the two ma-
nipulator arms is derived in Section II. In Section III, the
attractive potential functions are given which inherently
allows the end-effectors to converge to their designated
targets. The various types of obstacles and the associated
potential functions are discussed in Section IV. Section V
provides a Lyapunov function or total potentials of the
system and the nonlinear control laws are designed such
that the system is stable. Simulations results are pro-
vided in Section VI followed by conclusion and remarks
on future work in Section VIL

II. THE MANIPULATOR MODEL

The 3-dimensional cylindrical manipulator arm, shown
in the Fig. 1, is adopted from [11]. The first joint is
revolute which produces a rotation about the base, while
the second and third joints are prismatic. We assume
that each manipulator arm consists of 4 links made
up of uniform slender rods [11]; revolute first link of
fixed length, a prismatic second and fourth link with
varying lengths, and a third link to provide support to
the fourth link. With reference to Fig. 1, we assume that
(for i = 1,2):

(i) The position of the center of the fixed base is
(ai, bi, O) ;

(ii) The angular position of the links 3 and 4 is 6;(t),
measured counterclockwise from the w;-axis;

(iif) Links 1 and 3 have fixed lengths of ¢; and /5,
respectively.

(iv) Links 2 and 4 have varying lengths of r;;(¢) and
ri2(t), respectively.

(v) The coordinate of the end-effector is (x;, ¥, 2;)-
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Fig. 1. Schematic representation of a 3-Dimensional Cylindrical Ma-
nipulator mounted on a fixed base.

The position of the end-effectors can be expressed as

.%‘l(t) a; + (fg + 72 (t)) Ccos Gi(t),
Yi (t) = bZ + (52 + Ti2 (t)) sin 97, (t),
Zz(t) = El + Til(t).

Suppose the ith end-effector is moving at a velocity of
V; = uﬂi + Ui2j + Uigk, where Uq1, U2 and U;3 are the w1,
wy and w3 components, respectively, of v;. The kinematic
model for the 3-dimensional cylindrical manipulator arm
derived by Prasad et.al in [11] is
Ti1 = U3,
T42 = Ui1 €08 0; + w9 sin 0,
b — ;o cOS B; — w1 sin
f iz + 2 7
7"1'1(0) = ZZ(O) — fl,

ri2(0) = /(25(0) — a;)% + (4:(0) — b;)2 — 2,
0:(0) = atan2 (y;(0) — b;, 2:(0) — a;)

for i = 1,2. System (1) is a description of the instanta-
neous velocities of the manipulator. Here u;;, u;2 and
w3, 4 = 1,2 are classified as the nonlinear velocity
controllers. We shall use the vector notation x(t) =
(Tll(t),rlg(t), 01(t),7"21(t),r22(t), 02(t)) € RG to refer to
the positional configurations of the the two manipulator
arms.

)

Our main objective is to use the Lyapunov-based control
scheme, which was proposed by Sharma in [12], to
derive the controllers for the manipulator arms. The
main idea behind the control scheme is to design an
appropriate Lyapunov function which acts as an energy
function. We construct attractive and avoidance func-
tions for the attraction to target(s) and repulsion from
various obstacles, respectively. The Lyapunov function



is the sum of all attractive and repulsive potential func-
tions. We note that the repulsive potential functions are
designed as ratios with the obstacle avoidance function
in the denominator of each ratio and a positive tuning
parameter in the numerator. We then design the control
laws such that the Lyapunov function is decreasing for
all ¢ > 0 and vanishes to zero as t — oco. The design of
the nonlinear control laws is captured in Figure 2.

Convergence
Parameters

Attractive Potential
Function

|

Lyapunov
(Total Energy)
Function

Kinemtic
Equations

Fig. 2. Block diagram explaining the control scheme.
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ITI. TARGET ATTRACTIONS

We affix targets for the end-effectors to reach after some
time ¢ > 0. The targets are spheres of center (p;1,pi2, pi3)
and radius rr which is described as

T, = {(wi,wa,wz) €R’:
(w1 = pin)? + (w2 = pi2)” + (w3 — piz)® <17}
For attractions to the target, we consider

Vi(x) = % [(fﬂz‘ —pi1)” + (i — pi2)” + (2 — PiS)Q] - @

We shall see later that when the total potentials is de-
signed, V;(x) will act as an attractive potential function,
attracting the end-effectors to their designated target.

IV. AVOIDANCE OF OBSTACLES

In this section, we look at some possible forms of obsta-
cles that can be encountered by the manipulators on their
way to the respective targets. In particular, we will con-
sider artificial obstacles (mechanical singularities), fixed
and moving obstacles and the workspace restrictions.

A. Artificial Obstacles

The mechanical singularities associated with the system
give rise to artificial obstacles. We note that links 2 and

4 can not be detached from links 1 and 3, respectively.
Similarly, the end-effectors can not go inside the link 3.
Thus, we impose the following conditions:

1) 0< i1 < Rl maxrs
2) 0 < Ti2 < R2 maxrs

where Rimax and Ramax are, respectively, the maximal
extensions of links 1 and 3. These conditions give rise to
the following artificial obstacles:
AOq
AO; =

{rin € R:rj1 <0 o0r 71 > Rimax},
{rio € R:1js <0 0r 79 > Romax}-

To avoid these artificial obstacles, the following potential
functions is constructed.

Sin(x) = 71,
Siz(x) = R1 — ri,

(3a-b)
(3c-d)

Sia(x) = 142,
Sia(x) = Ra — 12

for i = 1,2. We will see later in Section V that each of
these functions will be added as a ratio to a Lyapunov
function of the system. Note that along any trajecto-
ries generated by system (1), a Lyapunov function, say
L(x(t)), is always non-negative and decreasing for all ¢ >
0. Hence L(x(t)) < L(x(0)) < co. Now consider the effect
of the ratio a1 /511 for some positive constant aq1. When
r11(t) — 0, this ratio will increase making L(x(t)) — oc.
This leads to a contradiction since L(x(t)) < co. Thus we
conclude that S7;(x) > 0 and hence r11(t) > 0.

Henceforth, for each obstacle, we will construct an
appropriate potential function that will appear in the
denominator of a ratio in the Lyapunov function of
system (1).

B. Moving Obstacles

When multiple robots operate in a shared workspace,
then each robot becomes a dynamic obstacle to oth-
ers [13]. To avoid collisions between the two moving
manipulators, it is important that the end-effectors must
avoid all four links of the adjacent manipulator. We
utilize the minimum distance technique (MDT) proposed
by Sharma in [12]. The basic idea is to find a point
on each of the four links of the jth manipulator that
is closest to the ith end-effector. At any time ¢t > 0,
the closest point on each link (and hence the entire jth
manipulator) will be avoided by the ith end-effector.

To find a point on each link of jth manipulator that
is closest to the end-effector of the ith manipulator, we
need to minimize the functions
Dij
Dj; =

(@i, i, 2i) = (aj, b5, Aijz;) ||,
(i, yi, 2i) — (Xi*jv zj’Z])H



where

X;} = aj + )\;kj (62 + T‘jg) COS Gj,
Y;j = bj + /\:j (62 + ’I“jg) sin Hj,
zj = b+ Tj1-

The functions D;; and D;; are minimum if

min {max {0, ZZ} , 1} and
Zj

)\ij =

i —a;)cosf,
o= min{max{(), (w: — a;) cos b
by +1jo
(yibj)smaj} 1}
[24—7“]‘2 ’ ’

For the ith end-effector to avoid collisions with the
four links of jth manipulator, we construct the potential
functions

Qij(x) = 5 [(zi — a;)® + (yi — bj)* + (2 — >\1:ij)2] (4a)
Rij(x) = 3 [(zi — X5)° + (i — + (2 — 2;)?] (4b)

fori,j e {1,2}, i # 7.

=N

*\2
i)

C. Fixed Obstacles

Let us fix ¢ € N spherical obstacles within the boundaries
of the workspace.

Definition 1: The Ith obstacle (for [ = 1,2,...,q) is a
sphere with center (o;1,052,0;3) and radius ro;, and is
defined as the set

FO, = {(wl,UJQ,U)zJ,)ERB:

(w1 — 011)® + (w2 — 012)* + (w3 — 013)* < 1o} }.
For the manipulators to avoid an obstacle, it suffices to
find a point on links 3 and 4 of that is closest to the
obstacle. For this, we again utilize MDT to minimize the
distance function

da = ||(z3}, yip, 2i) — (011, 012, 013) ||

where
x; = a; +va(le + 1) cosb;,
v = bi+yu(la +7i2)sinb;.
The function d;; is minimum provided
Yit = min {maX {07 (011 — ai) cos 0; + (012 — by) sin ;
by + 149

For the manipulators to avoid collisions with any obsta-
cle, we construct the potential function

1 2
Wi(x) = 3 {H(ﬁl,yfzvzi) — (o1, 002, 03) || — 7”012}
fori=1,2and [ =1,2,...,q

©)

)

D. Workspace restrictions

Our workspace is a fixed, closed and bounded cubical
region, defined, for some constants 7, 72, and 73 as
wSs = {(wl,’lUg,wg,)ERg:

—m < wy <n,—ne < wy < 1n,0 <ws < N3}

We assume that the two manipulators are fixed within
the boundaries of the workspace. The end-effector
of each manipulator is required to stay within the
workspace at all time ¢ > 0. As such, the following
potential functions is constructed.

Bil (X) =x; +n, BiQ (X) =m-—- (6a—b)
Bis(x) = y;i + 02, Bis(x) = 12 — yi, (6c-d)
Bis(x) = z;, Bis(x) = n3 — 2, (6e-f)
fori=1,2.

V. DESIGN OF THE NON-LINEAR CONTROL LAWS

We now define a Lyapunov function by combining all
the potential functions (2) - (6) and introducing tuning
parameters, oy, > 0, By > 0, (i > 0, &; > 0 and pye >
0, where 4,5, k,l,r € N. A Lyapunov function or total
potentials for system (1) is

z{ e

=1
)+ } @)
Ri;(

CZ]
+
> (g
J#L
The Lyapunov function is positive, continuous and
bounded over the domain

L(x) =

i s

r=1

D = {X S R6 : Sik(X) >0, Uil(X) > 0,
Qij(x) > 0, Rij(X) > 0, Bir(X) > 0}
Now let e; = (r}}, ), 0F), where
T = Dpiz— {1,
iy = V(pin — @)+ (pia — bi)? — Lo,
07 = atan2(pi2 — bi,pi1 — a;) + 27n for some n € Z

be the configuration of the ith arm when its end-effector
reaches the target. Then e = (71,775, 0%,75,,75,,65) is
an equilibrium point of system (1). We now design the
control laws such that e is a stable equilibrium point.
That is, any solution of system (1) starting close to e
remains near the equilibrium point at all times. This is
illustrated in Theorem 1.



Theorem 1: The equilibrium point e of system (1) is stable
provided the controllers w;1, u;e and w3, (i = 1,2) are
defined as

o 1 oL 0. OL sinb;
vir = 571 87‘7;2 cos i 891 [2 + Ti2 ’
1 oL OL cosb;
L in o vL % 8
2 di2 \ Orio s 00; £y + 7’1‘2> ®)
o 1 0L
s = di3 Orin ’

where §;1 > 0, d;2 > 0, 6;3 > 0 are called the convergence
parameters.

Proof: We note that the Lyapunov function L(x) de-
fined in (7) is continuous, positive and bounded over
the domain D. Also L(x) has continuous first partial
derivatives in the region D in the neighborhood of the
equilibrium point e of system (1). Moreover, in the
region D, we see that L(e) = 0 and L(x) > 0 for all
x # e. Next, the time-derivative of L(x) is

22: OL 0z . (OL Owi
=1 821 8?”’1'1 i 89:1 37”1'2

( * yi 391‘) 01}
S (2 osp, - DL SO
o« Oria L0y +rin)

Ox; 00;
+ aising.+ai COSGi Us +87Lu,
87}2 ! 891 éz + Tio 2 87’,;1 8

2
= — Z {(5i1u$1 + 5i2u122 + (5131@3} .
i=1
It is clear that in the region D, L(x) < 0 and L(e) = 0.
Hence e is a stable equilibrium point of system (1).

L(x) =

oL 8yi -
0y; Orso 2

VI. SIMULATION

The set of differential equations given in system (1) is
numerically integrated using the fourth-order Runge-
Kutta method and the feasible trajectories are generated
as shown in Fig. 3. The simulations shown in Fig. 3
illustrate the movement of two manipulator arms to
their respective targets while avoiding the obstacles in
a bounded workspace. The smooth trajectories are ob-
tained through appropriate manipulation of the control
and convergence parameters. The details of different
parameters used in the simulations are given in Table I

Fig. 3(a) shows the initial state of the two robot. In
Fig. 3(b), we have simulated the trajectories of the two

TABLE 1
VALUES OF THE DIFFERENT PARAMETERS USED IN THE SIMULATION.

Initial and Final Positions

x(0) = (0.5,0.5, —7/2,0.5,0.5, 7/4) .
(p11,p12,p13) = (—143.8) and

(P21, p22,p23) = (1 — 43.8).

Fixed Obstacle Parameters

Initial Positions
Target Positions

Center (011, 012,013) = (0,0, 3).
Radius roy = 0.5.

Robot Parameters
Dimensions f1=2m,fl2 =4m,

(al,bl) = (4,0), (ag,bg) = (—4,0).
Other Parameters

—50 < 21 <50,0 < 22 <50.
8ij=10,i=1,2,3and j = 1,2.
Rimax =2 mand Romax = 4 m.

Workspace dimensions
Convergence parameters
Maximal extensions

robots showing the movement of the end-effectors from
their initial positions to the designated targets. The two
robots had to avoid each other on their path to the
targets. In Fig. 3(c), we placed a spherical obstacle to
obstruct the movement of the two manipulator arms.
Due to the unique and tailored nature of the control
laws in (8), the two robots avoided the spherical obstacle,
avoided collision between each other and converged to
the equilibrium point.

Fig. 4 show explicitly the time evolution of the con-
trollers along the trajectory of the mobile manipulators.
We notice the asymptotic convergence of the controllers
at the final state implying the effectiveness of the new
controllers. Fig. 5 shows the Lyapunov function and its
time derivative along the system trajectory. The graph
of L(x) is continuous and bounded. Moreover, we see
that L(e) = 0 and L(x) > 0 for all x # e. From the time-
derivative graph, we notice that L(x) < 0 and L(e) = 0.

VII. CONCLUSION

This paper presented a new solution to the motion
control problem of a pair of cylindrical manipulators
working in a constrained 3-dimensional workspace. The
robots also avoided fixed and moving obstacles while
moving from initial to final states. To ensure that each
component of a robot does not collide with obsta-
cles, the minimum distance technique was utilized. The
set of nonlinear control laws were derived using the
Lyapunov-based Control Scheme. The proposed method
is verified using computer simulations.

Future work in this area includes deriving control laws
for synchronous movement of the autonomous system
in cooperation, pick and place of objects and considering
partially known or fully unknown workspace.
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Fig. 3. Movement of the manipulator arms from initial to final
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(a) Controllers w11 in black, ui2 in blue and u;3 in red.
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Fig. 4. Evolution of the nonlinear controllers along the trajec-
tories shown in Figure 3(c).
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