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Introduction

The research field of bioinformatics is gaining momentum due to its role in the examination of huge volumes of biological data.
Nowadays, technological advancements in sequencer and microscope technology have opened many novel and interesting ave-
nues to study organisms at the molecular level. These advances should be accompanied by efficient computational tools and
pipelines, geared towards processing and analysis of the data. This combination will allow for more accurate quantification of
molecular interaction, and lead to better understanding of the underlying mechanisms. In the field of molecular biology, next-
generation sequencing (NGS) technology is playing a key role already. For instance, studies aimed at assessing DNA–protein
interactions often make use of chromatin immunoprecipitation-sequencing (ChIP-seq) data, whereas those focused on trying to
understand the genetics behind rare diseases or cancers take advantage of whole genome (WGS) or whole exome sequencing
(WES) data. Studies that focus on profiling coding and noncoding RNA on a larger scale have the choice of DNA-chip and RNA-
sequencing (RNA-seq) technologies. Complex cellular structures can be studied with microscopes that are capable of generating
high-quality images. Given the above circumstances, computational algorithms and methodologies are necessary to face such
challenges (Roy et al., 2016, 2018; Metzker, 2010). Bioinformatics pipelines combine a set of software tools, each designed to deal
with a specific task, to take full advantage of the biological information.

In this article, we discuss the computational pipelines and workflows used for analyzing a wide range of sequencing and
biomedical image information. Accordingly, it is hereafter divided into five sections. Section “Genome Analysis” covers genome
analysis pipelines, especially tools for dealing with ChIP-seq and genomic variation. Section “Transcriptome Analysis” describes
transcriptome strategies, including differential expression analysis, pathway and network approaches, and machine learning (ML)
methods for sample subclassification and biomarker discovery. Section “Workflows in Proteomics” focuses on proteomics, spe-
cifically on molecular recognition of features in intrinsically disordered proteins (IDPs). Section “Bioimage Analysis Pipelines”
briefly introduces the standard workflow for processing bioimages from cellular structures, while Section “Conclusions” highlights
the challenges and future directions.
Genome Analysis

The function of molecular structures is ultimately encoded in the genome sequence, thereby bioinformatics pipelines designed for
its analysis are of utmost importance. In this section, we present the workflow and tools available for effectively analyzing ChIP-
seq and genomic variation data.
ChIP-Seq Pipeline

A great number of studies have been currently focusing on deciphering the molecular consequences of DNA–protein interactions.
In this case, NGS data has played a key role because it allows us to sequence the DNA sequence around binding sites. Subsection
“ChIP-Seq Pipeline” introduces the standard workflow (Fig. 1) used by many laboratories for such analyses.

Alignment
Because read quality is often affected by artifacts such as adapter contamination and base calling errors, the quality check of reads
is sometimes the first procedure before mapping the raw reads to a reference genome. It is here where biases or sequencing errors
are identified and low-quality reads are filtered out. Given its flexibility and applicability to many sequencing platforms, the
software FastQC (Babraham-Bioinformatics, 2018) is frequently utilized. A more detailed explanation and additional tools can be
found in Pabinger et al. (2014).
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Fig. 1 Standard workflow for the analysis of ChIP-seq data.
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After conducting the above filtering, high-quality reads are aligned to the corresponding reference genome using aligners
such as Bowtie2 (Langmead and Salzberg, 2012), SOAP (Li et al., 2009b), BWA (Li and Durbin, 2009) and MAQ (Li et al., 2008).
It is worth noting that unlike transcriptome analysis pipelines, aligners capable of detecting splice sites are not required
whatsoever. The alignment results (the number of uniquely mapped reads) should be carefully checked to validate the success of
the mapping procedure.

Quality metrics
When processing ChIP-seq data, the assessment of immunoprecipitation enrichment, sequencing depth or fragment-size selection
is a must. This is often referred to as the signal-to-noise ratio and assessed with metrics like strand cross-correlation (Landt et al.,
2012) or immunoprecipitation enrichment estimation (Landt et al., 2012). Although the package CHANCE (Diaz et al., 2012) is
widely utilized, current peak callers such as MACS (Zhang et al., 2008) already include strand cross-correlation analysis.

Peak calling
Peak calling is one of the most important steps in a ChIP-seq analysis pipeline. It is here where bound DNA regions are detected.
Of note, if the improvement of specificity is prioritized, duplicate reads should be removed before peak calling. Moreover, the
success of this step will depend on the peak caller and the type of protein being analyzed. For the purpose of analysis, DNA-
binding proteins (DBPs) are divided into three groups depending on their binding signals: point-source DBPs, broadly enriched
DBPs, and DBPs with mixed characteristics.

Point-source DBPs
These proteins are the most common and therefore many peak callers have been designed to deal with their signals. For instance,
peak callers like MACS (Zhang et al., 2008) and SPP (Kharchenko et al., 2008) are able to accurately detect the size of the genomic
gap between reads aligned to plus and minus strands. Other software such as BEADS (Cheung et al., 2011) use background models
from control samples or GC content for reducing noise. To assess enriched peaks, software such as MACS (Zhang et al., 2008) and
CisGenome (Jiang et al., 2010), which rely on statistical distributions, or BayesPeak (Spyrou et al., 2009) and HPeak (Qin et al.,
2010), which implement hidden Markov models, are often utilized.

Broadly enriched DBPs
These proteins are usually involved in epigenetic regulation. For their analysis, peak callers such as SICER (Xu et al., 2014) and
ZINBA (Rashid et al., 2011) can be utilized to detect broad regions, whereas others such as MACS (Zhang et al., 2008), PeakRanger
(Feng et al., 2011), and SPP (Kharchenko et al., 2008) can be used as long as their bandwidth is increased and their peak cut-off
decreased.
DBPs with mixed signals
For analyzing molecules with mixed characteristics, for example the RNA Polymerase II, peak callers such as MACS (Zhang et al.,
2008), ZINBA (Rashid et al., 2011), and PeakRanger (Feng et al., 2011) can be employed.

Assessment of reproducibility
Because the quality of detected peaks could be affected by the peak caller, sequencing depth, or the number of binding sites,
pipelines should always include an assessment of reproducibility. This procedure is intended to check whether the peaks are really
reproducible, and should comprise at least two replicates of the same experiment. To do this, it is advisable to filter out those
regions with high ChIP signals and then compute the Pearson correlation coefficient of mapped reads at genomic positions. The
consistency of peak sets detected in biological replicates is evaluated with the irreproducible discovery rate, and those peaks
passing a specific cut-off are finally retrieved. This assessment is often conducted as described in Li et al. (2011).
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Differential binding analysis
A typical ChIP-seq experiment aims to detect binding differences between biological conditions. Current studies follow two
strategies: quantitative and qualitative. The quantitative approach takes into consideration the differential binding between
conditions by using the number of reads or the density of reads in peaks. For this, tools such as DBChIP (Liang and Keleş,
2012), which relies on read counts or MAnorm (Shao et al., 2012), which uses read densities, can be utilized. The qualitative
approach considers overlapping peaks and should only be regarded for exploration purposes. It is important to point out that
reproducible peaks should be computed per condition before regarding one of the above strategies.

Downstream analysis
This step comprises important tasks such as peak annotation and motif analysis. The detection of peaks is often not the ultimate
goal, but it is followed by the discovery of functional genomic regions. To do this, the peaks should be first formatted in BED or
GFF files so that they can be easily analyzed with a genome browser, or annotated with in-house scripts. Current packages such as
BEDTools (Quinlan and Hall, 2010) include functions for annotation purposes and calculate the genomic distance of each peak to
relevant genomic features. Other libraries like ChIPpeakAnno (Zhu et al., 2010) can be further used for associating binding sites
with gene expression activity. On the other hand, motif analysis could also help to identify those genomic sites bound by a specific
regulatory protein, thereby facilitating the validation of the ChIP experiment. To detect motif sequences, the genomic regions of
the detected peaks are analyzed with motif-discovery software. These algorithms complement each other so that it is advisable to
consider different methods. For instance, algorithms such as MEME-ChIP (Machanick and Bailey, 2011) and peak-motifs
(Thomas-Chollier et al., 2012) are often employed. Detailed information on motif analysis can be found in Zambelli et al. (2013).
Mutation and Genomic Variation

The low cost of NGS technology has made possible international collaborations such as the 1000 Genomes (Genomes Project
et al., 2015) and HapMap (International Hapmap Consortium, 2005) Projects. These efforts have provided detailed catalogs of
human genetic variation, which are of vital importance to identify disease-associated variants. Consequently, recent studies have
aimed at pinpointing genetic risk factors for common diseases, including rheumatoid arthritis and type 2 diabetes, cancers, and
Mendelian diseases such as long QT syndrome and Huntington’s disease. Because the accurate detection of variants proves critical
for clinical treatments and novel drugs, the main challenges are no longer in the sequencing technology but in the development of
suitable bioinformatics pipelines. This section addresses two impacted areas: genome-wide association studies (GWAS), and whole
genome and exome analysis.

Genome-wide association studies
The genetics behind complex diseases has been long studied by focusing on disease-related genes. However, the massive amounts
of genotype data have paved the way for broader approaches like GWAS, which regard linkage disequilibrium at the population
level. GWAS has proven absolutely necessary for identifying the genetic risk factors for common diseases (Ozaki et al., 2002;
Newton-Cheh et al., 2009), and investigating associations between single nucleotide polymorphisms (SNPs) from case/control
studies. The most common tool for GWAS analysis is PLINK (Purcell et al., 2007). PLINK is an open-source and freely available
software, which also provides quality controls of the data. It requires two standard formats: PED and MAP files, though binary files
such as BED, BIM, and FAM are acceptable as well. The PED file is a space or tab delimited file, composed of a family identifier,
individual identifier, father and mother identifiers, gender, phenotype, and genotypes. Of note, when creating a PED file, strand
orientation should be checked for allele calls (i.e., forward or reverse complement). The TOP/BOT strand and A/B allele coding,
developed by Illumina, along with the database of genetic variation dbSNP (Sherry et al., 2001) are widely used for uniformly
designating SNP entries. The MAP file consists of a chromosome, identifier, genetic distance, and physical position for each marker.
As for the experimental dataset, it should pass different quality checks in which the samples and markers are carefully examined.
The samples should be checked for (1) sex inconsistencies (–check-sexa), (2) inbreeding coefficient (–heta 0.1), (3) genotype
missingness (–missinga 0.05), (4) kinship coefficient (–genomea 0.2), and (5) population stratification. Similarly, the markers
should be checked for (1) genotyping efficiency or call rate (–genoa 0.99), (2) minor allele frequency (–freqa 0.01), and (3)
Hardy–Weinberg equilibrium (–hwea 0.001). The remaining dataset can now be used for association analysis (–assoca) whose
significance cut-off should be set at po5� 10�8. These association results can be further visualized with Q-Q and Manhattan plots
included in the R package qqman.

Often, the number of markers in an experimental dataset is not enough for accurate analysis, limiting the power and resolution
of the GWAS strategy. To overcome this limitation, genotype imputation at ungenotyped loci is strongly recommended. The most
common imputation software include IMPUTE2 (Marchini et al., 2007), BEAGLE (Browning and Browning, 2009), and minimac
(Neumann et al., 2010). Of note, reference panels from the HapMap (International Hapmap Consortium, 2005) or 1000
Genomes (Genomes Project et al., 2015) Projects should be used.

Thus far, we have described a typical SNP-based association analysis. However, gene-based association approaches can
sometimes turn out effective. These statistical methods are classified into three categories: (1) the burden test (Li and Leal, 2008;
Madsen and Browning, 2009; Morgenthaler and Thilly, 2007; Price et al., 2010), (2) the variance component test (Wu et al., 2011),
aPLINK parameter



Fig. 2 Standard workflow for whole genome/exome sequencing data analysis.
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and (3) the combination methods (Lee et al., 2012). Recently, a method called SMR, which integrates summary-level data of
GWAS and expression quantitative trait locus, was developed (Zhu et al., 2016). Additional examples of risk prediction models for
several diseases, which regarded disease-associated genes, can be found in Imamura et al. (2013); Shigemizu et al. (2014).

Genome and exome analysis pipelines
For rare Mendelian diseases, NGS technology (Metzker, 2010; Rusk and Kiermer, 2008) has made WGS and WES possible at an
individual level. Extensive studies have revised the pipelines aimed to detect genetic variations by analyzing NGS data (Hwang
et al., 2015; Pabinger et al., 2014). A standard pipeline consists of five main steps: quality check of raw reads, alignment to a
reference genome, variant identification, variant annotation, and visualization (Fig. 2). The first two steps are discussed in Section
“Alignment” so that we will focus on the remaining steps.

Variant identification
The identification of genomic variants is the main step of a variant detection pipeline. This step is intended to detect genomic
variations between biological samples. Most of the available software require the aligned reads in BAM format and sorted by
genomic coordinates. Both requirements can be easily achieved with SAMtools (Li et al., 2009a).

The current variant identification tools can be used for detecting (1) germline mutations, (2) somatic mutations, (3) copy
number variations (CNVs), and (4) structural variations (SVs). Among the variant callers for discovering germline mutations are
the Genome Analysis Tool Kit (GATK) HaplotypeCaller (McKenna et al., 2010), SAMtools (Li et al., 2009a) and VarScan 2
(Koboldt et al., 2012). The GATK includes a statistical model based on Bayesian genotype likelihood for computing genotypes and
allele frequencies. Nevertheless, one disadvantage is that it produces many false positives which have to be filtered for downstream
analysis (McKenna et al., 2010). SAMtools can be easily integrated into one single pipeline because of its additional functions for
aligning reads, as well as sorting and indexing alignment results (Li et al., 2009a). VarScan 2 implements heuristic and statistical
approaches for detecting single nucleotide variants, indels, somatic mutations, and copy number alterations between cancer and
control samples (Koboldt et al., 2012). SAMtools and VarScan 2, along with SomaticSniper (Larson et al., 2012) can be also
employed for identifying somatic mutations. SomaticSniper statistically compares the genotype likelihoods of cancer and control
samples, which could turn out useful for cancer-related studies (Larson et al., 2012). Tools such as CNVnator (Abyzov et al., 2011)
and ExomeCNV (Sathirapongsasuti et al., 2011) were mainly developed for identifying CNVs. CNVnator combines the mean-shift
approach with multiple-bandwidth partitioning and GC correction for detecting atypical CNVs like de novo and multiallelic events.
However, it often misses CNVs generated by retrotransposable elements (Abyzov et al., 2011). On the other hand, ExomeCNV was
specifically created for identifying loss of heterozygosity in addition to CNVs. This software is able to correctly discover small indels
due to the inclusion of B-allele frequencies and depth-of-coverage (Sathirapongsasuti et al., 2011). For detecting SVs such as
inversions, translocations, or large indels, the software CLEVER is still widely utilized because of its efficient use of internal
segment sizes (Marschall et al., 2012).

According to one study that revised several pipelines for whole exome analysis, the combined use of the aligner BWA and
SAMtools, or of any aligner with Freebayes, turns out suitable for SNP calling. This study also claims the software GATK
(HaplotypeCaller) as the best variant caller for indels, and Freebayes as the most convenient tool when low-quality variants are
previously filtered out (Hwang et al., 2015).

Variant annotation
After identifying variants, the detected variants are annotated to understand their biological implications. This step aims to filter
out irrelevant variants and retrieve those disease-related ones. Although the current tools are able to annotate SNPs and indels, the
annotation of CNVs has not been fully implemented. The available software includes ANNOVAR (Wang et al., 2010), Vcfanno
(Pedersen et al., 2016), and VarMatch (Sun and Medvedev, 2017). ANNOVAR can be utilized for annotating SNVs and indels. It
analyzes the function of those genes harboring variants, detects variants in conserved genomic stretches, and predicts cytogenetic
bands (Wang et al., 2010). Vcfanno includes a “chromosome sweeping” approach, making possible the annotation of a large
number of variants (Pedersen et al., 2016). VarMatch can be used when dealing with dense areas of variants or low complexity
genomic regions. It implements an optimization strategy known as edit distance, which contributes to improving robustness
(Sun and Medvedev, 2017). Furthermore, the detected variants should be matched against those in mutation databases such as
dbSNP (Sherry et al., 2001) or COSMIC (Forbes et al., 2008). Consequently, the variants could be classified as deleterious or
accepted variants.
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Visualization
Variant visualization is also an essential step because it offers better interpretations of the experiment. There are many genome
browsers that facilitate the visualization of genomic regions. Some are useful for visualization and annotation, for example,
ABrowse (Kong et al., 2012), Apollo (Lee et al., 2013), Ensembl (Ruffier et al., 2017), and GenomeView (Abeel et al., 2012). Others
are specifically designed for visualization, including BamView (Carver et al., 2013), JBrowse (Buels et al., 2016), and MapView (Bao
et al., 2009). An extensive review of visualization tools can be found in Pabinger et al. (2014).
Transcriptome Analysis

Alterations at the genome level, which can be detected using DNA-sequencing approaches such as WGS, are responsible for a wide
range of adverse health phenotypes. Such diseases can often be linked to a single mutation within a crucial gene or accumulation
of changes that, when combined, can lead to cancer or age-related illnesses (Podolskiy et al., 2016). However, most complex
biological mechanisms arise through the interplay of hundreds of interactome elements, with the disease often being a result of
perturbation to those systems and networks (Vidal et al., 2011). The most accessible genomic layer, in terms of easiness of profiling
and basic examination, is the transcriptome. A global view of gene activity, which takes place at the RNA level, provides means to
perform a wide variety of studies. This includes analysis of cellular functions, identification of predictive biomarkers and diseases
subtypes, or pathway and network-oriented studies that can more comprehensively explain changes in the state of biological
systems (Brodie et al., 2014). Here we will present several computational approaches to study the transcriptome, and avenues to
explore when linking such profiles to actionable results. Emphasis will be placed on popular, open-source tools and libraries and
on the fundamentals, which can be easily built upon and extended.
Profiling Platforms

The two most widespread platforms for studying global gene changes are NGS and DNA microarrays. The former, a high-
throughput approach that superseded Sanger sequencing, relies on “reading” millions of small RNA fragments in parallel. As each
RNA transcript is represented by multiple overlapping fragments, it is possible to combine the sequence pieces together by
mapping them to a specie-specific reference (Behjati and Tarpey, 2013). DNA microarray (or DNA-chip) technology, on the other
hand, uses a collection of DNA probes attached to a solid surface, with each oligonucleotide probe cluster designed to match a
specific short region from a gene of interest. Binding a complementary sequence produces a signal (generated by a fluorophore-
labeled antibody), whose strength is used to quantify the abundance of the corresponding target gene (Shalon et al., 1996). While
the choice between platforms is often based on personal preference and technical capabilities available within a given group, there
are several factors that should be considered when making the decision. Microarrays contain a set of predefined target genes, which
makes the data processing simple and straightforward. The methodology has matured to a point where the process can be
accomplished using a single package – an overview using a representative tool is provided in Section “DNA-Chip Data Processing.”
While convenient, the technology does not offer as much flexibility as NGS alternatives (Hurd and Nelson, 2009). If a project
would benefit from detecting novel or rare transcripts, fusion genes, or splice variant analysis, or requires higher confidence in the
findings (which can be achieved by increasing the sequencing depth of coverage), NGS methods offer an advantage. The analysis of
RNA-seq data does, however, require some understanding of the process on the molecular level, as well as familiarity with
additional software tools. Each step of the process is described in Section “RNA-Seq Data Processing,” and a graphical overview of
the whole transcriptome section is shown in Fig. 3.
DNA-Chip Data Processing

In this section, we will provide a basic overview of initial DNA microarray data processing using limma package (Ritchie et al.,
2015) within R software environment. While these steps can be accomplished using manufacturer provided software solutions,
limma offers more built-in functionalities and can be easily integrated with other bioinformatics tools. Furthermore, a similar
methodology can be utilized for other types of arrays, such as those profiling protein expression levels. R is a statistical
computing environment that is widely used for exploratory data analytics and visualization. It can be installed on any operating
systems by following the instructions found on the project’s website (see “Relevant Websites" section). Subsequently, a wide
range of genomic packages can be downloaded from Bioconductor, a repository for high-throughput genomic analysis tools
(see “Relevant Websites" section).

The initial chip processing step is automatically performed by the image analysis software, where the TIFF scan of the array is
translated into a list of intensities for each of the small “spots” (i.e., areas with multiple copies of a unique DNA probe). limma
provides a read function that loads and converts data (together with sample annotation) from a wide range of microarray formats.
Probe annotation, usually stored in GenePix Array List (GAL) format, should be provided separately, in case it is not included in
the output files.

Issues with the sample quality can be introduced at any stage of preparation, from low-quality biological material to problems
during scanning. It is thus important to detect such problems early during analysis. There are two common quality control



Fig. 3 Graphical overview of the standard pipeline for transcriptome data analysis.
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strategies that are applicable to both individual spots within arrays (much higher complexity) and to cross-array comparison –

assigning quality weights that are used in a downstream analysis or removing problematic cases (Kauffmann and Huber, 2010).
limma has built-in functions to cover the former, which calculate spot weight quality as well as array variance (Ritchie et al., 2006).
Lower scores are assigned to spots with quality issues and to arrays that are less reproducible, ensuring that results are not affected
by bad samples. Alternatively, arrayQualityMetrics package (Kauffmann, 2009) can be used to calculate and visualize the distance
between arrays and exclude those that are significantly different from the rest.

When measuring the fluorescence intensities there are several factors that affect the scan, by introducing ambient noise,
both within and between the arrays (Silver et al., 2009). Such signals are adjusted with background correction algorithms,
which estimate and remove nonspecific binding or spatial heterogeneity effects (Ritchie et al., 2007). Plotting the foreground
against the background intensities can guide the choice of optimal correction algorithm. Lastly, the samples should be
normalized to ensure that the biological signal is not “diluted” by technical variation or biases. Depending on the type
(single- or two-color) and technology of the array, limma provides several approaches to normalize (i.e., remove some of the
variations) within and between the arrays. This ensures that all samples are on the same measuring scale and that technical
differences are not influencing the results. The choice of algorithms for background correction and normalization is the only
challenging step in the processing of DNA microarrays, and both should be guided by the assessment of the data. As the
subsequent steps in the analysis are common between sequencing and DNA-chip platforms, they will be described together in
Section “Differentially Expressed Genes and Visualization.”
RNA-Sequencing Data Processing

The field of NGS profiling encompasses a wide range of protocols, though from the analysis standpoint the main difference lies in
the type of sequence that is enriched during library preparation. These can include small regulatory RNA such as miRNA, total or
coding RNA, degraded RNA (German et al., 2008), or RNA amplified from a single cell rather than a population of cells (Eberwine
et al., 2014). While there are differences in how each of the types is analyzed, the initial data processing steps and general principles
are similar. The section below will focus on processing data from total or polyA selected RNAs, though with small changes to the
reference the methodology can be applied to other types of protocols. For the purpose of this section, we will presume that the
sequencing was performed on Illumina’s HiSeq or MiSeq machine, and that demultiplexing (the process of separating individual
libraries that were sequenced on the same lane) was performed during data export to FASTQ files. FASTX-Toolkit (Hannon, 2010)
and EMBOSS seqret (Cock et al., 2010) are two useful tools for checking, manipulating, and converting FASTQs to match the input
format requirements of other programs.

The quality of reads, or short sequences obtained at the end of NGS protocols, depends on the integrity of the initial sample,
proficiency in library construction, and handling during final sequencing stage. FastQC (Babraham-Bioinformatics, 2018) is a
quality control tool that generates comprehensive graphical reports on several important characteristics of any sequence data. It
should be noted that modern alignment algorithms can deal with cases such as adapter (short DNA sequences used in library
preparation and sequencing) contamination or when part of the reads are of lower quality. However, in more severe cases,
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trimming the sequences or removing the adapters can increase the quality and number of aligned reads. This can be achieved using
tools such as Cutadapt (Martin, 2012), FASTX (Hannon, 2010) or Trimmomatic (Bolger et al., 2014). It is important to repeat the
quality control step after each manipulation to ensure that the overall quality of the library has improved. If the entire length of the
reads is of very low quality (below the score of 20 for Illumina’s version 1.3 or later encoding), adapters make up most of the
reads, or there is a significant overexpression of few “background” genes (such as ribosomal RNAs), it is usually advisable to repeat
the sample and/or library preparation. The aims of the project and type of data will naturally influence the software stack and
parameters used in the data processing. Differential splicing and metatranscriptomics assembly require a more complex setup,
though the principles are the same once the fundamentals are understood. For the purpose of this and the next three subsections,
we will focus on transcriptome profile comparison between two phenotypes or conditions.

The RNA-Seq reads are small sections of the transcriptome, hence the traditional way of processing them was to align the reads
to a reference genome or transcriptome. From there, the reads were “stitched” together, and the overlap with regions of interest was
used for abundance estimation. Abundance can be calculated for exons, transcripts, or genes, though gene-level analysis is
generally recommended when transcript information is not required. Transcript quantification is more challenging due to a
combination of short sequencing length and lack of unique sequences in many splice variants. Increasing the read length through
gradual improvements in the technology will solve this problem in the near future. A prime example of the “traditional” approach
is STAR aligner (Dobin et al., 2013), where the genome index created prior to mapping is used during alignment. STAR gained
widespread adaptation due to high-performance relative to other methods available at its launch. After the alignment is com-
pleted, programs such as featureCounts (Liao et al., 2014) are run to count the mapped reads to genomic features, and provide a
summary of the alignment. The postalignment report contains information on the percentage of mapped, unique, and duplicated
reads, and serves as a final quality check before downstream analysis. A more detailed overview of the alignment can be generated
using RNA-SeQC (DeLuca et al., 2012). A recently developed alternative to this software stack is the so-called “pseudoaligners,”
which instead of aligning to the reference, determine read compatibility with defined targets (Bray et al., 2016). kallisto is an
example of such approach, and the algorithm has not only been shown to be very fast but also accurate and more robust to errors
(Bray et al., 2016). The transcript level abundance estimates produced by kallisto can be converted to counts using the R package
tximport (Soneson et al., 2015), after which they can be analyzed in the same fashion as any other alignment result. Lastly, and
similarly to DNA-chip data, the reads should be normalized so that a comparison can be made between samples from different
lanes or sequencing runs. Fragments per kilobase of transcript per million mapped reads (FPKM) is a popular expression unit that
normalizes for sequencing depth and corresponding gene length. A similar type of normalization can be achieved in tximport
using the lengthScaledTPM parameter, which is the final step in the processing of raw sequencing reads.
Differentially Expressed Genes and Visualization

The downstream analysis of normalized counts varies greatly depending on the experimental design, type of data and sample
characteristics. While biological replicates and appropriate controls are crucial in many studies, in settings such as clinical
bioinformatics, the lack of controls or a low number of samples is still common. Whenever paired samples are available (e.g.,
control and treated, or normal and diseased tissue from the same patient), differential expression analysis is usually performed
first. It is a quantitative measure of expression change that can be used to rank genes based on a degree of under- or overexpression.
It is a good practice to remove lowly expressed genes beforehand, which can be accomplished either using sophisticated software
models or more simply by removing genes with a count r10.

Fold change, or the magnitude of change between conditions, is a preferred method for quantification of differential
expression. It can be calculated using a variety of packages such as limma, DESeq2 (Love et al., 2014), or sleuth (Pimentel et al.,
2017), all of which offer technically advanced though slightly different implementations. For a simpler manual calculation, the
genes should first be transformed to account for the presence of extreme values and mean-variance dependency. This is most
commonly achieved using log2 transformation, though alternatives such as rlog or VST are also used (Lin et al., 2008). Subse-
quently, the log2(mean) of all replicates from a healthy control/untreated samples are subtracted from the log2(mean) of all
replicates from a disease phenotype/treated samples. For datasets with no paired samples, a comparison can be made between
groups with and without a certain condition or phenotype.

Visualization is an important component in bioinformatics as it is challenging to identify patterns in tens of thousands of genes
based on text data alone. The most common graphics libraries used for high-quality plotting are ggplot2 in R (Ginestet, 2011) and
matplotlib in Python 3 (Hunter, 2007). The built-in statistics and graphics capabilities in R are usually sufficient for initial data
exploration purposes. Bioinformatics investigation is often initiated with a thorough check on how closely the samples match the
experimental design. This is performed to identify population structures in the data that are previously unknown, or subgroups of
samples with different characteristics. Furthermore, outliers, or samples with abnormally low or high values (which could
represent technical issues), can be identified and removed. Principal component analysis (PCA) helps to find such characteristics
by obtaining a combination of variables, in this case, gene expression values, that best differentiate the samples (Abraham and
Inouye, 2014; Sharma and Paliwal, 2007). Any aberrant samples should be removed at this stage so that they do not influence the
results. Subsequently, two-group expression comparison can be visualized using MA plots, which show the relationship between
logged fold change and mean expression. Such plots are equally suited for diagnosing data-related issues as well as checking the
number, magnitude, and pattern of differentially expressed genes. Another way of exploring global changes in gene expression is
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the Kolmogorov-Smirnov nonparametric test. It compares the distribution of each gene between two defined groups and is a good
approach to visualize changes in mean expression and variability. The above-mentioned plots show general patterns of expression
and should be supplemented with more direct visualizations. A very popular and information-rich example is heatmaps, which are
two-dimensional grids where a range of values is represented by colors. They are often paired with hierarchical clustering, which
sorts rows (which represent gene expression) and columns (which represent samples) in a way that most clearly shows patterns in
the data. The combination can reveal commonly regulated genes or sets of samples with distinct expression profiles and char-
acteristics (such as disease subtypes). Another way of using heatmaps is correlation matrices, which show a correlation of
expression between multiple genes. More advanced plotting methods often contain a higher density of information within a single
figure, utilizing colors, shapes, and opacity in a third-dimensional space.
Functional, Pathway, and Network Analysis

While global profiling of gene (or protein) expression provides a significant amount of information, it is often challenging to
link such results to tangible biological insights. Employing annotation regarding a gene’s (or its product’s) involvement in a
certain biological process, signaling pathway, or molecular function is one of the most effective approaches to study RNA-Seq
data. Gene set enrichment analysis is one of the most widely used solutions, which verifies if the differentially expressed gene
results show an enrichment or depletion of genes associated with a certain biological aspect (Subramanian et al., 2005). This can
include genes connected with cancer development, drug response, a wide range of signaling pathways, and more (Curtis et al.,
2005). There are numerous approaches for performing gene set analysis (e.g., overrepresentation analysis, pathway topology),
most of which are implemented in R or are available as online tools (Tarca et al., 2013). Pathway information can be easily
retrieved from online databases such as KEGG (Kanehisa et al., 2016), Reactome (Fabregat et al., 2016), or WikiPathways
(Slenter et al., 2018), either manually or using the associated application programming interfaces. A different approach makes
use of topological properties of genes within molecular interaction networks. Based on the direct interaction partners, or close
proximity neighbors, it is possible to infer novel insights such as biological function (Sharan et al., 2007) or prioritize candidate
disease genes (Yu et al., 2013). Cytoscape is the most popular environment for network studies (Shannon et al., 2003), though it
is also possible to perform a wide variety of network analyses using igraph in R (Csardi and Nepusz, 2006) or networkx in
Python 3 (Hagberg et al., 2008). Weighted gene coexpression network analysis is a great example of a network-based exploratory
tool that provides additional data reduction and feature selection capabilities (Langfelder and Horvath, 2008). It is based on
correlation patterns between gene expression, which forms the basis for finding clusters of potentially associated genes. It also
identifies relationships between multiple such modules. Network approaches are also very useful for integrating different types
of data, such as multiomics profiles (e.g., mutation, expression, or methylation datasets) or electronic medical records. Simi-
larity network fusion is a popular example – it constructs a network of samples for each data layer and fuses them into a
combined structure (Wang et al., 2014). This approach strengthens strong signals (i.e., similarities between layers) and allows
the samples to be grouped into distinctive subtypes.
Machine Learning Approaches in Genomics

The unprecedented growth in volume and complexity of biomedical datasets and literature has made bioinformatics analyses
more challenging than ever. The very high ratio of features (e.g., mutation or expression) to the number of samples, and the
considerable time investment needed to achieve expert-level knowledge on a particular biological phenomenon translate into the
additional level of complexity. This has led to growing popularity of ML approaches, algorithms designed to automatically learn
from data without an explicit set of rules to follow. While genomic datasets pose many unique challenges that need to be
considered, ML algorithms can be extremely useful, particularly when combined with standard bioinformatics tools and databases.
There are three main types of algorithms that are of direct use to genomic studies – unsupervised, supervised, and semisupervised.
They are all easily accessible through Python, R, or Java libraries, although it requires familiarity with statistical analysis and
programming.

Unsupervised learning is geared towards inferring “hidden structures” in unlabeled data – labels being the output values that in
biological context can mean disease subtypes, months of patient survival or type of response to a treatment. Given the previously
mentioned high number of features, dimensionality reduction is the first area of interest. PCA has traditionally been used to reduce
the dimensionality of the data by geometrically projecting them onto lower dimensions (Lever et al., 2017). This transformation
allows for noise removal and easier classification, though recently developed t-distributed stochastic neighbor embedding was
shown to outperform it in some biological applications (Fonville et al., 2013). Such methods can be combined with pathway
annotation to better explain variations in the phenotype (Ma and Kosorok, 2009). One of the primary aims of personalized
medicine efforts is finding subgroups of patients with distinct phenotypes, which would allow for a more tailored prognosis, care,
and treatment. To this end, a plethora of clustering approaches are routinely used on genomic data, mainly in hopes of finding
novel disease subtypes (Van Rooden et al., 2010). Hierarchical clustering, k-means, and spectral clustering are popular algorithms,
though many specialized methods have been created specifically for biomedical application (Sharma et al., 2017a,b,c, 2016a).

When label data is available, supervised learning approaches can be used to identify significant features or build models to
predict categorical classes (classification) or continuous values (regression). While the identification of biomarkers for
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detecting and monitoring diseases has long been a focus in medicine, in many cases more complex models are needed to
make an accurate diagnosis (Kidd et al., 2015). Overfitting is a common challenge when building prediction models – given
the high number of features in genomic datasets, it is relatively easy to find a combination of genes that will correlate with
outcome labels by pure chance. Such results will not generalize well when tested with an independent dataset. It is thus
important to separate the data into training and testing datasets (a popular split is 70%–30%), and only use the latter
for sporadic validation of the model. Models with fewer features and lower complexity are always preferred, especially if
the features are already known to be predictive of the outcome of interest, or are connected to a biologically relevant
mechanism or pathway. The baseline prediction performance can be established using simple annotation (patient infor-
mation, sample characteristics) or using biomarkers already reported in the literature. Such model can be further expanded
or replaced entirely depending on its performance and complexity. Subsequently, feature selection approaches (Sharma
et al., 2012a,b,c,d, 2014, 2011; Sharma and Paliwal, 2011) can be applied to find biological components that best explain the
phenotype of interest. Simple univariate methods such as t-test or Pearson’s correlation were shown to be the optimal
methods for feature selection in genomic data (Haury et al., 2011). Alternatively, tree-based algorithms or recursive feature
elimination paired with an estimator are popular choices as they allow to rank features based on their importance to the
model. Once a subset of features is selected, a model can be constructed using a variety of algorithms – LASSO, ElasticNet,
and random forest regressor are popular choices for predicting quantity while support vector machine (SVM), random forest
classifier, or k-nearest neighbors (kNN) are popular for predicting categories. More advanced strategies such as boosting,
bagging, or stacking can be used to decrease variance or increase accuracy – xgboost, being a representative example, usually
provides satisfactory out-of-the-box (i.e., using default parameters) results (Chen and Guestrin, 2016). Neural networks,
while popular in many fields such as medical image recognition, are used more sporadically in biomedical applications where
decision-making transparency is often crucial. An iterative process of constructing, tuning (i.e., tweaking parameters), and
testing the model is usually performed on the training data, using a 10-fold cross-validation (CV) technique. The process
partitions the data into 10 equal parts and uses nine parts for training and one for evaluation. This is repeated 10 times, each
time using different parts of the data for training and testing, and the final result is calculated as an average from all the runs.
The performance metric depends on the type of the label, with accuracy, precision, and recall being popular for classification
and root mean squared error and coefficient of determination (R2) for regression. Once satisfactory results are achieved, the
model should be trained on the entire training data (70% in our example) and tested on the remaining test data (the leftover
30%). The performance of a good model should show comparable or better results relative to the 10-fold CV evaluation.
While some improvements can be achieved using different ML algorithms or by tweaking the parameters, poor performance
usually means that the selected features are not enough to predict the outcome. Feature engineering, or creation of novel
features using domain knowledge, is often the best approach to improve the model (Ang et al., 2016). A more recent
development in the ML field is semisupervised algorithms, which take advantage of the information contained within
unlabeled data in classification problems (Scholkopf and Zien, 2006). Mixing unlabeled and labeled data has been shown to
improve the supervised learning accuracy and is of particular interest to biology, where unlabeled data is abundant but
labeled data is difficult to obtain.
Workflows in Proteomics

Proteomics is an extensive field of research where a plethora of studies are being conducted. These studies cover the following areas:
protein fold recognition, structural class prediction, function analysis, posttranslational modification, and molecular recognition of
features (Dehzangi et al., 2018, 2017; López et al., 2018, 2017; Chou, 2017). Various bioinformatics tools and packages have thus
been developed for advancing the above research areas. The implementation of modern pipeline frameworks requires detailed
guidelines and often offers a command line or workbench interface. In this section, we survey on the pipeline frameworks for
identifying molecular recognition features (MoRFs) in IDPs. Specifically, we emphasize the design strategy of MoRF prediction
systems and provide practical recommendations based on the requirements of high-throughput bioinformatics analyses.
The Necessity of Molecular Recognition Feature Prediction

In the traditional view of protein structure–function paradigm, proteins fold into a stable three-dimensional structure that
ultimately determines their function. However, recent progress in computational and experimental methods has revealed a lack of
this stable tertiary structure in certain protein regions (Dyson and Wright, 2005, 2015; Lee et al., 2014; Uversky, 2014). Proteins
comprising such regions are called IDPs and reportedly have important biological functions related to signal transduction and cell
regulation (Wright and Dyson, 2015; Lee et al., 2014). IDPs often achieve their functions through the loosely structured MoRF
region. This region binds to a structured partner and consequently undergoes a disorder-to-order transition to adopt a well-defined
conformation (Lee et al., 2014). MoRF length varies up to 70 amino acids. Although there are many documented experimental
techniques for identification and analysis of MoRF regions, they are still expensive and time-consuming. To overcome this
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challenge, computational approaches have become absolutely necessary for predicting these MoRFs in disordered protein
sequences (Sharma et al., 2018a,b, 2016b; Malhis et al., 2016; Disfani et al., 2012; Dosztányi et al., 2009).
State-of-the-Art Molecular Recognition Feature Predictors

An abundance of computational methods and predictors have been already developed to predict MoRFs. These include ANCHOR
(Dosztányi et al., 2009), MoRFpred (Disfani et al., 2012), MoRFchibi (Malhis and Gsponer, 2015), MoRFpred-plus (Sharma et al.,
2018a), MoRFchibi-web (Malhis et al., 2016), PROMIS, and OPAL (Sharma et al., 2018b). OPAL, the latest proposed predictor, has
also proven the most accurate predictor in the literature. The above-mentioned predictors are currently available as online web
servers and downloadable software packages. The subsequent sections illustrate the guidelines of MoRFs prediction and how to
evaluate the pipeline of MoRF prediction.
Fundamentals of Protein Sequence Analysis

Sequence
The protein sequence is retrieved from an experimental setup where all the amino acids of the protein or peptide are determined.
For computational analyses, a large number of protein sequences are at present available in different databanks, which were
generated and annotated through high-throughput technologies.

Feature source and feature extraction technique
The features of protein sequences can be captured from different sources of information. These can be chemical, physical and
physicochemical properties of amino acids, evolutionary and structural information of protein sequences, functional domains,
and gene ontology information of protein sequences.

Some of the existing feature extraction techniques have been used to create feature vectors from protein attributes such as
occurrence, composition, transition and distribution, pairwise frequencies, amino acid composition, autocorrelation, and bigram
(Sharma et al., 2013, 2015; Liu et al., 2015; Dehzangi et al., 2015; Du et al., 2014). Early studies used to focus on sequential,
syntactical, and physicochemical features. However, more recent studies have considered evolutionary-based features because they
tend to provide good prediction accuracy for protein-related problems (Sharma et al., 2018a; Yang et al., 2017; Lyons et al., 2016;
Dehzangi et al., 2015).

Classifiers
For classification purposes, several classifiers have been widely explored, including SVMs, artificial neural networks, kNN, as well as
ensembles of classifiers. Amongst the aforementioned classifiers, SVMs is a well-known classifier that has delivered promising
results in recent studies (Sharma et al., 2018b; Malhis and Gsponer, 2015).
Design of a Molecular Recognition Feature Predictor

This section will cover the benchmark dataset and the framework of MoRF prediction.

Benchmark dataset
A wide collection of benchmark databases has been introduced, assembled, and used for developing MoRF predictors. These
repositories include MoRFpred, MoRFchibi, MoRFpred-plus, MoRFchibi-web, and OPAL (Table 1).

The sequences in TRAIN and TEST464 sets were obtained from Protein Data Bank and filtered to retain protein-peptide regions
of 5 to 25 residues in size (Disfani et al., 2012). The sequences in TEST464 share a less than 30% sequence identity with sequences
in TRAIN (Disfani et al., 2012). MoRF predictors are always trained using the sequences in TRAIN set and assessed using the
sequences of TEST464 set (Sharma et al., 2018a,b; Malhis and Gsponer, 2015; Malhis et al., 2016). According to the principles used
to assemble TRAIN and TEST464 sequences, it is not verified whether identified protein-peptides are disordered in isolation and
also TEST464 is not free of redundancy as its sequences share more than 30% sequence identity to each other (Disfani et al., 2012).
In order to address the above and validate a MoRF predictor, the EXP53 set is often used. The EXP53 set contains 53 nonredundant
protein sequences with MoRFs which have been experimentally verified to be disordered in isolation (Malhis et al., 2016; Sharma
et al., 2018b).
Table 1 Description of OPAL benchmark dataset

Datasets No. of sequences Total residues No. of molecular recognition features (MoRF) residues No. of non-MoRF residues

Training set TRAIN 421 245,984 5396 240,588
Test sets TEST464 464 296,362 5779 290,583

EXP53 53 25,186 2432 22,754



Fig. 4 Framework of molecular recognition feature (MoRF) prediction.
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Framework of Molecular Recognition Feature Prediction
Fig. 4 shows the framework of MoRF prediction, whose input is the protein sequence. For prediction purposes, protein sequences
are commonly represented using different features. These characteristics comprise physicochemical properties of amino acids such
as 544 common physicochemical indexes (Kawashima et al., 2008), evolutionary profiles such as position specific scoring matrix
generated with PSI-BLAST (Altschul et al., 1997) and hidden Markov model profiles generated with HHblits (Remmert et al.,
2011), as well as structural attributes such as secondary structure, accessible surface area and dihedral torsion angles predicted by
tools as SPIDER2 (Yang et al., 2017). To predict each residue in the protein as MoRF and non-MoRF, a sample is first extracted,
described as a feature vector, and finally predicted with a suitable classifier.

Fig. 5(A) outlines the bioinformatics tools/scripts and the data format required for implementing a framework of MoRF
prediction. These tools are generally run on a Linux operating system and protein sequences are organized in a FASTA format file.
Tools such as PSI-BLAST, HHblits, and SPIDER2 can be installed and run via command line. On the other hand, scripts are written
with software tools such as MATLAB, OCTAVE, and C-code. Finally, Fig. 5(B) shows the procedure of training and scoring a MoRF
predictor.
Implementation Steps of a Molecular Recognition Feature Predictor

To identify MoRFs in a protein sequence, each residue should be initially scored. This score will help predict the residues as MoRF
or non-MoRF. Two of the methods often used in a MoRF classification scheme are ResidueMoRF and RegionMoRF. These methods
are used to extract samples from protein sequences during the training and test steps. The following subsections will discuss the
training and test steps, which are of utmost importance to construct a MoRF predictor.

Training step
In this step, features are extracted from MoRFs and non-MoRFs and grouped in a training set. Let us assume the segment F, which
represents a MoRF with flanks, and the segment G, which describes a non-MoRF with flanks. Both segments F and G are from a
protein sequence in the training set. Let us also suppose that a protein sequence Pi is given as

Pi ¼ A1A2…Aj…Ani ði¼ 1; 2;…;TÞ ð1Þ

where Aj is the jth amino acid in the sequence, T is the total number of protein sequences in the training set, and ni is the length of
the protein sequence Pi. For instance, let us consider a protein sequence P1 whose length n1¼150 and which contains one MoRF
located between A30 and A40. The segments F and G for this protein P1 are illustrated in Fig. 6. For illustration purposes, a flank size
of 20 amino acids has been considered. Of note, the flank size should be selected during training and evaluation.
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Fig. 5 Pipeline of molecular recognition feature (MoRF) predictor implementation. (A) details of bioinformatics tools/scripts and data formats, (B)
procedure of training and testing a MoRF predictor.

Fig. 6 Schematic illustration of (a) segment F and (b) segment G.
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MoRFs can have a variable length of 5 to 25 amino acids. Additionally, zeros are padded to create flanks of 20 amino acids if
the MoRF is present at the beginning or end of the protein sequence. Positive and negative samples representing MoRFs and non-
MoRFs are extracted from segments F and G, respectively.

For sample extraction, two methods named ResidueMoRF and RegionMoRF, which are detailed below, are commonly used.

ResidueMoRF method
With this method, a window size of 41 ((flank size� 2)þ 1) amino acids is regarded for extracting samples from a segment. For
extracting positive samples, the center of the window is placed on the MoRF residue of segment F, with amino acids upstream and
downstream of the MoRF residue. For example, the sample Sa for a MoRF residue is defined as

Sa ¼ Aa�20;⋯⋯⋯Aa�2;Aa�1;Aa;Aaþ1;Aaþ2⋯⋯⋯;Aaþ20f g ð2Þ
where Aa is the MoRF residue (i.e., in Fig. 7(A), p¼30). Positive samples extracted from a segment F using Eq. (2) are
interpreted as
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Fig. 7 Graphical illustration of (a) sample extraction from segment F, (b) sample extraction for scoring a query protein sequence of length L (Aj
is the jth amino acid in the sequence), and (c) sample extraction from a query sequence of length L.
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gtr ¼

Sa
Saþ1

⋮
⋮
⋮

Saþl�1

for 5rlr25

8>>>>>>>>><
>>>>>>>>>:

ð3Þ
where l is the MoRF length (i.e., in Fig. 7(A), l¼11). Fig. 7(A) shows the graphical illustration of sample extraction from the
segment F. In a similar way, negative samples are extracted from segment G.

After applying either of the above models, the feature vector is finally computed from the sample and used for model training.

RegionMoRF method
With this method, the entire segment F with a MoRF region of length l (as depicted in Fig. 7(A)) is taken as a positive sample.
Likewise, the entire segment G is taken as a negative sample.

Test step
The scoring of each residue in a query protein sequence also requires the extraction of samples. In this case, the sample extraction
procedure makes use of the above methods ResidueMoRF and RegionMoRF as well.

ResidueMoRF method
Like the procedure described in the above section, a window size of 41 ((flank size� 2)þ 1) amino acids is used to extract a
sample for each query residue. The sample Sj represents a query residue defined as

MAC_ALT_TEXT Fig. 7
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Sj ¼ Aj�20;⋯⋯⋯Aj�2;Aj�1;Aj;Ajþ1;Ajþ2⋯⋯⋯;Ajþ20
� � ð4Þ

where Aj is the residue in the query sequence and j¼1,2,…,L. Samples extracted using Eq. (4) for a query sequence of length L are
described as

gts ¼

S1
S2
⋮
⋮
⋮
SL

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

Fig. 7(B) shows the graphical illustration of sample extraction from a query sequence. Like the procedure followed for training,
zeros are padded to make the length of flanks equal to 20 if query residues are at the beginning or end of the sequence. The feature
vector is then computed from the sample and used for scoring.

RegionMoRF method
With this method, a window of size (2�flank sizeþ l) is used to extract samples from a query sequence. The sample Sj for a query
sequence is defined as

Sj ¼ Aj�20;⋯⋯⋯;Aj�2;Aj�1;Aj;Ajþ1;Ajþ2;⋯⋯⋯;Ajþðl�1Þþ20
� � ð6Þ

where Aj is the residue in the query sequence and j¼1,2,…,L� lþ 1. Samples extracted using Eq. (6) for a query sequence of length
L are interpreted as

gts ¼

S1
S2
⋮
⋮

SL�lþ1

8>>>>>><
>>>>>>:

ð7Þ

where l¼6,7,…,30. A graphical illustration of sample extraction can be observed in Fig. 7(C). Eq. (8) defines the samples used for
scoring each of the residues as

Ai-

S1; S2;⋯; Sif g;1riol

Si�lþ1; Si�lþ2;⋯; Sif g; lrirL� lþ 1

Si�lþ1; Si�lþ2;⋯; SL�lþ1f g; i4L� lþ 1

8><
>:

ð8Þ

where i¼1,2,…,L. By varying l from 6 to 30, 450 (6þ 7þ - - - þ 29þ 30) samples are obtained for each residue, except for the
residues at the beginning and end of the query sequence. The feature vector is computed from the sample and used for scoring. For
each residue, the maximum score of the samples defined in Eq. (8) is set as final propensity score.
Summary of Molecular Recognition Feature Prediction

For the prediction of MoRFs in protein sequences, state-of-the-art predictors such as ANCHOR, MoRFpred, MoRchibi, MoRFchibi-
web, and OPAL are currently available as web servers. Thus, end users or scientists can easily use a graphical web interface to
predict MoRF and non-MoRF residues in a protein sequence. Except for MoRFpred, the other predictors can be further installed
and configured locally (in personal computers). The performance of the above-mentioned predictors is shown in Table 2. As it
clearly shows, the OPAL predictor outperforms the other approaches, achieving a significant accuracy and confirming its practical
use in real scenarios.

To select a target protein for further experimental analysis, the sequences of large databases need to be scored. To do this, the
end user can write SQL query scripts to obtain such scores from the MoRF predictor (Fig. 8(A)).

As Table 2 clearly indicates, the prediction accuracies are still limited when it comes to selecting a target protein for further
experimental analysis for drug design. However, these limitations can be further improved by considering certain strategies. There
is a need for high-performance workbenches, which could be accessible via the web to obtain protein sequence alignments. In the
current MoRF web servers, the alignment tools are locally installed and run instead of using available alignment web servers. This
is partly because alignment tools require a huge amount of time to provide alignment results. In addition, future MoRF pipelines
similar to the one in Fig. 8(B) are expected. In other words, a core database server should store the experimental annotation from
research labs whereas the computational annotation should be guaranteed by high-throughput bioinformatics analyses.



Table 2 Performance of state-of-the-art MoRF predictors. The results are reported for the TEST464 and EXP53 datasets using the area under
the curve (AUC) as the performance metric

Predictor/method TEST464 EXP53

ANCHOR 0.605 0.615
MoRFpred 0.675 0.620
MoRFchibi 0.743 0.712
PROMIS 0.790 0.818
MoRFchibi-web 0.805 0.797
OPAL 0.816 0.836

Fig. 8 Requirements for an improvement to molecular recognition feature (MoRF) prediction. (a) procedure of target protein selection for further
experimentation, and (b) future pipeline for MoRF analysis.
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Bioimage Analysis Pipelines

One of the areas in bioinformatics which is experiencing an enormous transformation is related to bioimage analysis. This is
because a great number of bioinformatics applications are relying on image data for assessing different cellular and molecular
mechanisms and thus validating the biological hypothesis. More and more images of biological mechanisms are generated by
microscopes every single day, making necessary the design of accurate computational approaches.

In this direction, distinct imaging techniques such as PALM (Betzig et al., 2006), STORM (Rust et al., 2006), and STED (Hell,
2003) are currently able to detect individual proteins separated a few nanometers. Moreover, images related to biological
mechanisms like RNA interference and chemical compounds (Echeverri and Perrimon, 2006; Moffat et al., 2006; Sepp et al., 2008)
are absolutely necessary to shed light on scientific problems such as the differentiation of cancer cell phenotypes (Long et al., 2007a).

However, the complexity of bioimages makes it extremely difficult to apply conventional medical image analysis workflows
because the objects of interest sometimes possess different morphologies and intensities. Therefore, it is necessary to start paying
attention to this emerging subfield of bioinformatics, which is not widely covered in the scientific literature.

The development of bioimage analysis pipelines often consists of the following steps (Fig. 9): preprocessing in which noise is
reduced, image registration (Qu et al., 2015) where images are aligned for pixel-by-pixel comparisons, image segmentation
(Meijering, 2012) in which the objects of interest are separated from the background, feature extraction where object descriptors
such as shape (Pincus and Theriot, 2007) and texture (Depeursinge et al., 2014) are computed, classification where objects are
detected by ML techniques (Shamir et al., 2010), and visualization (Walter et al., 2010).
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Fig. 9 Bioimage analysis workflow.
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In this section, we will go through each of the above steps and explain the different methods.

Preprocessing

Preprocessing should be the first step of any pipeline. Its main objective is to improve the appearance of a bioimage or highlight
additional information about the objects of interest, which might not be clearly observable. Many enhancement techniques and
filters are often used to enhance the contrast and borders of the different objects, accentuate space frequencies, and remove or
attenuate noise. One of these contrast enhancement techniques is histogram adjust, which produces a histogram with a specific
form for the output image. Histogram equalization achieves good approximations towards a uniform distribution of the values of
gray scale levels, giving the same occurrence probability to all gray levels (Pratt, 2014). To overcome the limitations of standard
histogram equalization, the contrast-limited adaptive histogram equalization (CLAHE) technique is sometimes used. It divides the
images into contextual regions and applies the histogram equalization to each of them (Pratt, 2014). This evens out the dis-
tribution of used gray values, making the hidden features of the image more visible. Another technique is the wavelet transform,
which increases the image contrast and facilitates well-localized decomposition schemes (Salvado and Roque, 2005). In addition,
digital filters are also used for enhancing bioimages by reducing noise and preserving the borders of those objects of interest. Some
of these filters are Prewitt and Canny operators, as well as median, Gaussian, and average filters.

Image Registration

This step is often included in pipelines intended to compare images of different biological conditions such as those for building
brain atlas (Ng et al., 2007), and for comparing cell morphology and gene expression patterns. Here, methods such as mutual
information registration (Viola and Wells, 1997), spline-based elastic registration (Rohr et al., 2003), and congealing registration
(Learned-Miller, 2006) can be utilized. Image registration has been used for blastoderm embryos in D. Melanogaster where each
nucleus is described using a point in the 3D space (Fowlkes et al., 2008).
Image Segmentation

The main aim of the segmentation step is to separate the objects of interest from the background. It is sometimes considered as a
classification process of the objects present in the image because it can easily locate the different objects. Segmentation methods
can vary depending on the specific application and image type. However, a segmentation method able to reach acceptable results
for all types of bioimages has not been developed thus far. For a better explanation, we will present the segmentation methods in
two groups: classical segmentation and clustering methods.

Classical segmentation methods
Thresholding is a method that segments scalar images, creating a binary partition of the image intensities. Once thresholding
determines an intensity value, segmentation is achieved by grouping all the pixels based on intensity into two different classes. Its
main limitation is that it only considers the intensity instead of other relationships between the pixels. One of the most reported
methods is the Otsu’s method, which selects the optimal threshold by maximizing the between-class variance with an exhaustive
search. Although there are different methods to find a threshold, most of them are not satisfactory when analyzing real images,
such as bioimages, due to the presence of noise, plain histograms, or an inadequate illumination.

Another classical method is deformable models, which are based on physical motivations, and used to delineate the borders of
regions using curves or closed parametric surfaces deformed under the influence of external and internal forces. Two important
deformable models are snakes (Kass et al., 1988) which segments objects whose morphology is variable, and intelligent scissors
(Liang et al., 2006) which allows us to segment with minimal user interaction.

Clustering methods
Clustering techniques are also important in biomedical analysis pipelines because they achieve a correct separation of the regions
of interest from the image background. Two of the frequently used clustering techniques are fuzzy C-means (Dulyakarn and
Rangsanseri, 2001; Yang et al., 2004) and hierarchical clustering, including single-linkage, complete-linkage, and average-linkage.

The segmentation of bioimages depends on which features are needed. For instance, texture features can be extracted for
chromatin compositions whereas concavity features could be employed for nuclear morphology. When the images are of cell-
based assays where nuclear compartments are colored, methods such as globular template segmentation, watershed segmentation,
or active contour/snake methods are recommended.

MAC_ALT_TEXT Fig. 9
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Nevertheless, when the images contain nonglobular objects such as neurons, the neuroanatomical analysis software Neuro-
lucida (Glaser and Glaser, 1990) is often used. Alternatively, directional kernels are also considered for searching neuronal
structures in confocal images (Al-Kofahi et al., 2003). Finally, the tool ImageJ plugin NeuronJ (Meijering et al., 2004) is advisable
as well.
Feature extraction/selection

The feature extraction/selection step is of vital importance when we aim to classify objects in bioimages. In this step, representative
feature vectors are usually obtained. To do this, dimensionality reduction techniques like PCA are necessary. In addition, in-depth
knowledge of the research domain is needed because it will allow us to select those features that can help discriminate between
objects of interest. For example, if the aim is to analyze dynamic fluorescent images, texture features should be used (Dorn et al.,
2008). For clustering gene expression patterns, global decomposition by eigen-embryo analysis is recommended (Peng et al.,
2006) whereas wavelet features able to detect global and local properties are advisable to recognize and annotate gene expression
patterns (Zhou and Peng, 2007). When a collection of image characteristics is extracted, we would then recommend the use of
minimum-redundant maximum-relevant feature selection algorithms (Ding and Peng, 2005; Peng et al., 2005b) so that redundant
features can be eliminated.
Classification

The classification step is also of vital importance in bioimage analysis pipelines because it is here where the features of the object of
interest will be used for classification. Standard ML techniques are often employed to achieve this goal. Some of these classifiers are
the following:

� Bayesian classifiers, which rely on the Bayes’ theorem, can be used in binary classification problems. The naïve Bayes classifier
is often employed for classifying objects of interest because it requires a small amount of training data for parameter
estimation.

� The kNN rule (Kuncheva, 2014) does not require knowledge of a priori probabilities whereas it assigns an unknown object to
the class of its nearest neighbor in the measurement space. Moreover, it does not require patterns to be represented in a
suitable vector space but only a similarity measure or distance function.

� Decision trees (Kuncheva, 2014) do not use comparison functions to infer general properties of the training matrix. Nor do
they use all the features for object classification but each class can be inferred using its own feature set.

� SVMs (Hastie et al., 2001b) search the hyperplane that separates a set of training objects while maximizing the margin
between their classes. This method aims to minimize the bound on the generalization error rather than minimize the mean
squared error over the dataset.

When the training set consists of few bioimages, an ensemble of machines is advisable. This strategy builds several basic
classifiers and combines their outputs for improving classification. In such cases, a diverse ensemble in which the classifiers have
adequately different decision boundaries is needed. To achieve this diversity, strategies such as bagging, boosting, AdaBoost,
stacked generalization, and a mixture of experts are often considered (Kuncheva, 2014; Polikar, 2006). Bagging (Kuncheva, 2014;
Polikar, 2006) draws different training subsets with replacement and is particularly recommended when the number of images is
limited. Boosting (Kuncheva, 2014; Polikar, 2006) makes new machines pay more attention to those examples in which previous
machines produced errors. AdaBoost (Kuncheva, 2014; Polikar, 2006) generates a set of hypotheses by training weak machines
and making sure that the cases misclassified by previous classifiers are included in the training data of the next classifier.

One of the methods used for clustering mRNA expression patterns of coexpressed genes was the minimum spanning tree cut
(Peng et al., 2006) whereas for determining cell identities, the absolute three-dimensional location of the cell along with its
location patterns was employed (Long et al., 2008). However, for assigning bioimage patterns to different annotation terms,
parallel classifiers are highly recommended (Zhou and Peng, 2007).
Visualization

As in other bioinformatics pipelines, visualization is vital for result verification. Among the techniques often used in bioimage
analyses are surface and flow visualization. Tools for the visualization of images of protein surfaces and gene expression can be
utilized in addition to immersive visualization systems such as NCMIR’s ATLAS and ImmersaDeskTM (Ai et al., 2005).
Conclusions

The spectrum of bioinformatics tools and methods is currently too wide for an exhaustive review. The computational approaches
grow in sophistication alongside technological improvements in the corresponding experimental protocols. New requirements,
which become more evident with increase in volume and complexity of biological data, will further push the development of
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efficient and comprehensive solutions. This article covers four main research areas: genomics, transcriptomics, proteomics, and
bioimage analysis.

Within the genomics area, we presented current efforts that focus on accurate mapping of sequences to the reference and
identifying regions that show variation. As the number of quantifiable changes will continue to rise, new frameworks geared
towards integrating this information and linking them to phenotypic changes will be required.

In the transcriptome section, we examined several computational data processing approaches and covered linking expression
profiles to actionable results. We summarized popular tools and libraries that can be easily built upon and extended. As our
understanding of pathways, networks and omics interaction grows, so will the scope of the analyses. Future solutions will look at
RNA changes more in the context of global interaction network, rather than few genes with higher or lower expression.

For proteomics, we have provided a detailed guideline for MoRF prediction, including data description, examples of state-of-
the-art tools, MoRF classification schemes, and pipelines of MoRF downstream analysis. Any reader can easily follow the steps to
develop a new MoRF predictor, and thus analyze MoRFs in protein sequences using the presented methodology.

Finally, within the bioimage analysis area, we described the standard workflow for analyzing digital images, which includes
preprocessing, image registration and segmentation, feature extraction, classification, and visualization. With the capture of high-
resolution images of different cellular mechanisms, future bioinformatics approaches will definitely be necessary to keep up with
the technological advances.
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