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Abstract Marine phytoplankton biomass and community structure are expected to change under global
warming, with potentially significant impacts on ocean carbon, nutrient cycling, and marine food webs.
Previous studies have indicated decreases of primary production and chlorophyll a concentrations and
oligotrophic gyre expansions from satellite ocean‐color measurements, purportedly due to global warming.
We review this topic via a reanalysis of a novel backscattering‐based phytoplankton functional type and
phytoplankton biomass time series over the 1997–2010 period. Unlike previous work, we find that globally
the biomass and the percent of large (small) phytoplankton increase (decrease). The oligotrophic gyres
contract or expand depending on the chlorophyll a threshold definition employed. In the subtropical gyres,
chlorophyll a trends are likely due to physiological changes, while the increasing biomass trends are due to
winds and relevant mixing length scale increases.

1. Introduction

Oxygenic photosynthesis by phytoplankton contributes to nearly half of the biosphere's net primary produc-
tion (Field et al., 1998). The density contrast between the surface layer and underlying cooler nutrient‐rich
waters below the permanent pycnocline is expected to increase with a warmer ocean surface (Capotondi
et al., 2012). This enhanced stratification will likely reduce nutrient supply to the surface and decrease ocean
biological productivity differentially across biomes (Behrenfeld et al., 2006). It also will affect the biological
pump, which effectively sequesters carbon away from the atmosphere for centuries to millennia (Eppley &
Peterson, 1979). It is then crucial to understand any changes in phytoplankton biomass and size structure, as
picophytoplankton typically outcompetes microphytoplankton in nutrient‐poor environments (e.g., Weber
& Deutsch, 2010).

Traditionally, satellite‐based chlorophyll a (Chl a) has been used to assess the spatial distribution and tem-
poral evolution of phytoplankton abundance and productivity (Behrenfeld et al., 2002; Boyce et al., 2010). No
significant global temporal trends in Chl a were found using single ocean color satellite missions that span
~10 years (Beaulieu et al., 2013; Gregg, 2005; Gregg et al., 2003; Gregg & Rousseaux, 2014; Henson et al.,
2010; Polovina et al., 2008; Siegel et al., 2013; Vantrepotte & Mélin, 2011). Gregg et al. (2017) recently used
a new satellite merged 18‐year time series and found no significant trend in global annual median Chl a from
1998 to 2015. Wernand et al. (2013) reconstructed Chl a changes from Forel‐Ule scale records for the
century‐long 1889–2000 period and found compensating Chl a trends in different ocean regions.

Little work has been done on looking for trends in satellite‐derived phytoplankton biomass (Behrenfeld
et al., 2006) and community size structure (Kostadinov et al., 2010). Here we add to the subject by studying
trends and interannual variability in the novel backscattering‐based phytoplankton functional type (PFT)‐
partitioned phytoplankton biomass (Kostadinov et al., 2009, 2010, 2016), and comparing to Chl a over the
1997–2010 SeaWiFS (Sea‐Viewing Wide Field‐of‐View Sensor) period. Our objective is to explore the under-
lying physical mechanisms responsible for observed biological trends across the warm regions (region with
average sea surface temperature (SST) > 15 °C that includes tropical and subtropical biomes).

2. Data and Methods

We study the biological long‐term trends and interannual variability in the warm oceans (region with aver-
age SST > 15 °C that includes tropical and subtropical biomes; Figure S1). We use a 9‐km backscattering‐
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based particle size distribution phytoplankton biomass in mg m−3, PFT biomass fractions expressed in
percent [picoplankton (0.5–2‐μmdiameter), nanoplankton (2–20 μm), andmicroplankton (20–50 μm), here-
after micro%, nano%, and pico% as in Kostadinov et al. (2016), and 9 km Chl a (OCI (R2014))] for the
SeaWiFS period 1997–2010. We derive a photoacclimation parameter (hereafter Chl/CB16) based on
Behrenfeld et al. (2016) (Text S1). We derive the active mixing length scale (LMIX) for phytoplankton
(Brody & Lozier, 2014, 2015), and the mixed layer depth (de Boyer Montégut et al., 2004). Other variables
used are sea surface temperature (SST), 10‐m wind speed (Berrisford et al., 2011), air‐sea heat flux (positive
into the ocean), photosynthetically available radiation (PAR), diffuse attenuation coefficient for downwel-
ling irradiance at 490 nm (Kd(490)), and particulate inorganic carbon (PIC). Texts S1 and S2 provide details
on data sources and definitions. High‐resolution variables are downsampled to a 1° grid using a 12 × 12 top‐
hat averaging kernel. If >50% of the pixels being averaged are invalid data, the pixel is assigned a missing
data value (as in Kostadinov et al., 2017). All monthly time resolution data sets are used. All anomalies
are relative to the 1998–2010 mean seasonal cycle, unless stated otherwise. We use generalized least squares
regression to calculate temporal trends in variables (as in Beaulieu et al., 2013) and present the uncertainty at
the 68% confidence level (~0.3 p value) unless stated otherwise. A Monte Carlo‐based error analysis
(Figure S13 and Text S4) confirms that trends are meaningful or significant at the 68% confidence interval.
Note that significant here means that the 68% confidence interval (unless stated otherwise) of the slope of the
generalized least squares regression of the monthly anomalies on time in years does not cross the zero line.
Text S3 further separates the El Niño–Southern Oscillation (ENSO) and non‐ENSO trend components, con-
firming the significance of our results and confidence analysis.

3. Global Trends in Biomass and Chl a

The 1997–2010 trends in total phytoplankton biomass are found to be significantly positive over most of the
global ocean (Figure 1a and Table S1). Weak but significant negative trends (−0.5 to −1%/year) are only
found along the equatorial and subtropical east Atlantic and off the west coast of Africa. Similar significant
positive trends are observed for the micro% and nano% (Figures 1d and 1e). In contrast, the pico% (Figure 1f)
shows negative trends globally.

The spatial trends in Chl a (Figure 1b) are comparable to those in Siegel et al. (2013, their Figure 4b). In cold
regions (approximately north of 40°N and south of 40°S; Figure S1), Chl a increase patterns are identical to
those found in the biomass. In warm regions, however, there are prominent significant negative Chl a trends
along the west coast of North Africa, the Indian and Pacific subtropical gyres, contrary to the positive trends
in biomass. Similar declines in low‐latitude Chl a have been observed in previous SeaWiFS‐based studies
over different periods (Gregg, 2005; Gregg & Rousseaux, 2014; Henson et al., 2010; Siegel et al., 2013;
Vantrepotte & Mélin, 2011). In warm regions, competing positive and negative trends in Chl a cancel out
(Figure 1b); hence, the significant positive global trend is dominated by basin‐wide increases in Chl awithin
the cold regions (Table S1). In contrast to Chl a, significant positive trends are found for biomass in the warm
region and the cold regions.

How much of the biological trends in Figure 1 are ENSO driven? In most of the subtropics and subpolar
regions, the positive non‐ENSO trend in biomass dominates over the negative ENSO biomass trend, showing
an overall global significant positive trend (see Text S3 and Figures S3 and S4). In the tropical Pacific tongue,
the strong positive trends in biomass and Chl a are due to the added effects of the strong positive ENSO trend
and a weak positive non‐ENSO trend.

The warm and cold SH regions individually explain 44% and 46% of the global biomass increase in
Figure 1 (Table S1 and Text S3). We focus here on understanding the warm region trends. The tropical
Pacific tongue and the subtropical gyres explain 33% and 21% of the warm biomass trends, respectively.

4. ENSO Impacts on Phytoplankton Biomass and PFTs in the Tropical Pacific

El Niño–Southern Oscillation (ENSO) is the strongest global climate natural fluctuation on interannual time
scales, with a warm (El Niño) and a cold (La Niña) phase. Sustained El Niño phase generates long‐lasting
positive SST anomalies across the equatorial Pacific basin associated with weaker‐than‐average trade winds,
an eastward expansion of the warm pool leading to increased water stratification in the east, a flattening of
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the thermocline/nutricline (Chavez et al., 1998; Christian et al., 2001; Radenac et al., 2001; Stone et al., 1999;
Strutton & Chavez, 2000; Turk et al., 2001), and decrease in phytoplankton growth along most of the tropical
Pacific cold tongue except in the western region where phytoplankton increases (Radenac et al., 2012).

We find that most interannual variability in phytoplankton biomass and Chl a is associated with ENSO in
the tropical Pacific tongue, as indicated by significant negative correlations between the multivariate
ENSO index (MEI) and the analyzed variables (Figure 2a and Table S2). During La Niña (negative MEI),
strong westward trade winds shoal the eastern Pacific nutricline and increase both vertical nutrient supply
to the surface and westward lateral nutrient inputs from the eastern equatorial Pacific, increasing biomass,
Chl a, micro%, and nano%, and decreasing pico% (Figure 2b). The opposite happens during El Niño.

During our study period, a decreasing trend in MEI followed by an increasing trend (with a time split at
2002) was found to be significant at 95% confidence interval andmoremeaningful than a simple single linear
trend (Figure 2a). The preferred time split was found by performing two separate linear regressions on MEI
from 1999 to the split time and from the split time to the end (2010) for every possible split time (as in
Beaulieu et al., 2012). Biomass and Chl a first decrease during 1999–2002, when the MEI time series is
increasing (hereafter, “El Niño”‐like state) and then increases when the MEI is decreasing (hereafter, “La
Niña”‐like state) during 2002–2010. The trend over the full SeaWiFS period is dominated by the transition
from the large 1997–98 El Niño event to the increasingly negative MEI period of 2002–2010, and corresponds
to an increase in tropical Pacific biomass and Chl a (compare Figure 2b with Figures 1a, 1b, and 1d).

5. Variability/Trends in Carbon Biomass in the Subtropical Gyres

Global warming is expected to further stratify the subtropical gyres (Polovina et al., 2011). With decreased
nutrient supply to the surface oligotrophic ocean, the phytoplankton biomass will likely decrease
(Behrenfeld et al., 2006; Boyce et al., 2010) and shift from large‐ to small‐sized species (Bopp et al., 2005;
Boyd & Doney, 2002; Corno et al., 2007). We show here results contrary to this hypothesis. The 1997–2010
period is dominated by declines in the pico% and increases in the micro%, nano%, and biomass in the sub-
tropical gyres, significant everywhere except for the North Atlantic Gyre (NATL; Table S3). Most of the error
bars do not cross the horizontal and vertical zero line in Figure S13, which indicates that most of the PFTs
and biomass are significant at 68% confidence interval. We note that biomass and micro%/nano% is not

Figure 1. GLS trends for deseasonalized monthly anomalies of SeaWiFS‐derived (a) phytoplankton biomass concentra-
tion, (b) Chl a concentration, (d) fraction microphytoplankton, (e) fraction nanophytoplankton, and (f) fraction pico-
phytoplankton, all in %/year. Linear trends in (c) heat flux (Wm−2/year), (g) SST (°C/year), (h) wind speed (ms−1/year),
and (i) LMIX (m/year). All trends are for the 1997–2010 period. Pixels with statistically insignificant trends at the 68%
confidence interval (p < 0.3) are hatched. Biomes are (Figure S1) delimited by black contours.
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significantly correlated with MEI in the subtropical gyres (Table S3). What could then drive the observed
biomass increases?

Following up on recent efforts (Brody & Lozier, 2014, 2015), we derive a phytoplankton active mixing length
scale (LMIX; details in Text S2) that accounts for mixing due to a large negative heat flux (out of the ocean)
generating deep convective mixing to the base of the seasonal pycnocline (LMIX =MLD, Case 1), mixing pro-
portional to wind energy (LMIX = LEK, Case 2), and reduced turbulent mixing when large positive heat flux
(into the ocean) counteracts wind mixing (LMIX = LOZ, Case 3; Figure S5). The contribution of the various
cases to LMIX (meaning the percentage of pixels with one or the other case) is shown in Figure S12.

We find positive interannual correlations between LMIX and biomass anomalies (Figure S6d) in the subtro-
pical gyres, consistent with a deepening of the active mixing‐length scale increasing vertical nutrient supply.
Interannually, biomass is more tightly positively coupled to winds and LEK in the subtropics than to MLD
(Figures S6b–S6e). Heat flux into the ocean and biomass are negatively correlated (Figure S6c) across all
gyres, indicating that as ocean heat uptake is weakening the biomass is increasing. The temporal correlation
between monthly biomass and physical variables is weaker when seasonality is removed (not shown) com-
pared to when the seasonality is included (Figure S6), as expected from other recent work (e.g., Dave &
Lozier, 2010; Cabre et al., 2016).

We find that LMIX increases in all the gyres where biomass increases significantly (except in NATL) through-
out our study period (Table S1). We further analyze the monthly trends in biomass and physical drivers
across all gyres.

In the North Pacific (NPAC) gyre, LMIX/MLD/LEK all peak in January/February when heat is lost from the
ocean and the water column mixes deeply, bringing more nutrients to the surface and setting up the large

Figure 2. (a) Time series of deseasonalized anomalies of tropical Pacific tongue biomass, microfraction, Chl a, gyre size,
and the MEI index. Note that the y axis of MEI time series is reversed (black). (b) Difference in biomass anomalies
during large negative (> −1, red, during cold phase) and positive phases (< +1, blue, during warm phase) of the MEI. The
black solid and dashed lines is the Chl a contour at 0.11 mg/m3 during large negative MEI and positive MEI, respectively.
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April biomass bloom (Figure 3a). A secondary biomass bloom is in July/August. In this gyre, both biomass
and LMIX increase every month of the year over the 1997–2010 period. The highest increase in biomass is in
late winter/early spring (February–March) and is explained by increased February ocean heat loss,
decreased March ocean heat uptake, and wind‐driven LMIX (Figures 3c–3g and S5). Note that 1‐sigma
error bars do not cross zero line, indicating that the trends are significant at 68% confidence interval for
the winter months.

NATL gyre biomass peaks in July/August; a secondary biomass peak in January/February/March corre-
sponds to strong winds and ocean heat loss driving maxima in MLD/LEK/LMIX (Figure S8). Over the period
studied, we find the largest increase in biomass in February/March, corresponding to intensified heat flux
loss and LMIX (February/March), and increasedMLD (January/February; Figures S8c–S8g). The largest drop
occurs during April, corresponding to enhanced stratification, a shift to more (less) frequent Case 3 (Case 2)
mixing and hence LMIX decrease. Overall, monthly trends cancel each other, resulting in a weak negative but
insignificant biomass trend.

The South Pacific (SPAC) gyre biomass (Figure S9a) shows one major peak in winter (June/July/August).
Biomass increases significantly over 1997–2010 in all months. We propose that a combination of ocean
heat flux loss (significant trends 8 months/year), increased winds (and LEK, June–December), MLD
(July–November), and LMIX (August–January) contribute to the biomass growth in this domain
(Figures S9c–S9g). The largest increase in the major seasonal peak of biomass (June‐July‐August)

Figure 3. (a) The 1997–2010 averagedmonthly climatology for LMIX depth measurements for the NPACwith mixing depth measurements derived for all the Cases
1 (MLD), 2 (LEK), and 3 (LOZ) from surface atmospheric forcings. Log10 phytoplankton biomass and surface heat flux averaged monthly values are in green
and gold. (b) The 1997–2010 averagedmonthly climatology for percentage of pixels in the gyre that are classified as Case 1, 2, or 3 mixing. Percentage change/trends
in all the months throughout 1997–2010 in the NPAC for the biome‐averaged (c) biomass, (d) heat flux, (e) MLD, (f) LEK, (g) LMIX, (h) Chl a, (i) Chl/CB16, (j) MLD,
(k) PAR, and (l) Kd(490). The red line is the total percentage change of biomass over the 1997–2010 period and the blue line is the ±1‐sigma error (or 68%
confidence interval, p < 0.3) associated with the total percentage change of biomass.
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corresponds to stronger winds, reduced ocean heat flux uptake (in June/August), and an increase in August
LMIX (likely driven by a shift from Case 3 to Case 1).

In the South Atlantic (SATL) subtropical gyre we see a single biomass peak in wintertime (June/July/
August), when heat flux is at its most negative, and LMIX/MLD/LEK all peak together. An increase in
annually averaged biomass is driven by increases in five months of the year (Figure S10c). Most increase
in biomass is in May‐June‐July and can only be partially explained by a significant decrease in heat flux
in May–June, a significant increase in MLD in June–July and a significant increase in LMIX in May and
July (Figures S10c–S10g).

The major peak in Indian (IOCE) gyre biomass is in June/July/August, corresponding to the period of
maximum heat flux loss and both deepest MLD and strongest winds. The increase in biomass in the IOCE
is largest in May/June/July when LMIX is given by a combination of MLD and LEK (Figures S11c–S11g).
We partially ascribe the early winter increase in biomass to a significant increase in MLD and LMIX in
April/May/June, combined with wind increases (May–August).

In addition to the discussed bottom‐up effects (increased nutrient supply), it is possible for increases in LMIX

to increase phytoplankton biomass via top‐down effects. If deeper LMIX dilutes zooplankton more than phy-
toplankton (Boss and Behrenfeld, 2010), this gives phytoplankton a boost as grazing pressure is reduced.
Additionally, observed SST increases directly contribute to the increase in phytoplankton growth but also
intensify zooplankton growth and grazing pressure. In the absence of global zooplankton data time series,
it is challenging to clarify the potential contribution from a top‐down mechanism.

In summary, we can partially ascribe the 1997–2010 increase in subtropical gyre biomass and a community
shift toward more micro/nano% (less pico%) to an increased nutrient renewal during winter, as MLD and/or
LMIX increase by enhanced wind mixing and wintertime ocean heat loss (deeper convective mixing to the
base of the permanent pycnocline). The contribution of Cases 1–3 to the average LMIX seasonal cycle and
the changes in these cases are detailed in Figure S12. The year‐averaged contribution of Case 1 and 2
LMIX into each subtropical gyre LMIX increase for all the gyres, while Case 3 LMIX decreases for most of
the gyres (Table S4), as LMIX increases during winter but remains approximately constant throughout the
rest of the year. However, these changes are not significant, which suggests that the different mixing contri-
butions remain approximately constant throughout our 1997–2010. Wintertime trends in LMIX and biomass
seem better coupled in some gyres (e.g., NPAC) but more decoupled in others (e.g., SATL).

It is known that increased carbon dioxide (CO2) in surface water decreases the pH (increased ocean acidifi-
cation) and causes calcareous organisms to dissolve (Doney et al., 2009; Mackey et al., 2015). However, some
studies report that an elevated CO2 favors photosynthesis in coccolithophores (which belong to the
nano‐phytoplankton group), thus increasing or restoring their calcification after an adaptation period
(Iglesias‐Rodriguez et al., 2008; Krumhardt et al., 2016; Schluter et al., 2014). Some recent studies have
noticed coccolithophore abundance increase in response to surface partial pressure of carbon dioxide
(spCO2) increase (Krumhardt et al., 2016; Rivero‐Calle et al., 2015). Rivero‐Calle et al. (2015) claim that
North Atlantic coccolithophore abundance increased from 2 to 20% from 1965 to 2010. In our study, we find
increases in spCO2 and nano% trends for all gyres (Table S3). Satellite‐derived PIC (coccolithophores proxy)
trends are positive only in the SATL and NATL gyres (Table S3). We posit that increasing trends in spCO2

contributed to increased coccolithophore presence in the NATL and SATL gyres, consistent with increases
in PIC and nano%.

6. Decoupling Between Biomass and Chl a in Subtropical Gyres

A major finding is the strong decoupling between Chl a and biomass trends (Figures 1a and 1e) in the sub-
tropical gyres. Overall, we find increases in biomass in all the gyres over the 1997–2010 period and decreases
in Chl a in three of the gyres (NPAC, NATL, IOCE). Why are biomass and Chl decoupled? First, ocean color
can only sample the few uppermeters of the water column, above the deep chlorophyll maximum conditions
(Volpe et al., 2012). Thus, part of the phytoplankton vertical distribution is undetected by satellites that
explain the extremely oligotrophic character that gyres display when sampled via remote sensing (Volpe
et al., 2007). Second, the photoacclimation process, known to be dominant in the subtropics (e.g.,
Barbieux et al., 2018; Siegel et al., 2013), introduces variability in Chl a uncoupled from the biomass.
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Although the large‐scale, climatological distribution of Chl a largely reflects patterns in nutrient supply and
thereby differences in phytoplankton abundances (Figures S2a and S2b), changes in light and nutrients can
result in changes in pigment composition (Chl a; Rodríguez et al., 2006) not necessarily associated with bio-
mass changes (Behrenfeld et al., 2002; Behrenfeld et al., 2005; Behrenfeld et al., 2016; Laws & Bannister,
1980; Paasche, 1998). Phytoplankton photoacclimate by adjusting their photosynthetic pigment (Chl a),
such that a decrease in Chl/CB16 and Chl a may be due to (1) increase in surface light availability (PAR),
(2) increase in light penetration in the water column (decrease in Kd(490)), or (3) shoaling of MLD, trapping
plankton in the highly lit surface layer (Westberry et al., 2016).

Throughout the analyzed SeaWiFS period, trends in Chl/CB16 are consistent in sign with trends in Chl a in
all the subtropical gyres. These trends are negative in the NPAC, NATL, and IOCE (insignificant in IOCE)
and positive in the SPAC and SATL (Table S3). We further analyze the monthly trends to explain Chl a and
Chl/CB16 trends.

The Chl a peaks (lowest) in winter, December–February (September–October) for NPAC, when the MLD is
deeper (shallow), PAR is lowest (highest) and light penetration is weakest, Kd(490) maxima (strongest,
Kd(490) minimum). Over the period we find that the significant MLD shoaling, and Kd(490) decrease in
the NPAC gyre, drives Chl a decrease from April to December (Figures S3h–S3l). The changes in biomass
and Chl a are coupled in late winter and spring, but decoupled during the summer months. In NATL, Chl
a also peaks in winter months and is lowest from April to June. A significant decrease Kd(490) in the
NATL gyre drives Chl a to decrease (especially April–June; Figures S6h–S6l). The biomass and Chl a
changes are decoupled over the period in NATL gyre. In both NPAC and NATL, Chl/CB16 decreases as cells
acclimate to the increased exposure to light (Table S3) during summer months.

For the gyres in the Southern Hemispheres, the Chl a is maximum during the winter months (June‐to‐
August), when the MLD is deeper, PAR is lowest, and Kd(490) at maxima. The combination of year‐averaged
MLD shoaling, Kd(490) decrease, and PAR increase that is observed in the IOCE could be driving the small
decrease in Chl/CB16. A significant MLD shoaling and Kd(490) decrease drive Chl a and Chl/CB16 decrease
from January to April, and increase in Kd(490) from May to August control the increase in Chl/CB16

(Figures S11h–S11l). Both biomass and Chl a are changes are coupled and driven by MLD deepening
throughout the period.

In contrast, year‐averaged MLD deepening and Kd(490) increase cause a small Chl/CB16 increase in the
SPAC and SATL. The significant MLD deepening and Kd(490) increase in SPAC are mostly observed during
July–November, that is consistent with Chl a increase. The significant MLD deepening and Kd(490)
increase in SATL for July–August explain the increase in Chl/CB16 and Chl a. We also note that the biomass
and Chl a are coupled in both the gyres, commonly driven by the deepening of MLD (Figures S10
and S11h–S11l).

We also found that Chl a and Chl/CB16 show a strong positive interannual correlation in the subtropical
gyres while biomass and Chl/CB16 are weakly correlated. In agreement with recent work (Behrenfeld
et al., 2016; Siegel et al., 2013; Westberry et al., 2016), we conclude that acclimation strongly impacts
Chl/CB16 ratios and hypothesize that the above acclimation trends, rather than biomass trends, explain
the 1997–2010 subtropical gyre Chl a trends.

We also note that the magnitude of the trends in Chl a has changed slightly from the standard (STD)
algorithm (R2010) processing to the Ocean Color Index (OCI) algorithm processing (R2014); the globally
averaged trends in Chl a became less negative/more positive (and more like our biomass) for the OCI.
Signorini et al. (2015) analyzed trends in Chl a for both the STD and OCI algorithms for all subtropical gyres
and also reported similar trends as our Chl a trends among the different sensors and algorithms, with small
differences in the magnitude.

7. Trends in Gyre Sizes

Previous studies have claimed an increase in gyre size over recent decades corresponding to an expansion of
the low Chl a core (Martinez et al., 2009). Polovina et al. (2008) concluded that the Pacific and Atlantic
subtropical gyres are expanding at average annual rates from 0.8 to 4.3% throughout the 1998–2006
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SeaWiFS period, and ascribed this to climate‐driven increases in SST and vertical stratification. Irwin and
Oliver (2009) reported expansion of the hyperoligotrophic subtropical gyres during the 1998–2007 period.

We find that the trends in gyre sizes depend on the considered Chl a threshold over the period 1997–2010
(Table S3). When using low thresholds, that is, Chl a < 0.07 mg/m3, as in previous studies (McClain et al.,
2004; Polovina et al., 2008; Signorini & McClain, 2012; Signorini et al., 2015), we find insignificant positive
trends in three of the gyres, and significant negative trends in the SPAC and SATL gyres. When discussing
the gyre size using higher thresholds (e.g., Chl a < 0.11 mg/m3), the effect of ENSO becomes important. A
negative MEI is associated with a broader Tropical Pacific tongue and smaller Pacific, Indian, and SATL
gyres (Table S2). During the SeaWiFS period, we find decreases in the oligotrophic gyre sizes associated with
the transition toward a La Niña state (see section 4 and Figure 2a) that causes the tropical biomes to expand
and the subtropical gyres to shrink (Figure 2b, compare solid and dashed lines).

8. Summary and Conclusions

This paper examines the trends and interannual variability of new estimates of biomass and PFT fractions in
comparison to changes in Chl a over the 1997–2010 period.We find a global increase in biomass, micro% and
nano%. This increase differs from previous findings and is somewhat surprising given previously reported
decreases in Chl a (previously used as a proxy of biomass) in the warm regions.

In the subtropical gyres, some previous literature claimed that increased stratification has already resulted in
decreased phytoplankton abundance and primary production (Figure 3 of Behrenfeld et al., 2006; Figure 1 of
Martinez et al., 2009) and an expansion of the low Chl a oligotrophic biome (Irwin & Oliver, 2009; Polovina
et al., 2008). We find instead that over 1997–2010, biomass increases in all subtropical gyres while Chl a
decreases in the NPAC, NATL, and IOCE gyres. We can partially ascribe the biomass increases to negative
heat flux trends and stronger winds during winter deepening the LMIX. Acidification‐affected coccolitho-
phore might also change biomass, particularly in the SATL. In contrast, we suggest that subtropical Chl a
decreases are photoacclimation driven. Therefore, Chl a is not the best indicator for phytoplankton commu-
nity structure and abundance.

In the tropical Pacific, we ascribe instead the observed increase in biomass over the 1997–2010 period to a
trend toward a more La Niña‐like state. Figure 2 confirms that the 1999–2004 Chl a and net primary produc-
tion decrease reported for the warm ocean by Behrenfeld et al. (2006) is not a climate change signal as
reported but a reflection of ENSO‐driven variability in the tropical Pacific tongue. We also find that the
oligotrophic gyres contract or expand depending on the Chl a threshold employed, and the 1997–2010 con-
traction of Chl a < 0.11 subtropical biomes is due to a slight trend toward more “La‐Nina” conditions.

One caveat for this study is the relatively weak local interannual correlations between our various physical
metrics and biomass (Figure S6), despite strong correlations on seasonal time scales (Cabre et al. 2016). This
discrepancy has been recently discussed in other recent studies (e.g., Dave & Lozier, 2013; Lozier et al., 2011),
suggesting that other factors not addressed here may play a role in the observed interannual correlations and
trends, that is, advection of nutrients from the subpolar to the subtropical gyres, or mesoscale eddy dynamics
(Ayers & Lozier, 2010; Dufois et al., 2016; Lehahn et al., 2017; Palter et al., 2005) and changes in the grazing
pressure (Boss & Behrenfeld, 2010).

We cannot, at present, assign the biomass trends to climate‐driven change, because of the short duration of
ocean color satellite measurements. A reliable detection of trends would require a 20–30‐year time series in
the tropics and a 40‐year time series elsewhere (Henson et al., 2010). Further merging of color products
between various missions is critical for future clean separation of natural variability and climate‐driven
signals in ocean biology, with important ecological and biogeochemical impacts, as well as implications
for fishery industries.
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