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Guided Stochastic Gradient Descent Algorithm for Inconsistent Datasets 

Abstract 

Stochastic Gradient Descent (SGD) Algorithm, despite its simplicity, is considered an 

effective and default standard optimization algorithm for machine learning classification 

models such as neural networks and logistic regression. However, SGD’s gradient descent is 

biased towards the random selection of a data instance. In this paper, it has been termed as 

data inconsistency. The proposed variation of SGD, Guided Stochastic Gradient Descent 

(GSGD) Algorithm, tries to overcome this inconsistency in a given dataset through greedy 

selection of consistent data instances for gradient descent. The empirical test results show the 

efficacy of the method. Moreover, GSGD has also been incorporated and tested with other 

popular variations of SGD, such as Adam, Adagrad and Momentum. The guided search with 

GSGD achieves better convergence and classification accuracy in a limited time budget than 

its original counterpart of canonical and other variation of SGD. Additionally, it maintains the 

same efficiency when experimented on medical benchmark datasets with logistic regression 

for classification.   

Keywords: Stochastic Gradient Descent Algorithm, machine learning, classification, logistic regression, neural 

networks, greedy selection, Guided Stochastic Gradient Descent Algorithm. 

1. Introduction 

Classification is one of the major techniques in data mining for many applications. Neural 

networks, logistic regression and support vector machine are some commonly used 

classification models. Many of these models rely on optimization algorithms for convergence, 

therefore, accuracy and efficiency of these optimization algorithms have major impact on the 

quality of classification. Some of the techniques like mathematical Lagrangian method, meta-

heuristic algorithms and Gradient Descent Algorithms (GDA) have been employed for 

solving optimization problems in classification [15, 19, 21, 22]. Optimization problems are 
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generally NP-hard problems where search techniques can have limitation in searching either 

for a local or the global optimal solutions. GDA generally falls into local optimum solutions 

for non-convex functions. GDA is an efficient domain data-driven optimization technique, 

unlike meta-heuristic algorithms that makes it one of the most popular algorithms for machine 

learning algorithms such as neural networks (NN) and logistic regression [17, 20, 27].  

GDA’s two major variants are Stochastic Gradient Descent (SGD) and Batch Gradient 

Descent (BGD) which will be discussed in detail in Section 2. SGD was derived from BGD to 

provide an efficient alternative for a gradient descent method. However, the price for 

efficiency is the untimely random selection of instances which causes high fluctuations in 

descent or delayed convergence. Additionally, canonical SGD inherits the nature of ‘blind’ 

search that does not recognize the layout of a given landscape for the optimum descent. This 

results in slow rate of convergence in some extreme conditions. Many improvements had thus 

been proposed in order to combat these drawbacks.  

1.1 Related Work 

Qian in [18] has shown the valley-shaped search space has the higher slope for hill gradient 

compared to the valley that makes the slope direction almost perpendicular to the valley. 

GDA oscillates near the valley that slows down the convergence. Momentum term [18] is 

added to reduce the oscillation and improve the convergence. Nesterov Accelerated Gradient 

(NAG) [29] uses an enhanced momentum terms that also approximates the future positions of 

the gradient to have even better convergence rate. For sparse data set, Adagrad [7] performs 

larger updates for infrequent, and smaller updates for frequent parameters. However, in 

general, its auto updating parameters iteratively becomes ineffective and the learning stops. 

Adadelta/RMSprop [30] is the improvement of Adagrad by restricting parameters to keep it 

effective for learning. Hence, the learning rate does not aggressively reduce to minimum in a 

first few iterations. Adam [12] is another method like Adadelta and RMSprop that computes 

adaptive learning rates for each parameter. RMSprop, Adadelta and Adam are very similar 

algorithms that do well in similar circumstances. Adams’ bias-correction helps it to slightly 

outperform RMSprop towards the end of optimization as gradients become sparser [20].  
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All these variations had been successfully used with small scale problems in a single machine 

as traditional formulation of SGD is not suitable for deep learning, particularly in the 

environment of distributed online learning. Asynchronous SGD has been widely adopted to 

solve this problem. Moreover, many variations such as RMSprop, Adadelta and Adam show 

promising results for large scale distributed machine learning algorithms such as deep NN [2, 

5, 31, 32]. This paper only focuses on small scale problems where the proposed algorithm, 

guided SGD (GSGD) works as an add-on to all the variations of SGD. It was shown that 

GSGD is compatible with all the popular variations of SGD. The algorithm names of the 

guided versions are prefixed with G such as GRMSprop and GAdam for RMSprop and Adam 

respectively. However, GSGD is used in this paper to refer to the guided model in general 

unless otherwise specified. Guided search is not a new approach to improve the search for 

optimal solutions in optimization algorithms [9, 23], however, the presented approach is a 

novel idea where guidance is done through consistent data instances. 

1.2 Problem Statement  

The variations of SGD exploit the landscape of the search space to have a faster convergence 

rate. However, they do not address the poor convergence or low classification accuracy due to 

the inconsistency present in a dataset. The proposed method is a variation of SGD that 

overcomes the problem of high inconsistency in a dataset. SGD and its current variations do 

not have any strategy to filter out the inconsistent data, while the GSGD guides them by 

selective extraction and exploitation of consistent data instances for gradient descent. 

Thereby, it improves the convergence quality and classification accuracy. In case of 

consistent dataset, GSGD would not show any improvement.  

The scope of this paper is to analyze the behavior of SGD on inconsistent dataset and provide 

a better solution using GSGD without compromising the efficiency of SGD. Inconsistency in 

a dataset is caused by those training examples that result in a net error (or cost) to increase 

during gradient computation. Mathematical explanation of data inconsistencies is given later 

on, in the paper. Canonical SGD’s convergence can be improved if the variance in random 

selection of the instances can be reduced [11, 13]. This can be achieved by temporarily 

filtering out inconsistent training examples in gradient computation. High variance causes 

slow convergence with high fluctuations. Therefore, anomaly/outlier detection and removal 
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techniques should not be applied without appropriate domain analysis [4]. The proposed 

algorithm does not perform any data cleaning as preprocessing. It is simply a part of training 

process that tries to distinguish consistent data with inconsistent one to produce better results. 

A noise is never removed permanently. Moreover, it does not replace the existing outlier 

detection techniques. The proposed technique provides a competitive alternative for GDA.  

The remainder of the paper is organized as follows: Section 2 describes and formalizes 

various types of GDAs. Section 3 highlights the impact of inconsistent training examples on 

gradient descent. Section 4 introduces the proposed variation of SGD algorithm known as 

guided SGD. Section 5 shows comprehensive experiments to compare original variations with 

guided variations of SGD and Section 6 discusses the outcome of the experiment. Lastly, 

Section 7 concludes the paper with some suggestions to the future work.  

2. Formalization of Gradient Descent Algorithms 

GDA is a domain data driven optimization algorithm that has rightly found its niche in 

machine learning algorithms such as Neural Networks (NN) and logistic regression to 

optimize the given parameters. GDA iteratively follows the negative gradient of a given 

activation function in order to move in the direction of descent, to locate the desired 

minimum. Some commonly used activation functions are sigmoid, tanh and softmax [27]. 

Sigmoid and softmax have been used for two-class and multi-class classification problems 

respectively. The optimization problem for linear model (𝑊𝑇𝑥 = 0) is formulated as: 

𝑊̂ = argmin
W

1

𝑁
∑ 𝐸(𝑥𝑛, 𝑦𝑛, 𝑊)

𝑁

𝑛=1
  

where 𝐸(𝑥𝑛, 𝑦𝑛, 𝑊) is an error or cost function derived from activation function that takes 𝑑 

dimensional 𝑁 training examples from (𝑥1, 𝑦1) … (𝑥𝑁 , 𝑦𝑁) with 𝑥𝑛 ∈ 𝑅𝑑 and 𝑦𝑛 ∈ 𝑅, and the 

weight vector 𝑊 ∈ 𝑅𝑑 for two-class classification using logistic regression. For multi-class 

classification with 𝑇 classes, 𝑊 ∈ 𝑅𝑑×𝑇 and 𝑦𝑛 ∈ 𝑅𝑇. There are two major variants of gradient 

descent based on the manner in which the gradient is calculated, have been described below: 

2.1 Batch Gradient Descent 

Batch Gradient Descent (BGD) is also known as bulk or true gradient descent. In the batch 

version of gradient descent the weight vector 𝑊(𝑡) is randomly initialized for iteration 𝑡 =  0. 
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Afterwards, it is iteratively updated such that at each step a short distance is moved in the 

direction of error’s greatest rate of decrease (steepest descent) for each data instance [3, 10]. 

However, this does not mean that collectively the steepest descent of error is achieved in 

every iteration for the entire training examples in every step. The linear models for 

classification have a perceptron or a set of perceptrons as connectors whose weight vector (or 

matrix) is to be optimized to get the minimum error. The pseudocode of BGD in logistic 

regression for classification is given in Fig. 1. 

BGD algorithm has only two major steps: average gradient computation and weight update. 

The algorithm begins with the initialization of learning rate 𝜂, initial weight vector 𝑊0 and 

total iterations 𝑇. 𝑊0 is a 0 vector for logistic regression and 𝜂 is generally fixed between 0 – 1 

but adaptive learning rates are also being used [16, 28]. The size of training dataset is 𝑁 with 

𝑑 dimensions. ∇𝐸(𝑊𝑡 , 𝑥𝑖 , 𝑦𝑖  ) is the gradient of error function 𝐸(𝑊𝑡 , 𝑥𝑖, 𝑦𝑖) for a given data 

instance 𝑥𝑖, its output 𝑦𝑖 and weight vector 𝑊𝑡 . The algorithm stops when the termination 

criteria is met which is generally the given maximum iterations, or just before the overfitting 

starts [15].  

Initialize 𝜂 and 𝑊0 

For 𝑡 =  1 … 𝑇 
 Gradient computation 

∇𝐸̅̅̅̅ = 0;  

For 𝑘 ∈ {1 … 𝑁} 
 ∇𝐸̅̅̅̅ = ∇𝐸̅̅̅̅ + ∇𝐸(𝑊𝑡−1, 𝑥𝑘  , 𝑦𝑘  )  
End for 

∇𝐸̅̅̅̅ = ∇𝐸̅̅̅̅ 𝑁⁄   

Update weight vector 

𝑊𝑡 = 𝑊𝑡−1 − 𝜂∇𝐸̅̅̅̅   
Track Error Progression 

𝐸̅𝑡 = 0  

For 𝑗 ∈ {1 … 𝑁}  
 𝐸𝑗 = 𝐸(𝑊𝑡 , 𝑥𝑗 , 𝑦𝑗)  

𝐸̅𝑡 = 𝐸̅𝑡 + 𝐸𝑗  

End for 

𝐸̅𝑡 = 𝐸̅𝑡 𝑁⁄   

𝑡 =  𝑡 + 1  
Check Termination criteria 

 

End for 

Fig. 1. Pseudocode for Batch Gradient Descent 

The batch gradient descent works well if the training data is not too large because computing 

the gradient term becomes expensive as the data size increases. The time complexity for a 

single gradient computation is 𝑂(𝑁𝑑) for linear models where 𝑑 is the dimension and 𝑁 is the 
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size of a given dataset respectively. In case of logistic regression, the overall worst time 

complexity with 𝑇 iterations would be 𝑂(𝑇(𝑑𝑁 + 𝑁) = 𝑂(𝑇𝑑𝑁), disregarding the early stop 

due to overlearning. 

2.2 Stochastic Gradient Descent 

Stochastic gradient descent (SGD) addresses the issue of high computational cost by having 

much faster convergence, in the order of 𝑂(𝑇(𝑑 + 𝑁) only. SGD only differs in how much 

data is used to compute the gradient of the objective function. Depending on the amount of 

data, a trade-off is made between the accuracy in weight update and the time it takes to 

perform an update [20, 26].  

The pseudocode of SGD is given in Fig. 2. SGD also has only two major steps: individual 

gradient computation and weight update, where it calculates a gradient ∇𝐸(𝑊𝑡 , 𝑥𝑖 , 𝑦𝑖  ) of an 

instance 𝑖 randomly selected at iteration 𝑡, instead of a true gradient ∇𝐸̅̅̅̅ . The definition of all 

parameters are same as of BGD algorithm. BGD converges smoothly towards the global 

minimum for strictly convex error function and possibly to a local minimum for non-convex 

function. On the other hand, SGD continuously fluctuates to converge, where it helps 𝑊𝑡  to 

jump to a new and potentially better local minima for non-convex error function [1]. The 

fluctuations in SGD happens because of high variance in random selection of a single gradient 

instead of the true gradient of the entire training dataset [11]. The algorithm stops when the 

termination criteria is met which is again the maximum number of iterations or before the 

algorithm begins to over learn [15].  

Initialize 𝜂 and 𝑊0 

For 𝑡 =  1 … 𝑇 
 For 𝑖 ∈ {1 … 𝑁} selected in a random sequence one at a time.  

 𝑊𝑡 = 𝑊𝑡−1 − 𝜂∇𝐸(𝑊𝑡−1, 𝑥𝑖  , 𝑦𝑖  )  
Track Error Progression 

𝐸̅𝑡 = 0  

For 𝑗 = 1 … 𝑁   
 𝐸𝑗 = 𝐸(𝑊𝑡 , 𝑥𝑗 , 𝑦𝑗)  

𝐸̅𝑡 = 𝐸̅𝑡 + 𝐸𝑗  

End for 

𝐸̅𝑡 = 𝐸̅𝑡 𝑁⁄   

𝑡 =  𝑡 + 1  
Check Termination criteria 

End for 
 

End for 

Fig. 2. Pseudocode for Stochastic Gradient Descent 
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                    (b) Behavior of individual instances 

3. Impact of Data Inconsistency on Gradient Descent  

The gradient descent algorithms do not differentiate between consistent and inconsistent 

training examples. BGD relies on true gradient to nullify the effects of inconsistent data in 

every iteration. However, determining true gradient in every iteration makes the algorithm 

very expensive and unsuitable to the applications that require online or deep learning. On the 

other hand, SGD randomly picks a training example without considering its consistency. That 

helps in faster convergence and avoidance of many local optimum solutions, however, it may 

also result in irregular convergence. The analysis of stepwise convergence and effects of 

inconsistent training example in every iteration in gradient descent is discussed below.  

The objective of BGD is to reduce the average error 𝐸̅𝑡 on every iteration 𝑡. At a given weight 

vector 𝑊𝑡, on the landscapes of Weights vs Error function, different instances produce 

different gradients as illustrated in Fig. 3 (a). The average gradient is not necessarily the 

steepest gradient at iteration 𝑡. Depending on the sample selection, complexity and noise level 

of the data, the expectation on every iteration is to have an overall training error ∆𝐸̅𝑡 =  𝐸̅𝑡 −

𝐸̅𝑡−1 ≤ 0 which can be given as: 

 ∆𝐸̅𝑡 =
1

𝑁
(∆𝐸(𝑊𝑡 , 𝑊𝑡−1, 𝑥1, 𝑦1) + ⋯ + ∆𝐸(𝑊𝑡 , 𝑊𝑡−1, 𝑥𝑖 , 𝑦𝑖) + ⋯ +

∆𝐸(𝑊𝑡 , 𝑊𝑡−1, 𝑥𝑁, 𝑦𝑁)) ≤ 0     
(1)   

where ∆𝐸(𝑊𝑡 , 𝑊𝑡−1𝑥𝑖, 𝑦𝑖) = 𝐸(𝑊𝑡 , 𝑥𝑖 , 𝑦𝑖) − 𝐸(𝑊𝑡−1, 𝑥𝑖, 𝑦𝑖). A rough sketch for this behavior of 

individual instances are shown in Fig. 3 (b), where most of the instances have error decreasing 

at iteration 𝑡 while couple of instances have error increasing.  

 

 

 

 

  

 

 

 
Fig. 3. Gradients for BGD 

 

(a) Gradient at iteration t 
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The parameters of error functions 𝐸 (𝑊𝑡, 𝑥𝑗, 𝑦
𝑗
), ∆𝐸(𝑊𝑡 , 𝑊𝑡−1, 𝑥𝑗, 𝑦𝑗) and ∇𝐸(𝑊𝑡 , 𝑥𝑗 , 𝑦𝑗  ) are 

replaced with subscripted parameters 𝐸𝑗(𝑊𝑡), ∆𝐸𝑗 and ∇𝐸𝑗 respectively for rest of the paper for 

simplicity. From Eq. (1) instances 1,2, … , 𝑖 are considered consistent as their respective errors 

are decreasing i.e. {∀ ∆𝐸𝑗 ≤ 0 | 𝑗 ≤ 𝑖} and vice-versa for instances 𝑖 + 1, … , 𝑁 where {∀ ∆𝐸𝑗 >

0 | 𝑗 > 𝑖}. If 𝐸̅𝑡 ∝
1

𝑖
∑ ∇𝐸𝑗

𝑖
𝑗=1  and |∑ ∆𝐸𝑗

𝑖
𝑗=1 | > |∑ ∆𝐸𝑗

𝑁
𝑗=𝑖+1 | then the error is said to be decreasing 

with 𝑊𝑡 = 𝑊𝑡−1 − 𝜂∇𝐸̅̅̅̅  for a non-chaotic error function. If the error for training examples 

{1, … , 𝑖} has the highest Lipschitz constant 𝐿 then the Lipschitz condition for continuity can be 

written as: 

 
|∆𝐸𝑗| = |𝐸𝑗(𝑊𝑡) − 𝐸𝑗(𝑊𝑡−1)| ≤ 𝐿|𝑊𝑡 − 𝑊𝑡−1| for ∀𝑗 ≤ 𝑖   (2)   

where 𝐸𝑗(𝑊𝑡) − 𝐸𝑗(𝑊𝑡−1) ≤ 0 

The highest Lipschitz constant for ∀𝑗 > 𝑖 has been determined by the summation of Lipschitz 

condition from Eq. (2). 

 ∑ |𝐸𝑗(𝑊𝑡) − 𝐸𝑗(𝑊𝑡−1)|𝑖
𝑗=1 ≤ 𝑖𝐿|𝑊𝑡 − 𝑊𝑡−1| for ∀𝑗 ≤ 𝑖 (3)   

Similarly,  

 
|∆𝐸𝑗| = |𝐸𝑗(𝑊𝑡) − 𝐸𝑗(𝑊𝑡−1)| ≤ 𝐿′|𝑊𝑡 − 𝑊𝑡−1| for ∀𝑗 > 𝑖   (4)   

 ∑ |𝐸𝑗(𝑊𝑡) − 𝐸𝑗(𝑊𝑡−1)|𝑁
𝑗=𝑖+1 ≤ (𝑁 − 𝑖)𝐿′|𝑊𝑡 − 𝑊𝑡−1|   (5)   

where 𝐿′ is the highest Lipschitz constant for ∀𝑗 > 𝑖 and 𝐸𝑗(𝑊𝑡) − 𝐸𝑗(𝑊𝑡−1) > 0. To have 

overall descending (or same) error in an iteration 𝑡, the following condition must hold: 

(𝑁 − 𝑖)𝐿′|𝑊𝑡 − 𝑊𝑡−1| ≤ 𝑖𝐿|𝑊𝑡 − 𝑊𝑡−1| 

 ∴ 𝐿′ ≤
𝑖

𝑁−𝑖
𝐿   (6)   

In an ideal case, the landscape of training data behaves consistently with every instance, 

i.e. 𝑖 = 𝑁. So, any small positive value of 𝐿 (𝐿 > 0) would ensure error decreases in every next 

iteration until convergence is almost complete. Training examples’ high inconsistency can be 

tolerated with the true gradient as long as Eq. (6) is true.    
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SGD does not use true gradient but rather picks up an example randomly. The increase or 

decrease in error value depends on the presence of inconsistent examples in a given iteration. 

The error value is determined by the same principles as discussed above from Eq. (1) to Eq. 

(6); where only the true gradient 𝐸̅𝑡 is replaced by an individual gradient ∇𝐸𝑘, where 𝑘 ∈

{1,2, … , 𝑁}. ∇𝐸𝑘 can be directly proportional to either 
1

𝑁
∑ ∇𝐸𝑗

𝑖
𝑗=1  or 

1

𝑁
∑ ∇𝐸𝑗

𝑁
𝑗=𝑖+1  which makes 

the error descend or ascend respectively. Generally, for consistent data 𝑖 ≫ (𝑁 − 𝑖); descent 

happens more often over the iterations, and of course with a better convergence rate. More 

specifically, for |∑ ∆𝐸𝑗
𝑖
𝑗=1 (𝑊𝑡)| > |∑ ∆𝐸𝑗(𝑊𝑡)𝑁

𝑗=𝑖+1 | the error 𝐸̅𝑡 decreases if 
∇𝐸𝑘

‖∇𝐸𝑘‖
∝

1

𝑖
∑

∇𝐸𝑗

‖∇𝐸𝑗‖

𝑖
𝑗=1  

where 𝑘 ≤ 𝑖; otherwise the error increases in a normal circumstances when some data 

instances are not chaotic in nature. Using Lipschitz condition for continuity if descend 

happens only in 𝑡’ iterations out of total 𝑇 iterations then following Eq. (2) and Eq. (4), the 

equation for the net descend after 𝑇 iterations would be:  

∑ ∑ |𝐸𝑗(𝑊𝑡) − 𝐸𝑗(𝑊𝑡−1)|
𝑖(𝑡)
𝑗=1

𝑡′

𝑡=1 ≤ 𝐿𝑁𝑡′|𝑊𝑡 − 𝑊𝑡−1| for net gradient descent 

∑ ∑ |𝐸𝑗(𝑊𝑡) − 𝐸𝑗(𝑊𝑡−1)| ≤ 𝐿′𝑁(𝑇 − 𝑡′)|𝑊𝑡 − 𝑊𝑡−1|𝑁
𝑗=𝑖(𝑡)+1

𝑇
𝑡=𝑡′+1  for net gradient ascent 

 ∴ 𝐿′ ≤
𝑡′𝐿

(𝑇−𝑡′)
 for 𝑡′ < 𝑇 (7)   

Thus, net descent in SGD happens after 𝑇 iterations when Eq. (7) holds true. Otherwise, the 

algorithm will diverge for the given iterations. In comparison with BGD, gradient descent 

does not happen in every iteration, however, some fluctuations are seen while the algorithm 

runs. Convergence for consistent data is smoother compared to inconsistent data. This shows 

the importance of consistent examples in gradient descent which is the primary focus of this 

paper. 

One issue with SGD is its high variance caused by the random selection of gradient instead of 

average gradient [11]. Therefore, one logic variation of canonical SGD is the combination of 

BGD with SGD known as min-batch gradient descent that reduces the variance to some extent 

and still manages better convergence rate. However, most recent SGD variations discussed in 

introduction section has transpired that neither decreasing step-sizes nor mini-batching are 

necessary to resolve the non-vanishing variance issue inherent in the canonical SGD methods 

[13, 25]. 
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4. Guided Stochastic Gradient Descent Algorithm 

After describing BGD and SGD it is evident that high data inconsistency plays a major role in 

the degree of error descent per iteration and convergence. The proposed algorithm is named as 

guided stochastic gradient descent (GSGD) algorithm that realizes the importance of 

inconsistency in a dataset and tries to improve the convergence by separating consistent and 

inconsistent data instances to some extent. GSGD hides inconsistent data for “a while” in an 

anticipation that they will become consistent after few iterations. In addition to individual 

gradient computation and the weight update, GSGD selects consistent instances gradually and 

does the refinement of the weight update.  

Inconsistent data instances are simply the data instances within the neighborhood of 

instance 𝑗; which individually performs better, while the average error value 𝐸̅𝑡  performs 

worse than the average error of the previous iteration 𝐸̅𝑡−1, and vice-versa. The pseudocode of 

the algorithm is given in Fig. 4 and Fig. 5. The definition of variables used in the GSGD 

algorithm are same as in SGD and BGD unless otherwise specified. The algorithm begins by 

initializing weight vector (𝑊0), learning rate (𝜂), total iterations (𝑇) and neighborhood size (𝜌). 

Neighborhood allocation allows GSGD to run through 𝜌 training examples recursively before 

further refinement of 𝑊 is done with the consistent data. Consistent data is selected from 𝜌 

training examples at a time. Each data instance 𝑥𝑖 with label 𝑦𝑖 is randomly selected to update 

the weight vector (𝑊𝑡) at iteration 𝑡 like SGD. The neighborhood of an instance 𝑘 is kept in 

sets 𝜓+  and 𝜓−
 where they track inconsistent instances. After collecting the data about 

inconsistency for 𝜌 iterations, only consistent instances are extracted and kept in  𝜓+  and 𝜓− . 

𝜓𝑘
+  in the pseudocode refers to 𝑘𝑡ℎ element of either 𝜓+  or 𝜓− , i.e., {𝜓𝑘

+ ∈ 𝜓+ |𝑘 ∈ {1 … 𝜌}} 

and {𝜓𝑘
− ∈ 𝜓− |𝑘 ∈ {1 … 𝜌}}. Lastly, 𝑊𝑡 is further updated with consistent instances 𝜔𝑡.  

Its flowchart is given in Fig. 6 where the algorithm starts with a random selection of a data 

instance whose gradient is computed to update the weight vector. After 𝜌 iterations, weight 

vector is further refined with consistent neighboring data instances. 𝜌 is also the neighborhood 

size which is generally assigned to a constant value 10. 
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//Initialize 𝜂, 𝜌, 𝑇 and 𝑊0 

for 𝑡 =  1 … 𝑇 
 ∀𝜓𝑘

+ = 0|𝑘 ∈ {1 … 𝜌}   

∀𝜓𝑘
− = 0|𝑘 ∈ {1 … 𝜌}  

for 𝑖 ∈ {1 … 𝑁} //pick 𝑖 in a random sequence 
 𝑊𝑡 = 𝑊𝑡−1 − 𝜂∇𝐸(𝑊𝑡−1, 𝑥𝑖 , 𝑦𝑖) //canonical weight update 

𝐸̅𝑡 = 0  

for 𝑗 = 1 … 𝑁  
 𝐸𝑗 = 𝐸(𝑊𝑡 , 𝑥𝑗 , 𝑦𝑗)  

𝐸̅𝑡 = 𝐸̅𝑡 + 𝐸𝑗  

[𝜓+ ,  𝜓− ] = collectInconsistentInstances(𝑖, 𝑗, 𝜌,   𝐸𝑗 , 𝐸̅𝑡−1,   𝜓+ ,   𝜓−
) 

 

End for 

𝐸̅𝑡 = 𝐸̅𝑡 𝑁⁄   

 

[𝜓+ ,  𝜓− , 𝜔𝑡] = extractConsistentInstances(𝑖, 𝜌, 𝜓+ ,   𝜓− , 𝐸̅𝑡,  𝐸̅𝑡−1) 

 

//further refinement of 𝑊𝑡 with consistent data 

For each 𝑘 ∈ 𝜔𝑡  

 𝑊𝑡 = 𝑊𝑡 − 𝜂∇𝐸(𝑊𝑡 , 𝑥𝑘 , 𝑦𝑘) //canonical weight update 
End for 

𝑡 =  𝑡 + 1  
//Check Termination criteria 
 

End for 
 

End for 

Fig. 4. Pseudocode for Guided Stochastic Gradient Algorithm 

[𝜓+ ,  𝜓− ] = collectInconsistentInstances(𝑖, 𝑗, 𝜌,   𝐸𝑗, 𝐸̅𝑡−1,   𝜓+ ,   𝜓−) 

 //Determine inconsistent data instances  

if ⌊(𝑗 + 𝜌 − 1) 𝜌⁄ ⌋ == ⌊(𝑖 + 𝜌 − 1) 𝜌⁄ ⌋ 

 𝑘 = 𝑗 − 𝜌⌊(𝑗 + 𝜌 − 1) 𝜌⁄ − 1⌋  

if 𝐸𝑗 − 𝐸̅𝑡−1 > 0 

 𝜓𝑘
+ = 𝜓𝑘

+ + (𝐸𝑗 − 𝐸̅𝑡−1)  

else  

 𝜓𝑘
− = 𝜓𝑘

− − (𝐸𝑗 − 𝐸̅𝑡−1)  

End if 
 

End if 
 

End 

 

 

 

 

 

 

 

Fig. 5. Subroutines for Guided Stochastic Gradient Algorithm 

  

[𝜓+ ,  𝜓− , 𝜔𝑡] = extractConsistentInstances(𝑖, 𝜌, 𝜓+ ,   𝜓− , 𝐸̅𝑡,  𝐸̅𝑡−1) 

 𝜔𝑡 = ∅  

Extract consistent data points with respect to 𝑥𝑖 

if 𝑚𝑜𝑑(𝑖, 𝜌) == 0 
 if 𝐸̅𝑡 < 𝐸̅𝑡−1; 

 𝜓+ = 𝑠𝑜𝑟𝑡(𝜓+ , "Descend");  

𝜔𝑡 = {𝑘|𝜓𝑘
+ ∈ 𝜓+ ⋀ 𝜓𝑘

+ = 0} //get indices with no noise 
else 

 𝜓− = 𝑠𝑜𝑟𝑡(𝜓− , "Descend");  

𝜔𝑡 = {𝑘|𝜓𝑘
− ∈ 𝜓− ⋀ 𝜓𝑘

− = 0} //get indices with no noise 
End if 

∀𝜓𝑘
+ = 0|𝑘 ∈ {1 … 𝜌}  

∀𝜓𝑘
− = 0|𝑘 ∈ {1 … 𝜌}  

End if 
 

End  
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Fig. 6. Flowchart of Guided Stochastic Gradient Algorithm 

The worst time complexity of GSGD is same as SGD even with the addition of sorting and 

further refinement of the weight vector. Sorting (with quick sort) and further refinement have 

worst time complexity of 𝜌2 and 𝑑𝜌 respectively. Hence, overall the worst time complexity of 

GSGD is 𝑂(𝑇(𝑑 + 𝑁 + 𝜌2 + 𝑑𝜌)) = 𝑂(𝑇(𝑑 + 𝑁) which is same as SGD because 𝜌 ≪ 𝑁 is a 

constant term. It is also interesting to note that GSGD is same as SGD for the first 𝜌 

iterations. Therefore, it is very important to choose an appropriate value of 𝜌 as its very large 

value will simply make the algorithm original SGD. As such, more analysis has been done on 

it in Section 5. 

Since GSGD uses the same gradient computation formula, it has been easily incorporated into 

commonly used amendments for SGD; namely Adam, Adagdelta, Adagrad, RMSprop, 

Momentum and Nesterov. These amendments include some additional factors like 

momentum, regularization or variance reduction techniques [18]. To apply these variations to 

GSGD, only canonical weight update section in Fig. 4 needs to be replaced with the chosen 

variation of weight update. For example weight update for RMSprop is 𝑊𝑡 = 𝑊𝑡−1 − 𝜂
∇𝐸̅̅̅̅

√(𝑟𝑡+𝜀)
, 

where 𝜀 = 1.0 × 10−8, and 𝑟𝑡 = 𝛽𝑟𝑡−1 + (1 − 𝛽)∇𝐸̅̅̅̅
𝑡

2
 where 𝑟1 = ∇𝐸̅̅̅̅

1 and 𝛽 = 0.9. The guided 

version of RMSprop is given in Fig. 7.  

 

 

Gradient 
Computation (E)

Collect inconsistent data points for 
current iteration {ψ+, ψ-} 

Weight Update 
( W=-ηE) 

Time for weight refinement? 
mod(i,ρ)==0 

Extract promising consistent data 
points for current iteration {ψ+, ψ-}

NoAll consistent data 
processed

No

Yes

Yes

Continue?No

Yes
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//Initialize 𝜂, 𝜌, 𝑇 and 𝑊0 

for 𝑡 =  1 … 𝑇 
 ∀𝜓𝑘

+ = 0|𝑘 ∈ {1 … 𝜌}   

∀𝜓𝑘
− = 0|𝑘 ∈ {1 … 𝜌}  

𝛽 = 0.9 //RSMprop specific constant 

for 𝑖 ∈ {1 … 𝑁} //pick 𝑖 in a random sequence 
 𝑟𝑡 = 𝛽𝑟𝑡−1 + (1 − 𝛽)∇𝐸(𝑊𝑡−1, 𝑥𝑖 , 𝑦𝑖)2  

𝑊𝑡 = 𝑊𝑡−1 −
𝜂∇𝐸(𝑊𝑡−1,𝑥𝑖,𝑦𝑖)

√𝑟𝑡+𝜖
 //RMSprop weight update 

𝐸̅𝑡 = 0  

for 𝑗 = 1 … 𝑁  
 𝐸𝑗 = 𝐸(𝑊𝑡 , 𝑥𝑗 , 𝑦𝑗)  

𝐸̅𝑡 = 𝐸̅𝑡 + 𝐸𝑗  

[𝜓+ ,  𝜓− ] = collectInconsistentInstances(𝑖, 𝑗, 𝜌,   𝐸𝑗 , 𝐸̅𝑡−1,   𝜓+ ,   𝜓−
) 

 

End for 

𝐸̅𝑡 = 𝐸̅𝑡 𝑁⁄   

 

[𝜓+ ,  𝜓− , 𝜔𝑡] = extractConsistentInstances(𝑖, 𝜌, 𝜓+ ,   𝜓− , 𝐸̅𝑡,  𝐸̅𝑡−1) 

 

//further refinement of 𝑊𝑡 with consistent data 

For each 𝑘 ∈ 𝜔𝑡  

 𝑊𝑡 = 𝑊𝑡 −
𝜂∇𝐸(𝑊𝑡,𝑥𝑘,𝑦𝑘)

√𝑟𝑡+𝜀
 //RMSprop weight update 

End for 

𝑡 =  𝑡 + 1  
//Check Termination criteria 
 

End for 
 

End for 

Fig. 7. Pseudocode for Guided RMSprop 

The highlighted lines show the only changes required to be done in GSDG to make it guided 

RMSprop. Rest of the code are same. Similarly, guided version for Adam, Adagdelta, 

Adagrad, Momentum and Nesterov have been created. 

Finally, the convergence of GDAs has been discussed with constant learning rate and 

constraints associated with them. Using Taylor series for BGD the error function can be 

written as: 

𝐸(𝑊𝑡) ≤ 𝐸(𝑊𝑡−1) + (𝑊𝑡 − 𝑊𝑡−1)∇𝐸 = 𝐸(𝑊𝑡−1) + (𝑊𝑡−1 − 𝜂∇𝐸 − 𝑊𝑡−1)∇𝐸  

 
∴ 𝐸(𝑊𝑡) ≤ 𝐸(𝑊𝑡−1) − 𝜂‖∇𝐸‖2 (8)   

This shows that the error converges towards local optimum solution (global for convex 

function) gradually in every iteration. Large value of 𝜂 would result in divergence. 

Similarly, error function for SGD can be written as:    

𝐸(𝑊𝑡) ≤ 𝐸(𝑊𝑡−1) + (𝑊𝑡 − 𝑊𝑡−1)∇𝐸  

              = 𝐸(𝑊𝑡−1) + (𝑊𝑡−1 − 𝜂∇𝐸(𝑊𝑡−1, 𝑥𝑘 , 𝑦
𝑘
)  − 𝑊𝑡−1)∇𝐸  
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Here instead of the true gradient ∇𝐸, a randomly selected gradient for 𝑘𝑡ℎ instance 

∇𝐸(𝑊𝑡−1, 𝑥𝑘  , 𝑦𝑘) has been used to update the weight 𝑊𝑡.  

Fig. 8. Deviation of individual gradients from the true gradient 

𝐸(𝑊𝑡) ≤  𝐸(𝑊𝑡−1) − 𝜂∇𝐸(𝑊𝑡−1, 𝑥𝑘 , 𝑦
𝑘
) ∇𝐸 = 𝐸(𝑊𝑡−1) − 𝜂‖∇𝐸‖2𝑐𝑜𝑠𝜃   

where 𝜃 is the angle between 𝑘𝑡ℎ gradient and the true gradient as shown in Fig. 8.   

 

∴ 𝐸(𝑊𝑡) ≤ {
𝐸(𝑊𝑡−1), when consistent (𝜃 ≤

𝜋

2
)                        

𝐸(𝑊𝑡−1) + 𝜂‖𝛻𝐸‖2, when inconsistent (𝜃 >
𝜋

2
)
  

(9)   

SGD would converge when the dataset is consistent, though convergence cannot be 

guaranteed due to high inconsistency present in the data set. This is the reason many 

fluctuations are seen during gradient descent. GSGD tries to reduce 𝜃 by selecting promising 

instances that can bring 𝑘𝑡ℎ gradient closer to the true gradient as shown by 𝛩 in Fig. 8. Since 

GSGD is an offshoot of SGD, its convergence is similar to SGD given in Eq. (9). The error 

value based on the algorithm defined in Fig. 4 and Fig. 5 can be given as: 

𝐸(𝑊𝑡) ≤ 𝐸(𝑊𝑡−1) + (𝑊𝑡−1 −  𝜂 ∑ ∇𝐸(𝑊𝑡−1
(𝑖)

, 𝑥𝑖 , 𝑦
𝑖
 )

|𝜔𝑡|
𝑖=1 − 𝑊𝑡−1) ∇𝐸  

where 𝑊𝑡−1
(𝑖)

 refers to the intermediate weight value while processing the consistent set 𝜔𝑡. 

∴ 𝐸(𝑊𝑡) ≤ 𝐸(𝑊𝑡−1) − 𝜂‖∇𝐸‖2𝑐𝑜𝑠Θ   

and, 𝐸(𝑊𝑡) ≤ {
𝐸(𝑊𝑡−1), when consistent (Θ ≤

𝜋

2
)                        

𝐸(𝑊𝑡−1) + 𝜂‖𝛻𝐸‖2, when inconsistent (Θ >
𝜋

2
)
  

(10)   

By selecting promising instances the 𝑘𝑡ℎ gradient moves closer to the true gradient. GSGD 

will have better convergence with 𝛩 ≤ 𝜃.   

mini consistent 
batch

θ 

Θ
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5. Experiment 

Since GSGD is simply a “guided” version of SGD, hence a comprehensive analysis was 

performed with guided version of canonical SGD, Adam, Adagrad, RMSprop, Adadelta, 

Momentum and Nesterov with their corresponding original versions. The coding was 

completely written in Matlab 2016. The experimental setup and execution have been 

discussed below: 

5.1 Test Data 

The test data have been collected from various medical benchmark data sets available in UCI 

library [6]. The presence of inconsistency in datasets differs from each other; for instance, 

Breast Cancer Diagnostic has high consistency, Cancer and New Thyroid has medium level of 

consistency while rest of data sets are very chaotic.  

To have a comparative analysis on the performance of algorithms, the quality metric is 

designed that consists of classification accuracy (CA) on a limited time budget, and number of 

function calls (NFC) for 30 successive runs on each data set. The algorithms are given 

sufficient and equal amount of time to converge where the algorithms are also monitored to 

not to overlearn.  

The selected datasets belong to either two-class or multi-class classification problems. Since 

the GSGD differs from SGD mainly in prioritizing selection of consistent data for gradient 

computation, this may be argued as merely a kind of data preprocess with noise filtering. 

Hence, the algorithms have also been tested for both orientation of datasets i.e., without noise 

filtering and with noise filtering through outlier detection and removal.  This demonstrates 

that even after noise filtering, GSGD performs better than SGD. Statistical inter-quartile range 

(IQR) outlier detection method available in [8] have been used to remove stochastic noise 

from datasets where CAs are low. This technique has been commonly used in medical domain 

with increased descriptive classification accuracy but with low predictive accuracy [14, 24]. 

The datasets are not intended to be free from the noise but to reflect the effect of some outlier 

removals in the tested algorithms.  
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5.2 Parameter Settings 

The experimental setup ensures that initial conditions like random order of training examples 

are same for both SGD and GSGD. Both algorithms are placed as subroutines inside the 

common loop of iterations. In this manner, same data instances are fed into the algorithms to 

make the comparison more reliable.  

The parameter settings for SGD and GSGD are shown below in Table 1. Each algorithm was 

allowed to run for the maximum of 1000 iterations for 30 times. Due to small sized dataset 3-

fold cross validation is done with 60:40 training-testing ratio. Neighborhood size (𝜌) should 

not be too large as it will make the algorithm less efficient. Additionally, it is important to 

choose the appropriate value of 𝜌 to avoid consistent instances becoming ‘stale’ and turning 

into inconsistent. GSGD’s convergence is similar to SGD’s where gradient descent happens 

more than once (for 𝜌 > 1) in every iteration.  

Table 1. Parameter setting for GSGD and SGD 

Parameter Value 

Max iterations 1000  

Attempts 30 consecutive runs 

Validation 3-fold cross validation 

Training:Testing ratio 60:40  

Learning rate (𝜂) 0.2 

Neighborhood size (𝜌)  10 

5.3 Parameter tuning 

The degree of descent depends on learning rate, slope of the gradient, and also inconsistency 

present in a data set as shown in Eq. (7). Gradient descent with consistent instances happen 

after every 𝜌 iterations. To evaluate the influence of different values of 𝜌 in the degree of 

convergence, contour plot have been drawn for the difference of in-sample error between 

GSGD and SGD in Fig. 9 (a). The plot is based on the average of 30 runs with the same 

parameter settings defined in Table 1. The x-axis shows the number of iterations and y-axis 

shows the range of values for 𝜌 from 2 – 50. The lower the value of the contour plot, the 

better the performance of GSGD compared to SGD, and vice-versa. The selected data set was 

breast cancer diagnostic as it has produced smooth convergence for both SGD and GSGD, 

shown in Fig. 11. It is observed that 𝜌 ≤ 10 performs better compared to higher values of 𝜌. 
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Very low value of 𝜌 may seem to perform better with low in-sample error but its CA is also 

not very high. Fig. 9 (b) shows that 6 < 𝜌 < 11 have produced good CAs. Hence, parameter 

𝜌 = 10 or little less is recommended to have a good convergence. 

Non-parametric test was also performed with Wilcoxon test for ranking (two-tailed) to show 

null hypothesis with 𝑝 > 0.05 (there is no significance difference between tested algorithms) 

is wrong. The test is conducted on 250th and 750th iteration where insignificant difference are 

denoted by † and ‡ respectively in the result tables in the Appendix. Only in few instances it 

was shown that the guided and original algorithms have no significant difference. It may 

happen when the influence of inconsistent data is negligible or not many inconsistent data are 

present.  

5.4 Experiment Execution 

The comparative experimental results have been carried out between guided and original 

versions of the SGD algorithms. SGD has been tested against GSDG and similarly, Adadelta, 

Adagrad, Adam, Momentum, Nesterov, RMSprop have been tested against GAdadelta, 

GAdagrad, GAdam, GMomentum, GNesterov, and GRMSprop respectively. One to one 

comparison shows the influence of guided approach on a given original algorithm. The test 

results for the above mentioned algorithms are shown in the Appendix in Table A.1 – Table 

A.7 respectively. The datasets with removal of outliers are indicated as filtered datasets. The 

analysis is based on statistical testing of average, median, best and worst CAs together with 

Wilcoxon’s no significant difference indicator († and/or ‡). The first column shows the tested 

  
(a) (b) 

Fig. 9. Effect of 𝜌 in degree of convergence 
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datasets, the second column indicates whether the algorithm is guided or original, and the 

third column indicates win%, which represents number of times guided (or original) 

algorithm got better result than the later (or former) out of 30 runs. Rest of the columns shows 

average, best, median and worst solutions with NFC after ‘@’ symbol. The better results 

between the two approaches are shown in bold letters. Guided approach has outperformed 

original approaches in almost all the algorithms. The empirical results definitely establishes 

that avoiding inconsistent training examples regularly produces better results. Furthermore, 

among the tested variations of SGD, Adam and RMSprop has mostly produced the best 

results.  

6. Discussion 

GSGD has not only outperformed SGD on its canonical version but also in all other popular 

variations of SGD. Due to the extent of experimental results, the outcomes have been 

summarized in Fig. 10 where each bar shows the average classification accuracy of the best 

solutions obtained by tested variations of SGD on a given problem. The highlighted values on 

the top of bars show notable improvement with the proposed guided approach such as Pima 

Indian Diabetes (filtered and non-filtered), where the improvement in classification accuracy 

 

Fig. 10. Average classification accuracy of the best solutions for all the variations of SGD (and GSGD) 
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Fig. 11. Convergence graph of canonical SGD and GSGD for selected test problems 

 

is by 3.4% and 2.7% respectively. Other notable improvement is shown in Liver Disorder 

(non-filtered and filtered) and New-thyroid, where classification accuracy is improved by 

3.1%, 2.5% and 2.2% respectively. The selected graphs of convergence for canonical SGD 

and GSGD are shown in Fig. 11. The graphs show in-sample error (or training error) 𝐸𝑖𝑛 with 

validation error 𝐸𝑣. Tracking of 𝐸𝑣 has been done to avoid any over-fitting. Guided validation 

error is prefixed with a letter ‘G’. The convergence of Haberman, Liver Disorder and Pima 
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Indians diabetes data sets are quite chaotic including filtered ones. Their best CAs are also 

quite low compared to the other problems, because of high bias (high training and testing 

error) and high variance with the chosen model. Additionally, they have high data 

inconsistency and insufficient data. It was also observed that even after removing the outliers 

and extreme values, GSGD has performed better than SGD. For rest of the problems, it is 

evident that the guided approach’s 𝐸𝑖𝑛 and 𝐸𝑣 are lower than the original approach throughout 

the training process. The purpose of GSGD is not to be used as an alternative or addition to 

the noise removal techniques, but to guide SGD when data inconsistency is high. Even if 

SGD would be used with a more complex model, most probably the testing error will not be 

improved unless sufficient and consistent data are provided.  

7. Conclusion 

This paper has introduced a guided search approach to improve canonical SGD, Adadelta, 

Adagrad, Adam, Momentum, Nesterov and RMSprop. The test results demonstrate that the 

guided approach has completely outperformed original approaches when used in logistic 

regression. In some cases, average classification accuracy has been improved by more than 

3%. The proposed approach has realized that the inconsistent training examples leads to 

poorer classification accuracy. Additionally, its worst time complexity is also same as SGD’s 

𝑂(𝑇(𝑑 + 𝑁)) and better than BGD’s 𝑂(𝑇𝑑𝑁). Hence, it can be very useful for training large 

data sets efficiently. The future work would be to apply guided approach in deep learning and 

in asynchronous gradient descent where its efficiency should not be compromised. Guided 

approaches’ weakness could be the usage of additional memory and time to filter out 

inconsistent training examples. However, its effect is still needed to be seen on online 

learning/ensemble learning. Finally, a standard metrics and measurements are required to be 

accommodated for the presence of inconsistency in a training data set. 
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Appendix 

Experimental results of guided and original SGD to compare classification accuracies 

Table A.1. Classification accuracies of the canonical SGD against GSGD algorithm 

Canonical SGD versus Guided SGD (GSGD) 

Datasets Algorithm Win% Average Best Median Worst 

Breast Cancer Diagnostic 
Guided 96.70% 96.8@684 98.7@542 96.5@663 95.2@809 

Original 3.30% 95.9@471 98.2@610 95.6@515 93.8@575 

Cancer  
Guided 13.30% 98.0@81 99.5@12 98.4@31 96.2@21 

Original 10.00% 97.9@58 99.5@24 98.4@29 95.1@32 

Haberman (filtered) ‡ 
Guided 70.00% 77.8@356 83.3@484 78.1@279 71.9@169 

Original 0.00% 76.8@343 82.5@199 77.2@375 68.4@637 

Haberman‡  
Guided 70.00% 77.3@446 82.0@109 77.9@481 72.1@6 

Original 0.00% 75.0@339 82.0@91 75.4@400 68.9@1 

Liver Disorder (filtered)  
Guided 60.00% 71.4@557 76.7@679 71.3@616 65.9@805 

Original 16.70% 70.2@368 76.7@416 70.2@385 63.6@544 

Liver Disorder 
Guided 66.70% 66.5@445 73.9@196 65.9@435 62.3@406 

Original 20.00% 65.4@365 71.0@516 65.6@380 60.9@665 

New-thyroid 
Guided 86.70% 96.4@376 98.8@980 96.5@421 89.5@424 

Original 3.30% 91.6@438 98.8@567 91.9@475 77.9@687 

Pima Indians Diabetes (filtered)  
Guided 100.00% 77.2@695 82.2@907 77.4@733 74.2@576 

Original 0.00% 75.1@511 79.4@614 75.1@546 72.5@606 

Pima Indians Diabetes 
Guided 93.30% 77.8@629 81.1@255 78.0@631 74.6@210 

Original 0.00% 76.1@458 80.1@628 76.4@496 72.3@20 

 

Table A.2. Classification accuracies of the Adadelta against GAdadelta algorithm 

Original Adadelta versus Guided Adadelta (GAdadelta) 

Datasets Algorithm Win% Average Best Median Worst 

Breast Cancer Diagnostic 
Guided 100.00% 92.9@471 96.0@679 93.2@531 89.4@38 

Original 0.00% 90.6@162 93.4@90 90.7@108 84.6@12 

Cancer  
Guided 23.30% 97.9@135 99.5@847 97.8@46 96.2@48 

Original 23.30% 97.8@196 99.5@122 97.8@159 95.6@211 

Haberman (filtered) 
Guided 16.70% 76.3@7 80.7@1 76.3@2 71.1@1 

Original 0.00% 76.0@2 80.7@1 76.3@1 71.1@1 

Haberman  
Guided 26.70% 74.2@14 79.5@32 74.6@3 68.0@1 

Original 0.00% 74.0@4 78.7@30 73.8@1 68.0@1 

Liver Disorder (filtered)  
Guided 96.70% 70.0@289 77.5@227 70.5@227 58.9@286 

Original 3.30% 58.8@64 73.6@276 60.5@30 0.0@0 

Liver Disorder 
Guided 96.70% 66.9@307 76.1@341 66.7@273 59.4@14 

Original 3.30% 59.5@37 68.8@141 58.7@9 50.7@2 

New-thyroid 
Guided 40.00% 77.8@13 93.0@28 78.5@5 64.0@1 

Original 0.00% 75.4@4 90.7@3 75.6@3 64.0@1 

Pima Indians Diabetes (filtered) 
Guided 96.70% 70.9@427 78.7@162 70.7@474 63.4@24 

Original 0.00% 65.9@4 70.0@1 65.9@1 61.7@1 

Pima Indians Diabetes 
Guided 100.00% 73.1@490 78.5@574 72.6@505 69.1@147 

Original 0.00% 66.4@15 73.3@33 66.5@6 61.6@1 
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Table A.3. Classification accuracies of the Adagrad against GAdagrad algorithm 

Original Adagrad versus Guided Adagrad (GAdagrad) 

Datasets Algorithm Win% Average Best Median Worst 

Breast Cancer Diagnostic 
Guided 93.30% 94.2@569 96.0@480 94.3@555 92.1@418 

Original 0.00% 93.3@413 95.6@313 93.4@411 90.3@387 

Cancer  
Guided 23.30% 97.7@90 99.5@322 97.8@32 96.2@18 

Original 6.70% 97.6@70 99.5@245 97.8@31 96.2@24 

Haberman (filtered) 
Guided 76.70% 78.4@252 84.2@202 78.9@172 71.9@1 

Original 0.00% 76.5@33 84.2@483 75.4@1 70.2@1 

Haberman  
Guided 86.70% 76.3@240 83.6@125 76.2@178 66.4@257 

Original 0.00% 74.0@119 80.3@82 73.8@8 65.6@1 

Liver Disorder (filtered) † 
Guided 83.30% 71.9@545 78.3@223 71.7@596 62.8@928 

Original 6.70% 69.4@338 74.4@302 70.2@296 58.1@197 

Liver Disorder 
Guided 83.30% 68.6@540 76.8@175 68.5@462 60.1@371 

Original 6.70% 65.5@228 72.5@66 65.2@171 57.2@23 

New-thyroid 
Guided 100.00% 90.1@519 97.7@86 90.1@603 83.7@897 

Original 0.00% 82.6@493 87.2@619 82.6@503 76.7@488 

Pima Indians Diabetes (filtered) 
Guided 96.70% 72.4@531 78.0@459 72.5@579 68.6@584 

Original 3.30% 69.7@296 74.6@99 69.3@282 64.8@365 

Pima Indians Diabetes† 
Guided 100.00% 72.7@669 76.9@138 72.5@746 69.4@807 

Original 0.00% 68.9@299 73.6@378 68.4@319 63.2@469 

 

 

Table A.4. Classification accuracies of the Adam against GAdam algorithm 

Original Adam versus Guided GAdam (GAdam) 

Datasets Algorithm Win% Average Best Median Worst 

Breast Cancer Diagnostic 
Guided 56.70% 97.9@657 99.1@871 98.2@684 95.2@867 

Original 13.30% 97.5@507 99.1@397 97.8@534 95.2@620 

Cancer†‡  
Guided 23.30% 98.0@279 100.0@9 98.1@197 96.7@220 

Original 0.00% 97.9@258 100.0@9 97.8@216 96.2@11 

Haberman (filtered) †‡ 
Guided 46.70% 80.1@353 84.2@388 80.3@262 74.6@585 

Original 10.00% 79.5@280 83.3@343 79.8@329 72.8@351 

Haberman†  
Guided 33.30% 79.5@451 86.9@518 79.5@344 73.0@761 

Original 10.00% 79.2@303 86.9@395 79.5@311 71.3@47 

Liver Disorder (filtered) † 
Guided 40.00% 74.3@555 79.8@201 74.4@588 69.8@653 

Original 30.00% 73.9@372 79.8@556 74.0@337 70.5@517 

Liver Disorder 
Guided 60.00% 71.8@598 76.1@821 71.7@664 63.8@321 

Original 13.30% 70.8@372 76.1@269 71.0@363 63.0@130 

New-thyroid 
Guided 23.30% 98.6@378 100.0@699 98.8@232 95.3@877 

Original 13.30% 98.4@353 100.0@436 98.8@375 94.2@398 

Pima Indians Diabetes (filtered) † 
Guided 80.00% 77.3@662 80.8@802 77.2@648 74.2@433 

Original 16.70% 76.4@494 79.8@491 76.7@490 73.2@652 

Pima Indians Diabetes 
Guided 70.00% 77.8@692 81.4@734 77.7@725 74.6@832 

Original 16.70% 76.8@545 81.1@678 76.7@564 73.6@619 
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Table A.5. Classification accuracies of the Momentum against GMomentum algorithm 

Original  Momentum versus Guided Momentum (GMomentum) 

Datasets Algorithm Win% Average Best Median Worst 

Breast Cancer Diagnostic 
Guided 100.00% 96.0@718 98.7@705 95.8@739 93.0@938 

Original 0.00% 95.2@473 97.8@388 95.2@477 91.6@457 

Cancer  
Guided 6.70% 97.9@80 99.5@18 97.8@29 96.7@45 

Original 6.70% 97.9@76 99.5@16 97.8@29 96.7@31 

Haberman (filtered) ‡ 
Guided 76.70% 79.3@364 86.0@190 79.8@333 71.1@8 

Original 0.00% 78.2@405 84.2@463 78.1@462 71.1@8 

Haberman‡  
Guided 83.30% 77.8@454 85.2@159 77.9@327 70.5@1 

Original 3.30% 75.1@282 83.6@215 74.6@360 68.9@5 

Liver Disorder (filtered)  
Guided 63.30% 68.9@631 80.6@506 69.0@630 62.8@204 

Original 20.00% 68.2@407 78.3@455 69.8@441 62.0@637 

Liver Disorder 
Guided 63.30% 66.2@638 72.5@907 65.9@700 60.1@969 

Original 20.00% 65.2@382 71.0@345 65.6@371 57.2@164 

New-thyroid 
Guided 90.00% 96.8@566 100.0@387 97.7@538 93.0@179 

Original 0.00% 91.5@402 98.8@258 91.9@407 82.6@30 

Pima Indians Diabetes (filtered)  
Guided 90.00% 75.6@643 81.5@965 75.4@695 71.8@806 

Original 3.30% 74.2@444 78.4@432 74.0@465 70.4@544 

Pima Indians Diabetes 
Guided 80.00% 75.7@567 80.5@755 75.6@580 72.3@551 

Original 6.70% 74.7@418 79.2@163 74.4@424 71.3@429 

 

 

Table A.6. Classification accuracies of the Nesterov against GNesterov algorithm 

Original Nesterov versus Guided Nesterov (GNesterov) 

Datasets Algorithm Win% Average Best Median Worst 

Breast Cancer Diagnostic 
Guided 100.00% 95.3@407 98.2@558 95.2@379 92.1@591 

Original 0.00% 94.2@284 97.4@519 94.3@244 90.7@167 

Cancer  
Guided 13.30% 97.7@60 98.9@18 97.8@28 96.7@122 

Original 6.70% 97.7@46 98.9@33 97.5@26 96.7@20 

Haberman (filtered)  
Guided 6.70% 74.9@3 79.8@1 75.4@1 70.2@1 

Original 3.30% 74.9@2 79.8@1 75.4@1 70.2@1 

Haberman 
Guided 30.00% 74.5@28 82.8@297 73.8@2 68.9@3 

Original 3.30% 74.0@3 79.5@23 73.8@1 68.9@3 

Liver Disorder (filtered)  
Guided 100.00% 70.7@612 77.5@712 71.3@716 64.3@723 

Original 0.00% 60.0@90 69.8@31 59.3@48 50.4@4 

Liver Disorder 
Guided 100.00% 66.4@556 71.7@174 66.3@442 60.1@248 

Original 0.00% 59.9@47 68.8@118 59.4@22 54.3@1 

New-thyroid 
Guided 43.30% 78.9@132 87.2@27 79.7@9 68.6@31 

Original 3.30% 76.8@5 86.0@9 76.2@2 65.1@1 

Pima Indians Diabetes (filtered)  
Guided 96.70% 74.1@485 77.7@692 74.4@546 70.0@163 

Original 0.00% 67.6@32 74.2@22 67.9@5 61.0@1 

Pima Indians Diabetes 
Guided 100.00% 75.2@493 81.8@824 74.8@478 71.0@891 

Original 0.00% 67.5@25 74.9@82 66.5@17 61.6@1 
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Table A.7. Classification accuracies of the RMSprop against GRMSprop algorithm 

Original  RMSprop versus Guided RMSprop (GRMSprop) 

Datasets Algorithm Win% Average Best Median Worst 

Breast Cancer Diagnostic 
Guided 70.00% 96.3@706 98.2@371 96.5@767 94.3@714 

Original 13.30% 95.8@560 98.7@668 95.8@622 93.8@665 

Cancer  
Guided 13.30% 97.9@212 99.5@317 97.8@72 96.2@26 

Original 3.30% 97.8@169 99.5@636 97.8@59 96.2@79 

Haberman (filtered) †‡  
Guided 60.00% 81.2@408 86.0@145 81.6@315 74.6@5 

Original 3.30% 80.6@253 86.0@479 80.7@278 74.6@5 

Haberman †‡ 
Guided 50.00% 78.1@451 82.0@299 78.7@378 73.0@926 

Original 3.30% 77.5@249 82.0@242 78.3@239 72.1@57 

Liver Disorder (filtered)  
Guided 73.30% 74.3@515 79.1@790 75.6@524 67.4@211 

Original 13.30% 73.3@411 79.1@162 73.6@464 65.9@530 

Liver Disorder 
Guided 70.00% 73.4@564 78.3@428 73.6@583 68.1@517 

Original 10.00% 71.7@452 76.1@306 72.1@502 63.0@164 

New-thyroid 
Guided 46.70% 98.4@488 100.0@841 98.8@468 95.3@191 

Original 3.30% 97.9@277 100.0@284 97.7@224 95.3@207 

Pima Indians Diabetes (filtered)  
Guided 93.30% 77.3@640 81.5@268 77.7@567 73.2@442 

Original 6.70% 75.8@529 80.5@371 76.0@551 70.0@392 

Pima Indians Diabetes 
Guided 93.30% 77.1@694 82.7@744 77.0@741 73.6@424 

Original 3.30% 75.5@574 81.8@646 75.6@646 71.7@351 

 


