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Abstract
Tea is themost consumed beverage in theworld apart fromwater. Climate change is anticipated to
affect the tea industry, but quantified large-scale predictions of how temperature andwater availability
drive tea production is lacking inmany regions. Here, we use satellite-derived observations to
characterize the response of tea yield towater and heat stress from2008 to 2016 across Kenya, the third
largest producer of tea.We find that solar-induced fluorescence captures the interannual variability in
tea yield remarkablywell (Pearson’s correlation coefficient, r=0.93), and that these variations are
largely driven by the daily dynamics of soilmoisture and temperature. Considering rising temperature
in isolation suggests that yields in 2040–2070would decrease by 10% relative to 1990–2020 (ranging
between−15% to−4%across 23models), butmost climatemodels also simulate an increase in soil
moisture over this interval that would offset loss, such that yields decrease by only 5% (ranging
between−12% to+1%). Our results suggest that adaptation strategies to better conserve soilmoisture
would help avert damage, but such changes require advanced planning due to the longevity of a tea
plant, underscoring the importance of better predicting soilmoisture over the coming decades.

1. Introduction

Tea plants are primarily grown in rainfed systems and
are strongly dependent on weather conditions for
optimal growth [1–3]. Kenya has ideal growing condi-
tions for tea in the cool, wet, highlands east andwest of
the Great Rift Valley, and provides 8% of the world’s
tea [4]. Field studies in Kenya have demonstrated that
tea is particularly sensitive to water availability and
extreme temperature [5, 6], with temperature damage
amplified bymoisture deficits [3, 7].

Climate change has the potential to disrupt the tea
industry in Kenya by altering temperature and pre-
cipitation patterns. Global climate models predict that
precipitation will increase in Kenya’s tea growing
zones [8], likely increasing root-zone soil moisture,
but it remains unclear if this increase in water supply
will outweigh the adverse effects of future warming.
Quantifying the response of tea yield to climate change
is of high economic and social value, as tea is Kenya’s

leading export [9], employs approximately 10% of the
country’s population [1], and is largely managed by
smallholders [1, 10].

In this study, we aim to predict the response of
Kenyan tea yield to changes in heat and water stress
associated with climate change. Our analysis frame-
work is divided into three parts: (1) relating tea yield to
remotely-sensed observations of solar-induced fluor-
escence (SIF); (2) resolving the response of SIF to daily
heat and water stress using remotely-sensed observa-
tions of soil moisture and weather-station-based esti-
mates of temperature; and (3) evaluating future yield
responses using simulations from global climate mod-
els. We utilize low-order statistical models such that
free parameters can be well-constrained by available
data. Such an approach complements process-based
modeling approaches that more fully represent the
biophysical controls upon yield outcomes (e.g.,
[11–13]).
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2. Yield fromSIF

Annual tea yield observations (in units hg ha-1) are
from the Food and Agriculture Organization Statisti-
cal Databases at the national level [4]. Yield observa-
tions span from 1961 to 2016, and generally increase
from 1961 until the early 2000s (figure S1(a)–(b)
available online at stacks.iop.org/ERL/15/044003/
mmedia). Tea growing zones are identified using a
0.021 eight-degree crop distribution map for 2015
provided by SERVIR-Eastern and Southern Africa
(SERVIR-ESA) under the Regional Center for Map-
ping of Resources for Development (RCMRD).
Because we ultimately wish to relate tea yield to soil
moisture, we conduct our analysis at the 0.25 degree
resolution and over the 2008–2016 period that soil
moisture and yield data are both available. There are
28 one-quarter-degree resolution grid boxes that
encompass Kenya’s tea growing region (figure 1).

Rather than directly model tea yield as reported by
the Food and Agriculture Organization, we utilize
satellite observations of vegetation activity to spatially
downscale reported national yields and isolate the sea-
son that contributes most to interannual yield varia-
bility. Following previous analyses [14], we relate yield
to vegetation activity via SIF. SIF directly monitors
processes involved in photosynthesis, and themajority
of photosynthesis in tea plants occurs in the leaves [3].
Furthermore, in the case of tea, SIF provides a unique
opportunity to directly monitor the product being
harvested, as opposed to its being an indirect measure
of yield as in fruiting crops. SIF observations are only
related to tea yield, as opposed to tea quality, which
would requiremore nuanced considerations [2, 15].

SIF observations are from the Global OzoneMon-
itoring Experiment-2 (GOME-2) instrument flying on
the Metop-A satellite. We utilize level-2 daily average
estimates of SIF (version 27), which are pixel data, as
opposed to the level 3 gridded data [16]. The daily
averages are approximated from observed SIF assum-
ing a clear sky photosynthetic active radiation proxy at
the observation time and a similar clear-sky photo-
synthetic active radiation weighting for all other
hours. Days that are flagged as poor quality (labeled
‘bad’ in the provided data) are excluded. Daily average
SIF observations, which have a footprint of 40 km by
40 km (40 km by 80 km before 15 July 2013) [16], are
gridded to 0.25 degree resolution by binning and aver-
aging the observations.

There are two major advantages afforded by SIF
relative to using national yield data alone. First, SIF
allows for examination of subseasonal variability in
growth such that we can better isolate the ‘critical
growing season’ in which vegetation activity con-
tributes most to interannual variability in yield. To
determine the critical growing season of tea using SIF
observations, we temporally average SIF over all sets of
consecutive months, fit a least-squares linear regres-
sion between SIF and yield for all sets of months, and

select the set that minimizes the root mean square
error. Note that we do not specify the number of
months in the critical growing season, allowing the
length of consecutive months to vary between one and
twelve. Using this methodology, we isolate January
throughApril as the critical growing season, consistent
with previous studies [17]. Tea yield corresponds well
with SIF in Kenya’s tea growing regions during the cri-
tical growing season (Pearson’s correlation coefficient,
r=0.93; figure 2(a)), whereas annual average SIF is a
weaker predictor of yield (r=0.56; figure S2).
Although tea is an evergreen perennial, the critical
growing season encompasses a regular dry season
(figures 1(e)–(f)) when tea is hydrologically vulnerable
[17], with the start of the first rainy season occurring in
April.

The good initial match between spatially-averaged
SIF and national-level yields suggests that a more
detailed spatial analysis is warranted. The second
major advantage of SIF is that it allows us to character-
ize subnational levels of tea productivity as a function
of soil moisture and temperature, increasing our sam-
ple size from 9 (years) to 237 (years and grid boxes).
We assume that yield is correlated with SIF averaged
over the critical growing season in each of these grid
boxes. This local assumption is supported by the fact
that seasonal variability in soil moisture and temper-
ature variability is similar across each grid box within
the domain (figures 1(e)–(f)). Evaluation at the grid-
box level allows us to relate well-resolved observations
of soil moisture and temperature to a regional indica-
tion of yield.

Although the spatially-resolved analysis permitted
by SIF increases the combinations of years and grid
boxes to 237, the actual degrees of freedom increase
more slowly than data points because of spatial covar-
iance and because some boxes are composed of small
percentages of tea. According to a 2015 crop distribu-
tionmap (figure 1(a)), the 28 grid boxes that we exam-
ine are composed of between <1% to 73% tea crop.
We perform two additional analyses to evaluate the
degree to which our results are sensitive to the inclu-
sion of boxes with low tea coverage. First, we average
across only those grid boxes containing over 10% tea
area, reducing the number of grid boxes from 28 to 17,
and fit a least-squares linear regression. Secondly, we
fit a least-squares linear regression to all 28 grid boxes
but weight each grid box by the corresponding
percentage tea area. In both of these analyses, we find
that thesemethods of accounting for crop distribution
reduce the correlation with nationally reported tea
yield (table S1), possibly because of large interannual
variability in tea harvest area (figure S3). On account of
uncertainty in the representivity of the 2015 crop dis-
tribution for other years, all 28 grid boxes are con-
sidered equally.
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Figure 1.Tea growing areas and environmental variables across Kenya. The spatial distribution of (a) tea cultivation and annual
average (b) SIF, (c)maximumdaily temperature, and (d) soilmoisture at 0.25-degree resolution, with tea growing regions outlined in
black. There are 30 grid boxes growing tea, though no soilmoisture observations are available in two of the thirty (as shown in gray in
(d)), resulting in a total of 28 tea grid boxes for the analysis. The climatological seasonal cycles of (e)maximumdaily temperature and
(f) root-zone soilmoisture are shown for each of the 28 tea grid boxes (light colors) and averaged across the 28 tea grid boxes (dark
colors). To estimate a climatological seasonal cycle for each variable, we smooth the daily observations from 2008 to 2016 using a 30-
daymovingwindow and then average across years. The ‘critical growing season’ (January throughApril) is shaded in light gray.
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3. Yield variations in response to soil
moisture and temperature

Consistent with the dry season being critical for tea
yield [7, 17], we develop a model of how variations in
water status influence yield outcomes, as monitored
by SIF. Yield variability is represented as a function of
root-zone soil moisture and maximum daily temper-
ature because they are the primary determinants of tea
plant water status, with soil moisture representing the
supply of water available to the roots and maximum
daily temperature representing the demand of moist-
ure exerted on transpiration by the atmosphere.

Daily near-surface soil moisture observations (in
units cm3 cm−3) are from the European Space Agen-
cy’s Climate Change Initiative (ESA-CCI) soil moist-
ure project version 4.2 [18–20], and are provided at a
0.25 degree spatial resolution. This data product com-
bines various single-sensor active and passive micro-
wave remotely-sensed soil moisture products. Root-
zone soil moisture is estimated by applying a recursive
exponential filter to the near-surface soil moisture
observations [21, 22], as described in the supplemen-
tary information. While soil moisture observations
exist prior to 2008, they are temporally too sparse to
permit for evaluating how weather variations influ-
ence yield (figure S1(d)). Note that we exclude 2007,
which has substantially more data than previous years,
because only five grid boxes have over 60% of days
available during the critical growing season.

Maximum daily temperature is selected to repre-
sent atmospheric demand, rather than the commonly
used vapor pressure deficit, because temperature is
more widely measured in this region and is highly

correlated with vapor pressure deficit. Daily max-
imum temperature estimates based on weather station
observations are from the National Oceanic and
Atmospheric Administration’s Climate Prediction
Center [23]. These data are provided at a 0.5 degree
spatial resolution, and are regridded to match the 0.25
degrees soilmoisture data. For consistency when com-
paring models, we exclude temperature data on days
when soilmoisture ismissing.

Studies have often used seasonal averages when
relating weather and yield outcomes (e.g. [7, 17]), but
at seasonal timescales temperature and root-zone soil
moisture are strongly anticorrelated (r=−0.74 from
2008 to 2016; figure 2(b) and figure S1(c)). Tight cou-
pling between temperature and moisture at seasonal
timescalesmakes it difficult to statistically determine if
yield damages in warm, dry years are due to high tem-
peratures, which are expected to increase with climate
change in this region, or water limitations, which are
expected to decrease with climate change in this
region. Soil moisture and temperature are less physi-
cally coupled at the daily timescale (r=−0.28;
figure 2(c)), however, because root-zone soil moisture
integrates water fluxes from days to months and, thus,
is often in disequilibrium with the overlying atmos-
phere. We, therefore, construct a statistical model of
yield variability that resolves daily soil moisture and
maximum temperature observations.

First, we consider a 1D model of the influence of
temperature on SIF wherein daily effects are cumula-
tive over time during the January through April per-
iod, and thus additively substitutable over a given
season [24].Wemodel the seasonal average SIF, rather
than daily SIF, in order to help suppress noise in daily

Figure 2.Observations of yield, SIF,maximum temperature, and soilmoisture at varying time scales. Time series of (a) tea yields and
SIF, and (b) soilmoisture andmaximum temperature, and (c) the daily distribution of soilmoisture and temperature across the tea
regions inKenya. In subplots (a) and (b) yields are reported at the annual time scale, and SIF, soilmoisture, and temperature are
averaged from January throughApril.
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SIF observations [16],

( ) ( )å b r= ´ +
=

T SSIF . 1g
T

n

T g
1

SIF in grid box g is modeled as sensitivity, βT, in units
of mWm−2nm−1 sr−1 day−1, times exposures, ρ, in
units of number of days associated with a given
temperature, summed over n different bins that
temperature is resolved into. Also included is a grid-
box level fixed effect, Sg, that represents mean-state
variations independent of temperature and soil moist-
ure. To account for the fact that soil moisture and
temperature observations are not necessarily available
every day, the value of ρh ismultiplied byNo/Ng, where
No is the total number of days between January
through April and Ng is the total number of days in
which SIF is observed in grid box g. T indexes intervals
of temperatures that are bounded by the 2.5% and
97.5% quantiles of temperature on all days between
January through April, which are 21 °C and 32 °C,
respectively. βT and Sg are estimated using a linear
mixed effects model without a global intercept. An
analogous equation is written for soil moisture with
the 2.5% and 97.5% quantiles equal to 0.10 cm3 cm−3

and 0.33 cm3 cm−3, respectively. The 1D fits for
temperature and soil moisture are shown in figure S4.

In order to account for interactions between
moisture supply and temperature, a 2D version of
equation (1) is postulated [25],

( ) ( ) ( )å å b r= ´ +
= =

T T SSIF , SM , SM 2g
T

n n

g
1SM 1

Values of T and soil moisture (SM) are resolved at the
same spacing as for equation (1). Results from
equation (2) indicate that soil moisture and temper-
ature interact in determining tea productivity, with
yields remaining high regardless of temperature when
sufficient soilmoisture is present (figure 3(a)).

Codependencies of SIF on temperature andmoist-
ure are consistent with plant physiology, in general
[26], and tea plants, in particular [27, 28]. In tea plants
the foliar relative water content and water potential
decline when moisture in the soil is limiting, decreas-
ing the photosynthetic rate via stomatal closure [5, 27].
Leaf temperature, which is typically 2 °C–12 °C higher
than air temperature [3], also directly influences the
photosynthetic rate of tea, shoot growth, and the rate
of shoot initiation [2], with adverse effects at high
temperature. When soil water is not limiting, tran-
spiration can reduce leaf temperature via latent cool-
ing, as demonstrated by the sustained productivity
when both temperature and soil moisture are high.
Field studies have, in fact, demonstrated a strong lin-
ear relationship between transpiration and tea yield
[29]. Detrimental effects of waterlogging, which are
strongly exhibited bymaize [25], are not evident in this
region from 2008 to 2016, likely because tea plants
require deep, well-drained soils [2] and, as a perennial,
are more efficient at transporting excess moisture via
leaves and roots.

Modeled estimates of SIF using the 2D response
function are well correlated with observations at the
grid-box scale when averaged over the critical growing
season (r=0.77; figure S5a). For each year, the spatial
correlation varies from 0.62 in 2015 to 0.83 in 2013
with a median of 0.75 across all nine years (figure S6).
Averaging across space gives a higher correlation
between model results and SIF (r=0.96, figure S5b).
In constructing the average, missing grid-box data is
infilled with the mean across all other years in order
not to introduce spurious correlations associated with
missing data. Though there are 28 grid boxes in total,
there is at least one grid box missing for each year due
to a lack of sufficient soil moisture observations, with

Figure 3.Modeling Kenyan tea outcomes as a function of soil
moisture andmaximum temperature. (a)Using observations,
we infer the daily response of yield, for whichwe use SIF as a
proxy, tomaximumdaily temperature and root-zone soil
moisture. Each square represents an estimate of daily-yield
sensitivity (i.e.,β coefficients). Allfit coefficients significantly
differ from zero (p<0.05). The size of the square represents
the relative number of days within each bin (seefigure 2(c) for
a complete 2Dhistogramof the data). A polynomial surface
fit to daily SIF sensitivities is plotted behind the squares. Each
orange arrow represents the predicted change in root-zone
soilmoisture andmaximum temperature fromoneCMIP5
model simulation from current (1990–2020) to future
climates (2040–2070; see table S3 for a list of the 23CMIP5
models). For reference, the average of the observations
(2008–2016) is plottedwith an open circle. (b)Observed yield
is predicted directly from SIF observations (r=0.93;
RMSE=506 hg/ha) and from soilmoisture and temperature
observations (r=0.99; RMSE=362 hg/ha).
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2008 missing three, 2009 missing two, and 2012 miss-
ing four. Furthermore, the linear relationship between
observed SIF and yield allows for annual national
yields to be predicted from our soil-moisture and
temperature model, capturing nearly all possible
variability (r=0.99,figure 3(b)).

When compared to other statisticalmodels for this
nine-year interval, the soil moisture and temperature
yield model predicts yield outcomes better than fitting
a linear regression to either seasonally averaged temp-
erature or soil moisture alone (figure S7), or using
either daily soil moisture or temperature observations
to predict yields (table S2). Using only soil moisture or
only temperature, the correlation declines from 0.99
to 0.92 and 0.90, respectively, and the RMSE increases
from 362 hg ha-1 to 623 hg ha-1 and 744 hg ha-1,
respectively, highlighting the importance of including
interactions between moisture supply and demand in
the yield model framework (figure S8). Without mod-
eling interactions, the response of SIF to each variable
alone (figure S4) would suggest that warmer or drier
conditions invariably lead to reduced yield. In fact,
increases in temperature can be beneficial when com-
binedwith sufficient increases in soilmoisture.

4. Future yield anomalies

As a final point of analysis, we use our historical fit to
observations along with climate model simulations to
explore possible future changes in yield. Specifically, a
single simulation from each of 23 global climate
models in the Coupled Model Intercomparison Pro-
ject Phase 5 (CMIP5) for Representative Concentra-
tion Pathway (RCP) 8.5 (table S3) is used to evaluate
changes in root-zone soil moisture and maximum air
temperature between present (1990–2020) and future
(2040–2070) climates. We grid near-surface maxi-
mum air temperature (variable name ‘tasmax’ in
CMIP5) and each layer of soil moisture (variable name
‘mrlsl’ in CMIP5) from all CMIP5 models to a
common one-degree spatial resolution using netCDF
operators (NCO) [30]. In the regridding process, we
use a bilinear algorithm for temperature and an
algorithm that conserves the total amount of water
globally in each soil layer for soilmoisture. To estimate
root-zone soil moisture between 0 to 100 cm, we
weight the layers of soil moisture by the fraction of the
depth each represents.

To simulate daily conditions in future climates, we
shift the daily root-zone soil moisture and maximum
temperature observations by the average predicted
change from current (1990–2020) to future
(2040–2070) climates across Kenya’s tea regions for
each CMIP5 model. We use two methods to estimate
the associated change in yield, both of which give simi-
lar responses. First, we use the daily SIF response infer-
red from equations (1)–(2) directly. Where simulated
data extends beyond the observational range, we

specify the corresponding sensitivity in the edge bin.
In the secondmethod, we extrapolate the SIF response
beyond those conditions observed in 2008–2016 by
fitting functional forms to the inferred daily SIF
responses. Specifically, we fit lines to the temperature
and soilmoisture responses inferred from equation (1)
(figure S4) and a polynomial surface with two degrees
for temperature and two degrees for root-zone soil
moisture to the nine coefficients in equation (2) (back-
ground in figure 3(a)). Results from both methods are
listed in table S3, and those from the latter are reported
in themain text.

The 23 global climate models from CMIP5 show
consistent increases in maximum daily temperature
and more variable, though generally increasing, chan-
ges in root-zone soil moisture from 1990–2020 to
2040–2070 after averaging across Kenya’s tea growing
region (3(a); table S3). Specifically, maximum daily
temperature is predicted to rise by an average of 1.6 °C
across the tea growing region during the critical grow-
ing season, with a range of 0.7 °C to 2.4 °C across
CMIP5models. Soil moisture is predicted to rise by an
average of 0.01 cm3 cm−3, ranging from
−0.016 cm3 cm−3 to 0.045 cm3 cm−3. Predicted chan-
ges in root-zone soil moisture are spatially variable,
with only 15 of the 23 models predicting increases
across all 28 grid boxes, but all 23 models predict
increases in temperature across the 28 grid boxes
(figure S9–S10). The greatest seasonal warming is pre-
dicted to occur during the summer (June–August)
with the average across models being 2 °C (figure S9),
but lower baseline temperatures and higher soilmoist-
ure relative to the critical growing season is anticipated
tominimize damages.

Using our yield model (equation (2)), we estimate
a decline in tea yields in 2040–2070, relative to
1990–2020, that averages 5% across the 23 CMIP5
models, ranging from a loss of 12% to a gain of 1%. If
only dependence on temperature were considered, the
damages inferred from the simulated warming in
CMIP5 would be erroneously inferred at approxi-
mately twice the magnitude (table S3). This difference
in damagemagnitudes relates to the strong correlation
between warmer and drier conditions in historical
interannual variations, such that estimates based
solely on temperature implicitly equate warming with
drying, whereas the CMIP5 simulations indicate that
the yield effects associated with multidecadal trends
towards warming will be partially offset by wetter con-
ditions. These predictions assume that the CMIP5
simulations are capturing changes well from historical
to future climate conditions. Note that these predic-
tions are based upon CMIP5 simulations that may not
accurately predict either present or future climate con-
ditions. There are large differences in the historical
(1990–2020) mean states between climate models
(start of arrows in figure 3(a)). Furthermore, sub-
stantial differences between observed rainfall trends
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and those simulated across CMIP5 models are evident
in EasternAfrica [31].

5. Conclusions

SIF affords a spatially and seasonally resolved indica-
tion of growth that appears linearly related to yield.
Training a model about how soil moisture and
temperature variations influence yield upon these SIF
observations affords greater constraint for model
parameters than would be possible from the available
nine years of nationally-reported yield data alone. That
said, our model does not capture a number of
important processes. Factors such as frost, hailstorms,
and pests, are not included, though losses incurred by
such events can be substantial for tea [2]. The timing of
climatic events, such as the onset and retreat dates of
the seasonal rains, may also play a role in historical and
future tea production [32] and should be investigated
in future studies.

Increases in atmospheric carbon dioxide con-
centration may also affect yield by improving photo-
synthetic rates in tea leaves [33]. This effect of carbon
fertilization has the potential to alter the terrestrial
water balance by increasing water use efficiency [34].
Given the relatively short time series of observational
data, however, these effects would be better explored
in future studies using process-based cropmodels (e.g.
[13]) or free air concentration experiments
(e.g. [33, 35]).

There is only a limited amount of suitable land that
would allow for the adaptation of Kenyan tea produc-
tion to a changing climate by moving farms to higher
elevation [36], but there does appear to be the poten-
tial for adapting to warmer conditions through plant-
ing tea cultivars with higher optimal temperature
thresholds and improved ability to access soilmoisture
through greater rooting depths [3]. Such tea cultivars
maintain a higher relative water content and exhibit
less decline in photosynthesis under water stress [5].
Planting such cultivars, however, involves a long-term
commitment because tea plants require at least three
years of maturation before harvest and have an eco-
nomic lifespan of 50–60 years [3]. Improving predic-
tions of changes in temperature and soil moisture in
the Kenyan highlands, alongwith further research into
the implications for yield outcomes, thus seems war-
ranted prior tomajor investments in planting different
cultivars.
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