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Abstract: This study uses the quantile mapping bias correction (QMBC) method to correct the
bias in five regional climate models (RCMs) from the latest output of the Rossby Center Climate
Regional Model (RCA4) over Kenya. The outputs were validated using various scalar metrics such as
root-mean-square difference (RMSD), mean absolute error (MAE), and mean bias. The study found
that the QMBC algorithm demonstrates varying performance among the models in the study domain.
The results show that most of the models exhibit reasonable improvement after corrections at seasonal
and annual timescales. Specifically, the European Community Earth-System (EC-EARTH) and
Commonwealth Scientific and Industrial Research Organization (CSIRO) models depict remarkable
improvement as compared to other models. On the contrary, the Institute Pierre Simon Laplace
Model CM5A-MR (IPSL-CM5A-MR) model shows little improvement across the rainfall seasons
(i.e., March–May (MAM) and October–December (OND)). The projections forced with bias-corrected
historical simulations tallied observed values demonstrate satisfactory simulations as compared to
the uncorrected RCMs output models. This study has demonstrated that using QMBC on outputs
from RCA4 is an important intermediate step to improve climate data before performing any regional
impact analysis. The corrected models may be used in projections of drought and flood extreme
events over the study area.

Keywords: quantile mapping bias correction (QMBC); regional climate models (RCMs); Rossby
Centre Regional Climate Model (RCA4); drought; flood; Kenya
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1. Introduction

Recently, the changes in the frequency and intensity of extreme events have led to severe
climate-related disasters across many parts of the world. These extreme events (i.e., floods, droughts,
and heat waves) have gained considerable attention from climate scientists and the general public due
to their devastating impact on the ecosystem and different sectors of the economy. Thus, forecasting
and monitoring of such events are crucial steps to ensure that the Malabo Goals 2025 and the 2030
Agenda for Sustainable Development of the Sustainable Development Goal 2 (SDG2) are met [1]. It
is against this backdrop that climate information’s availability and accuracy are essential for climate
change assessment [2].

From a policy formulation perspective, global climate models (GCMs) and regional climate models
(RCMs) are examples of datasets used in forecasting and projection studies. Additionally, model
outputs from GCMs and RCMs are sometimes used as an input data sources in the prediction and
projection of the extreme events. However, these model outputs are saddled with uncertainties that
arise due to systematic and random biases relative to in-situ datasets [3,4]. For example, Cardell et
al. [5] associated the random model error to intricate topography or atmosphere–biosphere transition
along with large water bodies. In a different study, Allen et al. [6] linked systematic errors (model
biases) to model coarser resolutions or parameterizations schemes.

Other studies (e.g., [7,8]) also reported considerable deviations from in-situ observations. Thus,
within the context of these studies, end users are cautioned when generalizing results from these
models’ outputs. The models are of great interest to water resource planners and managers, who are
required to periodically conduct a regional impact analysis to assess the impacts of climate change on
watershed hydrology. Thus, to quantify the changes and predict extreme events against the backdrop
of a warming climate, scientists and policy analysts alike have no other option than to use the existing
GCM and RCM ensembles, despite the report of uncertainties in their assessments [2], based on
data quality.

Meanwhile, different spatial downscaling and bias correction tools have been proposed and
applied extensively to minimize these inherent errors or biases. Thus, to correct or minimize these
biases or errors, scientists use two distinct spatial downscaling and bias correction tools, namely,
statistical and dynamic downscaling methods.

In this study, we do not compare the advantages and disadvantages of these methods since
extensive literature review shows that it is difficult to define the best approach, as the overall output
performance of the two methods can reproduce the recent climate [9–11]. From literature, these two
methods have been applied to downscale GCM to RCM [2].

Several RCMs based on dynamic downscaling are now available for many regions across the
globe (IPCC, 2014). An example includes the RCM precipitation data sourced from Rossby Centre
Climate Model outputs [12,13]. However, following the phenomenal study of Ahmed et al. [11], it is
clear that the spatial resolution of the RCM for regional or local applications may not be high enough
and may still contain some inherent errors. To use this type of climate data for present and future
climate predictions, the two studies recommended bias corrections of RCM data to possibly remove
the biases before their application. In parallel, this is particularly relevant for the African continent
as well as its subregions, where the number of in-situ stations and data availability and quality have
considerably declined and become less reliable [14].

Thus, to remove biases in RCM, recent studies [3,4,15,16] have adopted statistical techniques to
adjust RCM simulations and projections of climatic variables using different bias correction methods.
Examples of the bias correction methods include the delta correction [17,18], linear transformation [19],
local intensity scaling [20], power transformation [21], distribution mapping [22,23], and the quantile
mapping bias correction (QMBC) [24,25], just to mention a few. The conclusions drawn from these
studies suggest that the QMBC algorithm outperformed other methods [26–28]. It is important to
note that QMBC is also referred to as quantile–quantile mapping [23], probability mapping, statistical
downscaling, or histogram equalization [29].
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The QMBC method is based on the hypothesis that climate biases that need to be corrected are
unchanging; hence its features in historical data will persist into future projections [30,31]. Although
this study acknowledges that QMBC technique has limitations [8,32], QMBC usage is widely preferred
for impact analysis [8,31,33,34].

Over the East Africa region, recent studies have reported the existence of biases in RCM and GCM
datasets [35–37]. To illustrate this, Ayugi et al. [38] demonstrated the manifestation of systematic dry
(wet) biases over regions of low (high) altitude characterized by arid and semi-arid lands (ASALs) or
complex topography. Furthermore, the study reported that most mean spatial biases tend to follow
the physiographic features in the study domain, which RCMs could not reproduce due to its coarse
resolution (~50 km) and physical parameterization. Despite the observed biases, few studies have
attempted to correct systematic distributional biases relative to historical observations, and possible
future simulations on the RCMs or GCMs. Many studies have, however, improved the quality of
satellite-derived estimates using other techniques, such as Bayesian approach [39,40]. To improve the
accuracy of projections of extreme events such as drought and flood over East Africa, better-performing
RCMs and satellite datasets [35,38–41] ought to be further improved using correctional techniques to
minimize possible biases and enhance the quality [30].

Thus, as a follow-up from Ayugi et al. [38], this study focuses on assessing the importance and
performance of QMBC on model outputs over East Africa as an intermediate step before performing
any regional impact analysis. This analysis is crucial from the sustainable planning for adaptation and
mitigation of climate change and disaster risk reduction perspective. The objective of this study is to
perform bias correction on the RCMs over Kenya, using QMBC before the assessment and projections of
floods and droughts in the mentioned study domain. The remaining section of the paper is organized as
follows: Section 2 highlights the data and methods used, while results and discussions are presented in
Section 3. The last sections summarize the conclusion of the study with the possible recommendations.

2. Materials and Methods

2.1. Study Area

The region under study is situated in East Africa located along the celestial longitude 34◦ E–42◦

E and latitude 5◦ S–5◦ N (Figure 1). Diverse physical features that play a significant role in climate
modulation from one locality to another characterize this region [42]. For instance, the maximum
thermal heat evidenced over the eastern and northeast parts that are predominantly arid and semi-arid
lands (ASALs) and minimum temperatures over central regions are due to a high elevation point.
Moreover, the uppermost (lowest) elevation with the altitude of >5000 m (<0 m) often leads to
random uncertainties in climatic variables during the quantification process [6]. Consequently, the
heterogeneous terrestrial classification influences socio-economic activity with a great inclination to
rain-fed agriculture [43].

The region’s climate is classified as tropical climate [44], with bimodal patterns of rainfall
experienced during March to May (MAM) and October to December (OND) [45,46]. The months of
May and November record the highest amount of rainfall across the study domain while March and
October signify the onset of the seasons and record the least rainfall quantity [45,47,48] in MAM and
OND, respectively.

On the other hand, the highest temperature climatology is observed during January and February
(JF), whereas the lowest is observed from June to September (JJAS) [49–51]. Generally, microclimate
features over the study area are mostly regulated by the existence of unique geomorphology, while
synoptic features are influenced by the interaction between atmosphere and hydrosphere within the
lower troposphere. For example, the changes in Hadley circulation, which have an influence in the
oscillation of the intertropical convergence zone (ITCZ), strongly regulate seasonal climate patterns
over the study domain [52].
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Figure 1. The study area (34°E–42°E and 5°S–5°N) with topographical elevation (m) in dark color. 
Enclosed is a map of the African domain with a study domain situated in the Eastern region marked 
with dark color. 
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from Rossby Centre Climate Model outputs [12,54] and their respective mean multimodel ensemble 
(MME). They are as follows: Model for Interdisciplinary Research on Climate (MIROC5), 
Commonwealth Scientific and Industrial Research Organization (CSIRO), Institute Pierre Simon 
Laplace Model CM5A-MR (IPSL-CM5A-MR), Max Planck Institute Earth System Model at base 
resolution (MPI-ESM-LR) and European Community Earth-System (EC-EARTH). The RCMs have a 
horizontal grid increment of 0.44° × 0.44° (~50 km × 50 km) with a historical coverage spanning from 
1951 to 2005 for the simulations run while projections have temporal span from 2006 to 2100 for both 
RCP 4.5 and 8.5. The datasets were retrieved from the Deutsches Klimarechenzentrum GmbH 
(DRKZ) website (CERA-WDCC; https://cera-www.dkrz.de). Table 1 summarizes the information of 
each aforementioned model, giving their full names, native horizontal grid increment, and 
abbreviated name as used in this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The study area (34◦ E–42◦ E and 5◦ S–5◦ N) with topographical elevation (m) in dark color.
Enclosed is a map of the African domain with a study domain situated in the Eastern region marked
with dark color.

2.2. Data Description

Biases in climate model simulation are commonly detected by validation (i.e., comparison with
observation) through computation of mean and/or other complex analysis [53]. Several correction
techniques have been proposed to rectify the existing biases in climate datasets [17,19,21,23]. The current
study employed a QMBC algorithm to evaluate monthly RCM precipitation data sourced from Rossby
Centre Climate Model outputs [12,54] and their respective mean multimodel ensemble (MME). They
are as follows: Model for Interdisciplinary Research on Climate (MIROC5), Commonwealth Scientific
and Industrial Research Organization (CSIRO), Institute Pierre Simon Laplace Model CM5A-MR
(IPSL-CM5A-MR), Max Planck Institute Earth System Model at base resolution (MPI-ESM-LR) and
European Community Earth-System (EC-EARTH). The RCMs have a horizontal grid increment of 0.44◦

× 0.44◦ (~50 km × 50 km) with a historical coverage spanning from 1951 to 2005 for the simulations
run while projections have temporal span from 2006 to 2100 for both RCP 4.5 and 8.5. The datasets
were retrieved from the Deutsches Klimarechenzentrum GmbH (DRKZ) website (CERA-WDCC;
https://cera-www.dkrz.de). Table 1 summarizes the information of each aforementioned model, giving
their full names, native horizontal grid increment, and abbreviated name as used in this study.

Table 1. The description of the global climate models (GCMs) dynamically downscaled by Rossby
Centre Regional Climate Model (RCA4) CORDEX.

Institute Native Horizontal Grid
Increment Abbreviated Name

1. Consortium of European Research Institutions and
Researchers, Netherlands 1.125◦ × 1.125◦ ICHEC-EC-EARTH

2. Institute Pierre Simon Laplace, France 3.75◦ × ~1.895◦ IPSL-IPSL-CM5A-MR

3. National Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and Technology

(MIROC), Japan
~1.4◦ × 1.4◦ MIROC-MIROC5

4. Commonwealth Scientific and Industrial Research
Organization (Australia) ~1.875◦ × 1.875◦ CSIRO-Mk3.6.0

5. Max Planck Institute for Meteorology (Germany) ~1.875◦ × 1.875◦ MPI-M-MPI-ESM-LR

Climatic Research Unit (CRU TS4.02) datasets were employed as observed datasets during the
validation period. Harris et al. [55] detailed more on this dataset. The CRU datasets utilized in this

https://cera-www.dkrz.de
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study have a temporal scale ranging from 1901–2017 and spatial coverage of ~50 km. The RCM
datasets were evaluated in a recent study [38] that elucidated the listed models as better-performing
from the ten GCMs that were dynamically downscaled based on the Rossby Center Regional Climate
Model (RCA4). The datasets report glaring biases despite the skillful simulation of observed rainfall
as compared to some models (Figure 2). Similar observations were made by Ayugi et al. [38]. Most
models exhibit overestimation during OND season and underestimation throughout the MAM season
(Figure 2). This has prompted the need for minimizing the biases in order to employ the models for
drought and flood projections in a region that is vulnerable to the occurrence of extreme events.Water 2020, 12, x FOR PEER REVIEW 6 of 18 

 

 

Figure 2. Annual precipitation cycle for the period 1951–2005 as simulated by five individual models 
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study uses a split sample testing (SST) to examine how effective the QMBC algorithm is under 
different conditions. More information regarding this approach is presented by Klemeš [56]. 
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1979) to derive the biases field for monthly averages in the model and observed precipitation 
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following 26-year validation period (1980–2005). Additionally, projection estimates were corrected 
for the whole period, i.e., 2006–2100. The hypothesis for the SST technique is the temporal consistency 
of average errors. Figure 3 shows a summary flow of the SST approach used in this study.  

Figure 2. Annual precipitation cycle for the period 1951–2005 as simulated by five individual models of
RCA4 over Kenya, depicting underestimation or overestimation of observed precipitation. Observation
(black line) and multimodel ensemble (MME) mean (gray line) of regional climate models (RCMs) are
displayed as well.

2.3. Bias Correction Method

The QMBC constructs cumulative distribution functions (CDFs) of the model and observations
using a transfer function, which in turn translates the raw model outputs into corrected output. Thus,
the CDF of the corrected model is transformed to match that of the observed datasets [23,24,27].
Mathematically, quantile mapping is constructed using Equation (1):

y = F−1
obs(FRCM(x)) (1)

where y is the corrected rainfall value, while x is the value of precipitation to be corrected. On the
other hand, F−1

obs is the inverse of the CDF of the observation, and FRCM is the CDF of the RCM used.
The likelihood of detecting x (mm/month) or less in the model is then transferred to the quantile of the
observed CDF, matching very similar to observed probability. The QMBC was conducted using the
available qmap package in the R software [26].

2.3.1. Testing the Reliability of the Model Correction Approach

Some methods are utilized in a bid to affirm the reliability of the model correction approach.
The present study uses a split sample testing (SST) to examine how effective the QMBC algorithm is
under different conditions. More information regarding this approach is presented by Klemeš [56].
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Meanwhile, the SST technique involves splitting the data into two, preferably equal size, segments to
use one for calibration and the other for validation.

In the current study, the SST approach was conducted by first training data for 29 years (1951–1979)
to derive the biases field for monthly averages in the model and observed precipitation simulations.
The monthly biased field was then used to correct independent RCMs during the following 26-year
validation period (1980–2005). Additionally, projection estimates were corrected for the whole period,
i.e., 2006–2100. The hypothesis for the SST technique is the temporal consistency of average errors.
Figure 3 shows a summary flow of the SST approach used in this study.Water 2020, 12, x FOR PEER REVIEW 7 of 18 
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The transformational function for empirical quantile mapping distribution (ECDF) as highlighted
in Equation (1) and shown in Figure 3, (eq f G.cal

i
◦ ecd f S,cal

i ) (Sval
t,i ), is explained as follows: eqf denotes

empirical quantile function; the inverse of the ECDF and the operator (◦) indicate the function’s
composition. S and G refer to the RCM and observed precipitation products, respectively; the
superscript cal refers to calibration, while superscript val refers to validation. The flowchart shows the
testing for the reliability of the correction algorithm, showing the two input data sources (observed
and model-simulated) of a similar timespan being used as an input for the transform algorithm
shown in the dotted section and explained in Equation (1). The output, which is model-corrected, is
then used for the validation process, as described in Section 2.3.2. The model for future correction
takes three files for bias correction, i.e., observed historical data, model-simulated historical data, and
model-simulated future data. Here, observed and model-simulated data must be of the same period to
get accurate results.

2.3.2. Evaluation of Bias Correction Approach

Evaluation of bias-corrected RCMs, historical simulations, and projection estimates were conducted
using raw and bias-corrected RCMs related to the observed gridded precipitation datasets on a monthly
and yearly basis. Statistical metrics such as the mean bias, mean absolute error (MAE), and customized
RMSE to space and time scenario, were employed to compute their relationships. The mathematical
formulas of the metrics mentioned herein are given in Equations (2)–(4).
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Bias = n−1
n∑

i=1

(
PMi − PRi

)
(2)

MAE = n−1
n∑

i=1

∣∣∣PMi − PRi

∣∣∣ (3)

RMSE =

√√
n−1

n∑
i=1

(
PMi − PRi

)2
(4)

where PMi is the model estimate for the considered data point i, PRi is the observed value for the
considered data point i, and n is the length of the distribution of the data point being analyzed. For
graphical displays, the study used empirical quantile mapping distribution (ECDF) and spatial maps
to demonstrate the effectiveness of the QMBC algorithm.

3. Results

3.1. Evaluation of Bias-corrected RCMs Simulations

3.1.1. Temporal Assessment

Figure 4 presents ECDF analysis for five GCMs dynamically downscaled with the Rossby Centre
Regional Climate Model (RCA4), as well as their ensemble average. Figure 4a,b represents March–May
(MAM) season, Figure 4c,d shows October–December (OND), and Figure 4e,f shows annual before
and after corrections, abbreviated as ‘BC’ and ‘AC,’ respectively. The MAM period experiences a
substantial amount of rainfall in terms of magnitude, intensity, and frequency, thereby exhibiting
large biases [57,58]. The observed biases were noted from recent studies [35,38] that evaluated the
performance of RCMs in simulating precipitation climatology over the larger Great Horn of Africa
domain. The studies mentioned above mainly demonstrated underestimations of MAM rainfall in
regions mostly associated with complex physiographical features. Compared to the observed datasets
(CRU TS4.02; dotted line in Figure 4), it is apparent that the QMBC technique slightly improved
the accuracy of most models and their ensemble after the corrections. Specifically, there were a few
adjustments in mean bias, RMSD, and MAE in most models, with notable performance depicted by
the CSIRO model during this season (Table 2).

In OND season (Figure 4c,d), many models show large biases before corrections that are mostly
associated with orographic processes and related teleconnections, thus influencing rainfall variability
and trends [59,60]. Most biases increased with an increase in rainfall magnitude with some models
exhibiting considerable biases even after correction (Figure 4c,d and Table 2). In general, the results
of this analysis show consistent improvement by most models during the OND season. The varying
patterns of models, even after subjecting to the QMBC algorithm, show that the biases could be inherent
from model errors, which can be either random or systematic.

Model bias correction at annual level (Figure 4e,f), however, showed upgrading by most models,
most especially the EC-EARTH and CSIRO. Still, despite the corrected model, underestimation of annual
rainfall continues to persist even in the corrected model output. The persistent biases in Figure 4e,f
(AC) could be associated with dry biases originating from the ASAL regions and characterized by
moisture outflow over the study region [36,38]. In addition, the high underestimation of the wet season
(MAM; Figure 4a,b) could have contributed to an overall underestimation of annual rainfall, despite
the correction.
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Figure 4. Empirical quantile mapping distribution (ECDF) plots for five global climate models (GCMs)
dynamically downscaled with the Rossby Centre Regional Climate Model (RCA4), as well as their
ensemble average. (a,b) represents March–May (MAM) season, (c,d) shows October–December (OND),
and (e,f) shows annual before and after corrections, abbreviated as ‘BC’ and ‘AC,’ respectively.

The notable biases by most models concur with a study by Kimani et al. [40] that similarly observed
the bias dependence on rainfall amounts over a larger domain of East Africa using satellite-derived
precipitation estimates. Eden et al. [61] and Cannon et al. [8] demonstrated that persistent biases even
after model corrections are as a result of systematic errors in model outputs from diverse sources. For
instance, these studies reported that field-observed biases originate from either unrealistic response to
climate forcing or unpredictable internal variability that differs from observations. Hence, such biases
cannot be corrected by most correction algorithms. The conclusions from these studies highlighted that
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only errors in convective parameterizations and unresolved subgrid-scale orography could be corrected
using univariate statistical bias correction techniques like QMBC employed in the present study.

Table 2. Comparison of different RCMs using summary statistics against the observed data for the
validation. The effect of bias correction on other statistics, i.e., RMSD, MAE, and bias.

RCMs Validation

RCMs Mean Bias Bias (bc) RMSD RMSD (bc) MAE MAE (bc)

MAM

CM5A-MR 6.52 −8.54 24.38 27.84 20.95 22.42
CSIRO 31.98 −2.58 40.20 26.93 32.75 22.16

EC-EARTH 8.57 −6.04 25.33 25.11 18.46 16.96
MIROC5 8.48 −17.31 29.21 47.51 24.21 37.61

MPI-ESM-LR 8.11 19.66 28.75 36.20 20.94 29.98
MME 12.73 −16.28 23.61 31.12 18.77 24.37

OND

CM5A-MR −26.68 −27.32 38.11 46.49 31.86 36.77
CSIRO 24.23 0.53 38.22 40.82 27.92 28.38

EC-EARTH −31.01 2.90 47.75 36.69 40.22 26.18
MIROC5 13.15 −15.29 30.81 37.88 22.69 31.91

MPI-ESM-LR −22.52 −6.70 45.53 44.54 34.80 31.87
MME −8.56 −14.64 28.58 42.04 22.15 32.48

Annual

CM5A-MR −3.49 −11.53 11.07 17.85 9.11 14.46
CSIRO 20.94 −1.37 22.94 13.29 20.56 9.55

EC-EARTH −6.14 1.38 12.68 15.36 10.64 11.07
MIROC5 10.59 −11.21 15.77 19.05 12.23 16.00

MPI-ESM-LR −1.58 −8.93 8.92 14.99 6.66 11.14
MME 3.89 −9.60 9.23 16.09 7.04 12.89

Bold values denote models that exhibited notable improvements.

Nevertheless, Teng et al. [62] proposed a mitigation measure of enhancing the quality of the
datasets that could not be corrected on the first attempt by further calibrating the postprocessing
corrections on adequately long historical records. A summary of the performance of the bias correction
method during the wet season and annually is shown in Figure 5. The results show noteworthy
improvement by most models during the MAM season as compared to OND. It is worth mentioning
that CM5A-MR had the least improvement during OND, while EC-EARTH reveals considerable
enhancement during the same season.Water 2020, 12, x FOR PEER REVIEW 11 of 18 
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3.1.2. Spatial Bias Correction Estimates

Figure 6 presents spatial patterns of mean annual root-mean-square difference (RMSD) during
the period 1980–2005 derived from five RCMs as well as their ensemble average. The corresponding
bias-corrected (abbreviated as AC) RCMs from Rossby Centre Regional Climate Model (RCA4), as
well as the corrected multi-model ensemble (MME) are also shown in the plots. The models were
corrected relative to the climatic research unit (CRU TS4.02) datasets. The spatial plots depict regions
of underestimations and overestimations and respective areas of enhancement after the employment
of the quantile mapping technique.Water 2020, 12, x FOR PEER REVIEW 12 of 18 
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Figure 6. The spatial pattern of RMSD (before correction (BC) and after correction (AC)) for the period
1951–2005, considering five global climate models (GCMs) dynamically downscaled with the Rossby
Centre Regional Climate Model (RCA4), as well as their ensemble average.

It is apparent that significant biases simulated by the models corresponded with the regions that
experience the highest rainfall amount. This agrees with observed west-to-east gradient, demonstrating
heavier to lighter rainfall events over the study domain [39,41]. As a result, the highest RMSD is noted
in central and western sections of the study area, while lowest biases (<22.1 mm/month) are exhibited
in the eastern and northwestern areas.

Further analysis was conducted to evaluate how the correction algorithm improves the model
projections under RCP4.5 ‘stabilization scenario’ and RCP8.5 ‘business as usual scenario’. Figure 7
provides seasonal and annual spatial patterns of mean rainfall based on the multimodel ensemble
(MME) of five RCMs. The model’s simulations were corrected using observed data, while model
projections entailed the simulations and observations as an input variable. Historical simulations after
corrections showed improvement in some regions across various timescales to resemble the spatial
patterns of observed data. Systematic biases appeared to be reduced in regions that depicted strong
biases, especially during the MAM rainfall season.
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Moreover, there was strong evidence of improvement in both projections under medium emissions
and strong emission scenarios in all the seasons. However, the regions characterized by complex
topography tend to exhibit unsatisfactory reductions in biases, especially during the OND season. For
instance, the model corrected under RCP8.5 depicts strong wet biases over central and western regions
as compared to other timescales. Interestingly, the algorithm tends to show robust performance during
the mean annual cycle that exhibits reduced rainfall occurrence.

These results agree with recent reports over broader study domains that have shown decreasing
trends in rainfall patterns towards the end of 20th century [45,47,48,57]. Further, these studies
demonstrate continued declining annual rainfall trends for different future scenarios over the study
domain [63–65]. On the contrary, the observed increment patterns during the OND season concur with
studies that have reported overestimations of OND, also referred to as ‘short rains’ over the study
region [65–67]. Yang et al. [57] highlighted the aspect of challenges associated with simulations of
atmosphere–ocean–monsoon interaction over the East Africa region as the primary cause of observed
bias in models during OND and MAM projections. According to Funk et al. [68], the warming of the
western Indian Ocean continues to play a significant role in simulated and projected patterns during
the seasonal rainfall cycle.

4. Discussion

Based on ECDF analysis, the majority of the models show little improvement after correction
during local wet seasons. For example, the mean absolute error (MAE) was generally large in MME-AC
(24 mm/month) as compared to MME-BC (18.77 mm/month) (Table 2) for the MAM season. Interestingly,
CSIRO and EC-EARTH show a remarkable enhancement during the wet months, as compared to
other models that exhibited variations from one month to another. Overall, these results show that the
algorithm slightly improved the model accuracy with some unique variation based on the magnitude
of rainfall experienced over the study domain. For instance, there are large incidences of biases noted
in May as compared to model underestimations during March and April (Figure 4).
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Nevertheless, most models show improvement after correction across the diverse timescales.
For example, remarkable improvement is exhibited during the MAM season as compared to OND
(Figure 5). It is worth noting that CM5A-MR had the least improvement during the OND, while
EC-EARTH demonstrates substantial improvement during the same season. This confirms the need to
improve the models before employing them for climate change impact studies [69]. Teleconnection
patterns responsible for influencing the rainfall during the OND are likely to be amplified during
the ‘business as usual’ model. This scenario could explain the systematic biases that are persistent in
models even after the corrections. This calls for a cautious view of the possible limitations of correction
techniques during the future projections [8] and possible adoption of more robust approaches, as
proposed by Pielke et al. [70].

The observed values of RMSD (Figure 6), are mostly as a result of complex terrains such as
high-altitude topographies. The central and western parts of Kenya have a varying topography
explained by the presence of mountains like Mount Kenya and Mount Elgon, respectively. The areas
are generally wet and humid, explained by large water bodies, notably Lake Victoria. As a result, most
models exhibited acceptable performance after corrections, with EC-EARTH, MPI-ESM-LR, and MME
demonstrating exemplary improvement as compared to other models. The results concur with a recent
study that noted a linear relationship between increased rainfall values and subsequent increase of
systematic uncertainties [40]. The overall monthly reduction in RMSD after correction ranged between
11.0 and 27 mm/month.

Overall, the QMBC can reasonably improve the models under different scenarios and timescales,
hence it is relevant for correcting RCM outputs. Its application can, in effect, minimize possible biases,
thereby making it suitable for the evaluation of extreme events such as drought and flood that continue
to pose a threat to livelihoods and socio-economic infrastructure over the study domain. However,
the existence of uncertainties even after corrections presents a challenge for the full recommendation
of this approach as the most suitable. The performance of the algorithm in enhancing the quality
of model data affirms the view of Ehret et al. [71]. To illustrate this view, the study pointed out the
possibility of less value added to models after corrections in situations of complex modeling chain
when considering other sources of uncertainties [72]. This was equally echoed in climate forum paper
that questioned the need for regional climate downscaling [73]. Going forward, recent studies [73–75]
have proposed a more robust approach evaluating impact analysis of extreme events. The method,
which is known as bottom-up, resource-based vulnerability approach, is a more inclusive way of
assessing risks, including the ones of climate variability and climate change.

5. Conclusions

The current study examined the effectiveness of quantile mapping bias correction on Rossby
Center Regional Climate Models (RCA4) for drought and flood analysis. The study is a follow-up to the
study by Ayugi et al. [38] on the recent assessment of the performance of RCA4 models over the study
domain, which elucidated the existence of unsystematic and systematic biases in the better-performing
models across the region. Thus, the current study was conducted within this backdrop. Correction to
both mean annual and seasonal variance was conducted by employing the split sample testing (SST)
approach. The correction was performed by first training data for 29 years (1951–1979) to derive a biases
field for monthly averages in the model and observed precipitation simulations. The monthly biased
field was then used to correct independent RCMs during the next 26-year (1980–2005) validation period.
The models corrected are as follows: MIROC5, CSIRO, IPSL-CM5A-MR, MPI-ESM-LR, EC-EARTH,
and MME.

Broadly, RCM simulations depict notable biases that are mostly associated with regions of complex
terrains such as high-altitude or wet, humid regions within the study area. The QMBC demonstrates
varying performance from one model to another on both spatial and temporal scales. However, most
models exhibit consistent improvement after corrections on both seasonal and annual timescales.
Specifically, the models EC-EARTH and CSIRO portray exemplary improvement as compared to
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other models. On the other hand, the model CM5A-MR model shows weak enhancement across
various timescales, i.e., MAM and OND. The models showing persistent unsatisfactory improvement
after employing correction approaches should be utilized with caution due to the existence of hidden
nonlinearity and complex dynamical processes that are uncorrectable. The corrected models can be
used for projections of extreme events, drought, and flood over the study area. The outputs will aid in
appropriate policy formulation for effective and reliable adaptation techniques. The study, however,
recommends the employment of the most robust approach of bottom-up, resource-based vulnerability
technique in dealing with complexities of extreme events in the wake of global warming and changing
climate. Recent studies [73–75] have detailed more information regarding this approach.
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