IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 14, 2020, accepted February 26, 2020, date of publication March 9, 2020, date of current version March 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2979223

Novel Lyapunov-Based Autonomous

Controllers for Quadrotors

JAI RAJ“1, KRISHNA S. RAGHUWAIYA “2, AND JITO VANUALAILAI!

1School of Computing, Information, and Mathematical Sciences, The University of the South Pacific, Private Mail Bag, Laucala Campus, Suva, Fiji
2School of Education, The University of the South Pacific, Private Mail Bag, Laucala Campus, Suva, Fiji

Corresponding author: Jito Vanualailai (jito.vanualailai @usp.ac.fj)

ABSTRACT In this paper, we look into the dynamic motion planning and control of an unmanned aerial
vehicle, namely, the quadrotor, governed by its dynamical equations. It is shown for the first time that the
Direct or the Second Method of Lyapunov is an effective tool to derive a set of continuous nonlinear control
laws that not only provide smooth trajectories from a designated initial position to a designated target, but
also continuously minimise the roll and pitch of the quadrotor en route to its targets. The latter successfully
addresses the challenging problem of a quadrotor autonomously transporting valuable and fragile payloads
safely to the designated target. Computer simulations are used to illustrate the effectiveness of the proposed

control laws.

INDEX TERMS Artificial potential field, Lyapunov-based control scheme, quadrotor, stability, UAV.

I. INTRODUCTION

The development and deployment of autonomous flying vehi-
cles have gained enormous interests from the commercial,
industrial and scholarly sectors in recent years because of the
wide range of novel applications that have opened up with
their uses. The research on unmanned aerial vehicles (UAVs)
has opened the way to several complex and highly prominent
applications for both military and civilian markets, including
rescue missions, fire-fighting, delivery, health, maintenance,
surveillance and transportation [1]-[4]. UAVs can help save
lives during natural and man-made disasters, locate stranded
and injured people, and assess ongoing threats without risking
the safety of rescue teams. They can be operated in dan-
gerous environments with relatively low cost and without
putting the human lives at risk. With climate change affecting
the low-lying areas and increasing the frequency of severe
cyclones and bush fires, UAVs will play a very crucial role
for disaster management teams. In addition, UAVs will be
very useful in agriculture management and surveillance for
the protection of flora and fauna.

Among the UAVs, the quadrotors have attracted particular
attention by researchers, given their advantages over other
vertical take-off and landing UAVs. Its reduced mechan-
ical complexity, payload augmentation, gyroscopic effect
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reduction, useful flight modes, variety of sizes and minimum
damage in case of collision are the features that make the
quadrotors more advantageous over other UAVs [2]—[5]. The
quadrotor relies on fixed pitch rotors and uses the variation
in motor speed for vehicle control; hence it does not have
complex mechanical control linkages [6]. However, these
advantages also come at a certain cost, given that controlling
a quadrotor is a complex task. This makes the flight control a
challenging problem because of the coupled dynamics which
are highly nonlinear, constraints, under-actuated design con-
figuration and several uncertainties that are encountered dur-
ing flight [7], [8]. During flight, the quadrotors are always
subjected to various disturbances and uncertainties in the
forms of parametric perturbations, noise and wind gusts [9].
Thus, the question on how to achieve high-performance and
robust control of quadrotors is an interesting and valuable
task, still yet a challenging problem. Nonetheless, this has
lead to the design and evaluation of a broad range of control
techniques to improve the flight performance of quadrotors.

Numerous research studies have examined the attitude
and position control design and implementation to retain
satisfactory performance operation. Some of the several con-
trol algorithms proposed in the literature includes propor-
tional integral derivative (PID) [10], [11], linear quadratic
regulator (LQR) [8], [10], [12], sliding mode control [13],
[14], Hs [15], backstepping control [9], fuzzy logic [16],
and visual-based techniques [17]. Another interesting
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methodology by Chen and Sun in 2019 [18], which generally
deals with the control of underactuated systems that can
treat various system constraints, could be used to control
quadrotors.

In this paper, we introduce a Lyapunov-based control
scheme (LbCS) which is an Artificial Potential Field (APF)
method to extract control laws that govern the control and
stability of quadrotors [19]-[22]. The APF method was pio-
neered by Khatib [23] in 1986 to address the findpath prob-
lem involving manipulators and autonomous robots. Since
then, the method has found wide applications in the field
of robotics. The algorithms in the APF method tend to use
physical analogies to establish repulsive poles around the
obstacles and attractive poles around goals. The workspace is
inundated with negative and positive fields, with the direction
of motion facilitated via the notion of steepest decent [24].
The attractive and repulsive forces control the motion of
the robot. As the mobile robot approaches the obstacles,
it will experience high repulsive force so the robot will move
towards a low potential, which could lead towards the target
for the robotic system.

Although the Lyapunov method has already been utilised
in the control and stability of quadrotors [25]-[28] and other
mechanical systems [18], [29]-[31], the approach has been
mainly in the traditional manner of ensuring only that the
mechanical system is stable after the controllers have been
designed using different algorithms or methods. Our method
of applying the Second Method of Lyapunov differs markedly
in the new field. Specifically, the proposed method uses the
Second Method of Lyapunov directly by substituting the ordi-
nary differential equations that govern the quadrotor system
into the time-derivative of the Lyapunov-like function and
then designing the controllers such that the time-derivative of
the Lyapunov-like function is negative definite and satisfies
the stability criteria of the Second Method of Lyapunov. This
is different from the bulk of the Lyapunov-based methods
that are used now. These methods propose a certain form of
the controllers, for instance, using PID, LQR, sliding mode
control, backstepping control, fuzzy logic, and visual-based
techniques, and then use the Second Method of Lyapunov to
verify that the system is stable. These methods are used more
for trajectory tracking rather than hovering maneuvers of the
quadrotor. In our case, our controllers address the latter issue.
Also, our approach is different from other motion planning
and control schemes from literature which do not specifically
take into account system constraints as components of the
controllers [21], [32], [33].

The organisation of this article is as follows. Section II
presents the dynamic model of the quadrotor and the objective
of the paper. In Section III, the attractive and the repul-
sive potential field functions are constructed. In Section 1V,
a Lyapunov-like function whose components are the attrac-
tive and repulsive field functions is constructed. The nonlin-
ear control laws for the quadrotor model are then extracted
from the Lyapunov-like function. In Section V, the stability of
the quadrotor model is analysed via a theorem by Yoshizawa.
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FIGURE 1. The schematic structural configuration of a quadrotor UAV
with body and earth reference frames.

In Section VI, the flight control for the quadrotor model is
simulated and the results are presented to verify the effec-
tiveness and the superiority of the proposed robust control
laws. Finally, the conclusions and future work are given in
Section VII.

Il. QUADROTOR DYNAMIC MODEL
A quadrotor has four rotors, each comprising of a motor
coupled with a propeller to create thrust, F;, i = 1,2, 3,4,
to provide the aircraft lift. Two of the rotors (2 and 4) makes
the propellers rotate in clockwise direction while the other
two rotors (1 and 3) generate a balancing torque with a
counter-clockwise propeller rotation (see Fig. 1). The roll (¢),
pitch (0), yaw () and up-thrust actions are controlled by
changing the thrusts of the rotors. The cooperative rotations
of the four rotors ensures the motion and control performance
of the quadrotor. The vertical lift is controlled by collec-
tively increasing or decreasing the rotational speed of the
four rotors. The differential speed of the rotors (1 and 3) and
(2 and 4) results in the pitch and roll motions, which con-
tributes to the longitudinal x and y motions respectively. The
difference of counter-torques generated by each of the pro-
pellers results in yaw motion. The derivation of the equations
of motion for a dynamic model that describes the attitude
and position of the quadrotor requires two reference frames,
namely the body-fixed frame denoted as B and the earth-fixed
frame denoted as E.

Using the classical yaw, pitch and roll Euler angles applied
in aeronautical applications, the rotation matrix can be
expressed as

cOcyr spsOcyr — copsiyr cpsOcyr + spsyr
coOsyr spsOsyr + cpcyr cpsOsyr — spcyr )
—s6 s¢pco cpch

R, =

VOLUME 8, 2020



J. Raj et al.: Novel Lyapunov-Based Autonomous Controllers for Quadrotors

IEEE Access

and the transformation matrix is defined as

1 0 —s6
Ri=|0 cp cOsy )
0 —s¢ copco

where s(-) and c(-) are abbreviations for sin(-) and cos(-).
The dynamic model of the quadrotor is derived util-
ising the Euler-Lagrange approach with the following
assumptions [10], [34]:
o The structure of the quadrotor is rigid and symmetrical.
o The centre of mass and the origin of the body-fixed
frame coincides.
o The propellers are rigid.
o The thrust and drag forces are proportional to the square
of the propellers speed.
As shown in [13], a simplified dynamic model of the quadro-
tor can be expressed by the following nonlinear differential
equations:

U .
i= L (cos ¢ sin 6 cos Y + sin ¢ sin ) —/qi,
m m
. U o . y
y= — (cos¢sinfsiny —sin¢ cosy) — ko —,
m m

. U z
7= —cos¢cosf—g —k3—,
m m

w1 é 3
— Uy — ks,
(0] A 2 K4Ix
.1 6
0 =—U; — lks—,
Iy Iy

.1 v

Y= L Ug — Kéz,
where (x, y, 7) represents the real-time position of quadrotor
in the earth-frame, (¢, 6, ¥) are the three Euler angles, g is the
gravitational acceleration, m is the total mass of the quadrotor
structure, / is the half length of the quadrotor, I,y , symbolises
the moments of inertia with respect to the respective x, y and
z axes, ;s are the drag coefficients, U;s are the virtual control
inputs defined as follows:

Ur =,/U} + U, + UL,

=1<F(522+sz

2+ Qﬁ) ,
Kr (95 -91). )
Kr (93— i),

U4=KM(Q%—92+Q3—QZ),

where KF is the force constant, K, is a torque constant and
;s are the speed of the rotors and can be considered as the
real control inputs to the system. Since the drag is very small
at low speeds, the drag terms can be considered as small
disturbances to the system.

Now, the quadrotor model has six outputs (x, y, z, ¢, 6, ¥)
while only four independent inputs (Uj, Us, Uz, Us) are
available; therefore the quadrotor is a typical higher-order
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under-actuated system. To solve this problem, we introduce
new control inputs to replace Uy. There are the three com-
ponents of Uy, namely, Uiy, Uyy and Uy, which encompass
the x, y and z translational components of the quadrotor. With
this modification, the quadrotor dynamic model now consists
of an angular rotational subsystem and a linear translational
subsystem, as shown in Fig. 2. The dynamics of the rotational
system, the angles and their time derivatives do not depend
on the translational components. However the translational
components depend on roll, pitch and yaw, and not on the
angular velocities. In general, the yaw, pitch and roll are
acquired from the angular rotational system and together with
Uix, Uy and Uy, they become inputs into the translation
subsystem. Therefore, the problem of the under-actuation
inherent in the quadrotor system can be solved by introducing
the control inputs Uy, Uyy and Uy, to replace Uj.
Now, let the state vector for the quadrotor model be

X=(x,y,2¢,0,¥,v,wuqpr) R 5)

Then a system of first-order differential equations (ODEs) for
the quadrotor model is

X =v,
y=w,
Z=1u,

. le . . . v
v=—=(cos¢sinfcosy +sin¢siny) — k;—,
m m
. Uly . . . w
w= —=(cos¢sinfsinyy —sin¢pcosy) — k2 —,
m m

. Uy, u
U= ——cos¢pcosf—g — k3—,
m m

i=a ©
6 =p,
V=r,
q= LU2—1K4—,
I I
p= IiyU3 —lKSIEy,
1 r
r= EU4 - K6E

With this system of first-order ODEs, it is now easier to
construct the six controllers using the Direct Method of Lya-
punov. Hence, our objective in this paper is to construct the
autonomous control laws Uiy, Uiy, Uz, Uz, U3 and Uy for the
quadrotor governed by (6) that will allow it to move from an
initial configuration to its final destination. If (Z1, Z>, Z3) :=
(XE, Y, Zg) and the length of a radiating blade is € > 0, then
we can precisely defined the quadrotor as follows:

Definition 1: The quadrotor is a sphere with centre (x, y, z)
and radius rg := I + &. That is, it is the set

={@1. 2. 2) e R : @1~ 2P+ @ -y + @ -2 =1}
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FIGURE 2. The relationship between the rotational and translational
systems. Modified from [3].
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FIGURE 3. Control architecture of the LbCS for the quadrotor system.

Ill. APF FUNCTIONS FOR AVOIDANCE AND ATTRACTION
In this section, we formulate collision-free trajectories of
system (6) using the APF method. The principle notion that
governs the APF method is finding a function that represents
the energy of the system, such as the Lyapunov function
and generating a force so that the energy of the system is
minimized and reach the minimum value, preferably only
at the target configuration. The energy of the system is
mathematically treated as the total potential. We design the
control inputs Uiy, Uiy, Uiz, Uz, Us and Uy, such that A4
will navigate safely and reach a neighborhood of its target.
To obtain a feasible solution, we utilise the APF functions in
the LbCS to design the new controllers. The APFs will be
the attractive APFs for convergence and the repulsive APFs
to ensure that the quadrotor functions within its constraints.
In order to demonstrate the LbCS design for the quadro-
tor system intuitively, the control architecture is illustrated
in Fig. 3. We begin by describing precisely the target and
dynamic constraints of A.

A. ATTRACTIVE POTENTIAL FIELD FUNCTIONS

1) ATTRACTION TO TARGET AND POSTURE STABILISATION
To initiate the movement of A, we affix a target for A to reach
after some time ¢ > 0. It is defined as follows:
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FIGURE 4. The attractive potential fields generated using the target
attractive function, equation (7), without the z-component of the target.

Definition 2: The designated target for A is a sphere with
centre (71, 72, 73) and radius r;. That is, it is the set

r=|@.2%.2) e R
@ =T+ (% -0+ 2 - =2

Intuitively, we want to have a yardstick that measures, at time
t > 0, the centre of A to its target destination (71, 12, 73)
and the rate at which it approaches or moves away from
(11, 72, 13). Hence, for attraction to the target, we consider

1
nw=sle-nrro-w+e-n?. @

The function V7 (x) will serve as an attractive potential func-
tion, attracting A to its designated target. An illustration of
the total potentials for the target attraction function is shown
in Figure 4, generated over a workspace 0 < x,y < 150
for A. The disk-shaped target for the quadrotor is fixed at
(11, ) = (80, 80) with a radius of r; = 1.

2) QUADROTOR POSTURE STABILISATION

The goal is to ensure that quadrotor stabilise itself while en
route to its target. That is, we want the quadrotor to have a
low degree of tilting in roll and pitch so that it maintains its
near-to-horizontal orientation while in motion. Subsequently,
we want the endpoints 1 and 4 of A (see Fig. 1) to have and
maintain an angular displacement of zero. To ensure that the
endpoint 1 has a near-to-horizontal orientation, we use the
vector

x, v, 2T +IR(1,0,0)" = (x+IcOcy, y+1cOsyr, z — 1s0)T .
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Similarly, for the endpoint 4, we consider the vector

.y, 2" +IR.(0, 1,0
= (x+IspsOcy —lLepsyr, y+lcpey +1spsOsyr, z+1spch)! .

That is, generally, for the endpoints to achieve a near-to-
horizontal orientation, the following operations are carried
out

(nyaﬂ¥+mrQLaoﬂlm,LmTAQOAY).

For our case, it is sufficient to consider a stabilisation function
of the form

x4+ IcOcyyr — 14)2

+(y + lcOsy — 15)?

+(z — Is6 — 16)?

+(x + IspsOcyr — lepsy — 1) |
+(y + leey + IspsOsyr — 1g)?
+(z+ Ispchd — 19)?

wherety =11+, 15 =17, 16 =13, 77 = 71,18 = 73 + [
and 19 = 3.

1
Vi) =3 ®)

3) VELOCITIES OF THE QUADROTOR

While equation (7) is a measure of the distance between
A and its target Vi, it can also be treated as a measure of
convergence with the inclusion of the velocity components
(angular and translation). Hence, to have a complete form of
the attractive potential field function of the quadrotor, we con-
sider an additional function for the velocity components:

1
viw =3[P +w 1@+ O

where v, w, u are the translational velocities and ¢, p, r are
the angular velocities. Then the total attractive potential field
function of the quadrotor is

3
V) =) Vi (10)
i=1

B. REPULSIVE POTENTIAL FIELD FUNCTIONS

There is a necessity to impose constraints on certain variables
to induce the desired performance for quadrotors with pay-
loads. In this section, we show how ghost or artificial obsta-
cles can aid in this. Artificial obstacles are simply mechanical
and workspace constraints that have to be recognised by the
controllers which then induce an avoidance response by the
quadrotor.

1) MODULUS BOUND ON THE ANGLES

Unless one requires acrobatic vehicle configurations [35],

the pitch, roll and yaw of .4 must be bounded to prevent the

quadrotor UAV from flipping over. The constraints imposed

on the pitch, roll and yaw are: (i)

1) |¢| < ¢max, Where ¢y, is the maximum pitching

angle. To avoid the quadrotor from having a vertical
pitch, we let 0 < Ppmax < 7/2;
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2) |0| < Omax, Where 0,4, is the maximum rolling angle.
To avoid the quadrotor from having a vertical-sideways
roll, we let 0 < Omax < 7/2;

3) Y| < WYmax, Where Y, is the maximum yawing
angle. To avoid the quadrotor from yawing about its
origin, we let 0 < Y¥max < . The constraint on the
yaw angle can be very useful in applications such as
when a camera is onboard the quadrotor vehicle and
needs to be targeted towards a particular region.

A systematic way these dynamic constraints can factored into
the motion planners and control schemes of the quadrotor is
by constructing artificial obstacles and then avoiding them
to achieve the desired outcome. For each of the dynamic
constraints, we construct a corresponding artificial obstacle:

AO; = {p € R: @] < Pmax!},
A0y = {0 e R: 0] < Omax},
A0 ={y e R: |Y¥| < Ymax}-

Then for the avoidance of these artificial obstacles, we con-
sider the following obstacle avoidance functions [36], [37]:

1

S1(x) = 5 (Pmax — @) (Pmax + @) , (11)
1

S (x) = 3 (Omax — 0) (Omax +0) , (12)
1

§3(x) = E (Ymax — ¥) (Ymax + ) . (13)

Over the sets AO;, i = 1, 2, 3, these functions are positive.

2) MODULUS BOUND ON THE VELOCITIES
Translational and angular velocities of the quadrotors must
also be restricted due to safety reasons. These are dynamical
constraints. (i)
1) |v] < Vmax, Where viay is the maximum achievable
speed of the of the quadrotor aircraft in the x direction;
2) |w| < Wmax, wWhere wmax 18 the maximum achievable
speed of the of the quadrotor aircraft in the y direction;
3) |u| < umax, Where umax is the maximum achievable
speed of the of the quadrotor aircraft in the z direction;
4) |g| < gmax> Where gmax is the maximum roll rate;
5) Pl < Pmax, Where pnax is the maximum pitch rate;
6) |r| < rmax, Where rmax is the maximum yaw rate.

The corresponding artificial obstacles are:
AOs = {veR: |V < Vmax},
AOs = {we R : |w| < wnax!},
AOg¢ = {u € R: |u| < tmax} »
AO7 = {g € R:|q| < gmax},
AOsg = {p € R: |p| < pmax},
AOg = {r e R:|r| < rmax} -

For the avoidance of these artificial obstacles, we adopt the
following obstacle avoidance functions:
1
D (x) = E (Vmax — V) (Vmax + V) , (14)
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Dy (x) = % (Wmax — W) Wmax + W), (15)
D3 (%) = 2 (tmax — 1) (Umax +10) (16)
Dy (x) = % (gmax — @) (Gmax + q) , a7
Ds (x) = % (Pmax — P) (Pmax +p) (18)
De (x) = 5 (rmax — 1) (Fmax + 1) . (19)

IV. DESIGN OF THE NONLINEAR CONTROLLERS
In this section, the nonlinear control laws for system (6) will
be designed using LbCS.

A. A LYAPUNOV-LIKE FUNCTION
Introduce the following control/tuning parameters: (i)

1) & > 0,s=1,..., 3, for the avoidance of sth artificial
obstacles from the dynamic constraints of the angles
(see Subsection III-B.1);

2) ya > 0,d = 1,...,6, for the avoidance of the
dth artificial obstacles from dynamic constraints of
the translational and rotational velocities (see Subsec-
tion I1I-B.2).

Then consider, as a tentative Lyapunov-like function for
system (6) with two components, namely, the attractive and
repulsive potential field functions, the following:

3
L(x):V(x)—i—G(x)(Zs ()+ZD ()) (20)

where G (x) is an auxiliary function meant to have L behave
like a Lyapunov function near the vicinity of the target where
we want L =~ 0:

1 2 2 2 2
G(x) = 5[(X—T1) +O0—-—1) +(Ez—13) ]—i—e . 2D

Here, € € R, € > 0 will be chosen to be sufficiently small.
We note that L is positive over the domain:

D(L) = [x €R?:5(x) >0,s=123

and Dy(x) > 0,d = 1,......6}.
B. NONLINEAR CONTROLLERS
The feedback control laws for the dynamic system is
extracted by finding the time derivative of the various com-
ponents of L (x) along a solution of dynamic system (6) and

force it to be at least semi-negative definite. Upon suppressing
x, the time derivative of L (x), equation (20) is

Ly (%) = fiv +fow + fau + favd + fswv + fouit
+ 819 + g2p + g3r + g4q9q + gspp+geri, (22)

where

3 6
_ &s Yd _
= <1+§—S+;D—d) (x—11)
+ (x +lcOcyr — 1) + (x + IspsOcy — lcpsyr — 17) ,
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3 6
_ i Yd ),
fz—(1+§Ss+;Dd>(y 1)
+ v+ lcOsy — 15) + (v + lcpeyr + IspsOsy — 13)
3 6
_ & Yd ), _

+ (2 — 156 — 16) + (2 + Is¢pcO — 19),

G mG %G
fa=1l+—, fs=1+—7, fo=1
Dy Dz 3

I (x + IspsOcyyr — lepsyr — t7) cpsOcyfr
+1 (x + ls¢psOcyr — lcpsy — 17) spsir

g1 = | L+ Ilcpcy + IspsOsy — 13) spcyr
+1 (y + lepcy + IspsOsyr — 1) cpsOsyr
+1 (z + Ispch — 19) cpch
&G
+ 52 — ¢,
—l(x + lcOcy — 14) SOCYr
—l(y+1cOsyr — t5) sO0sy — 1 (z — 15O — 16) cO
g = | H (x + IspsOcyr — lepsyr — 17) spcOcyr
+1 (y + lepcy + IspsOsyr — 18) spcOsyr
—1 (z 4 Is¢pcO — 19) sps6
G
+ 52_291
S5
—l(x + lcOcyr — T4) COSYr
+I (y + [cOsyr — 15) cOcr
| L+ IsgpsOcyr — lepsyr — T7) spsOsyr
B=1 1+ IspsOcyr — lepsyr — t7) cpcyr
—l (y+ lepey + IspsOsyr — 13) cpsyr
+l v+ lepeyr + IspsOsy — 13) spsOcyr
&G
+ = 52 —,
MG ysG Y6G
ga=1+—7, gs=1+"F5, gs=1+—7-.
D} D? D}
Let
ik + favi = =812, (23)
by + fswiv = =82w?, (24)
[z + fouir = —83u°, (25)
19 + 8499 = —baq’, (26)
20 + gspp = —8sp°, (27)
83V + gori = —86r, (28)

where §; > 0,and i = 1, ..., 6 are called the convergence
parameters. Substituting (23-28) into (22), we have

— 861> <0,
(29)

L(()) (X) = —811)2 — 52W2 — 53142 - 846]2 — 55]?2
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provided we define the nonlinear control inputs as,

Uy = —m (f1 + 81v) + fax1v
f1 (cos ¢ sinf cos 4 sin ¢ sin )’
U, = —m (fr + 8ow) + f5 kKow
r f5 (cos ¢ sin @ siny — sin¢p cos )’
Uy = —m (f3 + 83u — f6 8) +f6K3M’
’ J6 (cos 6 cos @) (30)
Uy = —Ix (81 +d4q) + g4ll<461’
gal
Us = —1, (g2 + 85p) + gslksp’
gs !
i —I, (g3 + d67) + goker
Uy = 2 .

V. STABILITY ANALYSIS
In this section, we shall show that every bounded solution x(#)
of (6), as t — 400, converges to the point

Xé‘ = (Tls TZ’ T31 07 O’ 07 ¢f7 ef’ ‘(//f5 07 O’ O) € D(L)’

where ¢r, 6y and Yy are the final orientations. Ideally,
the final pitch and roll angles (i.e., ¢y and 6f) should be
zero at the target (71, 12, 3), where (v, w, u) = (0, 0, 0) and

(P.q,r)=1(0,0,0).
Now, on substituting the controllers (30) into (6), we have

X=v,y=w, Z=u,
‘.)_f1+31v W—f2+82w . f3+8u
‘ fa ' /5 fe 31)
¢=q, 0=p, ¥ =r,
. 81+d8q . g +dp . g3+er
q: ’pz ’}": .

84 85 86
Recalling that
X = (X1,...,X12)

= (6, .2.0.0,%,v,w,u,q,p,r) € RZ,

we can see that an equilibrium point of system (31) is
indeed x.. Then (31) can be written simply as the initial-value
problem

x = H(x), x¢ := x(0). (32)
where
H(x) := (h1(x), ..., h12(x))
= (5,3,2, 6.0, ¥, v, iL, g, p, F)
We shall use the following result by Yoshizawa [38], taken
from Burton [39] (page 161) to establish the convergence of

the solution x of (32) to x, in D(L).
Consider a system of ODEs

X'(t) = H(t, X(1)), H(t,0) =0, (33)

in which H : [0, 00) x D — R" is continuous and D is an
open set in R” with 0 in D.

For our purpose a scalar function W : R" — [0, o) is
positive definite with respect to a set A if W (X) = 0 for
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X € Aandforeache > 0and each compact set Q in R” there
exists § = 8 (Q, &) suchthat W (x) > S forX € ONU(A, &)°¢
where U (A, ¢) is the g-neighbourhood of A.

Theorem 1 (Yoshizawa (1963)): Let D = R" and let
‘H (¢, X) be bounded for X bounded. Also suppose that all
solutions of (33) are bounded. If there is a continuous function
YV : [0,00) x R" — [0, 00) that is locally Lipschitz in
X, if there is a continuous function WW : R* — [0, co)
that is positive definite with respect to a closed set €2, and if
V§3 (t,X) < =W (X), then every solution of (33) approaches
Qast — oo.

Remark 1: Note thatin Theorem 1, the requirement that all
solutions should be bounded can be dropped and the conclu-
sion changed to read that all bounded solutions approach €2.

We first establish the boundedness of H(x) for x bounded
using a recently published approach in Vanualailai [40].

Lemma 1: Tn system (32), the function H € C[D(L), R!?]
is bounded if x € ID(L) is bounded.

Proof: In the functions f; and g;, i = 1,2, 3, 4, we see
that the functions that appear in the denominator are Ss, s =
1,2,3,and Dy,d = 1, - - - , 6. Hence, we can easily conclude
that H € C[ID(L), R!2], which implies that at least on some
time interval [y, «], « > 0, the solution x(¢) of system (32)
exists and is in D(L). Indeed, these functions will also appear
in the denominator in higher-order partial derivatives of f; and
gi» 1 = 1,2,3,4, with each derivative continuous on ID(L).
That is, since H € C! [D(L), RIZ], we have that H is locally
Lipschitz on ID(L) on the time interval [#, «]. We shall next
show that x(¢) exists and is unique for all time ¢t > 7y > 0 in
D(L), so that we can conclude that H is globally continuous
on D(L).

We begin by observing that since the time-derivative of L
along the solution of (32) is non-positive, we have

L(x(1)) = Lo := L(Xo), 1 € [to, «].
Thus, given the form of L in (21), we easily see that for each
s=1,2,3,andeachd =1, ...,6,

£,G(x(1)) < Lo and M <Ly, te€ltyal

Ss (x()) — Dg (x(1)) —
Given the form of G, and letting My = Ly /62, we have
therefore

L _ &G0 _
S (x(0) ~ S (x(1) ~

My, t € [y, o], 34

and

1 va G(x(1))
Dy (x(1)) = 2Dy (x(1)) =My, t€lto,a]. (35)

Thus, if &y := max{&, s = 1,2, 3}, and yp := max{y,,d =
1,...,6}, then, in view of (34) and (35), we have, with
Ko := 1+ 36Mo + 6y0 My, the inequalities,

3 6
1 1
Ifil < (”5025_5”021)7) -l
s=1 d=1
+2x —1|+41
<Kolx —tul+2lx —ul+41,
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TABLE 1. Parameters of the quadrotor UAV pertaining to Scenario 1.

Description [ Value [ Units
Initial state of the quadrotor

Position (z,y,2) = (0,0,0)

Angles ¢p=0=1v=0 rad

Translational velocities |v =w =u = 0.5 m/s

Rotational velocities gq=p=r=0 rad/s

Parameters

Error in G(x) e=10"12

Mass m =2 kg

Length =02 m

Gravitational g=29.8 m/s?

acceleration

I, = I, = 4.856 x 1073, and | kgm?
I, =4.856 x 1072
ki = 0.01,fori = 1,...,3 and | Ns/m
k; =0.012fori=1,...,3
Target position (11,72,73) = (0,0,85)

Maximum translational | Vmar = Wmazr = Umaz = 1 m/s
velocities
Maximum rotational ve- | ¢gmaz = Pmaz = Tmaz = 1
locities

Moments of inertia

Drag coefficient

rad/s

Constraints for the quadrotor
Dynamic constraints on | &s = 50fors =1,...,3
the angles
Dynamic constraints on |y = 0.5, v2 = 0.5, vy3 =1
the velocities 1076, vy =5 =6 = 50
Convergence 61 = 0.01, d2 = 0.05, J3
1000, 64 = 2, 45 = 1 and J¢
5

X

3 6
1 1
< |1 — _ _
ua|_< +§OZSS+VOZDd>|y ol
s=1 d=1
+2ly -1l +41
SKoly—mnl+2ly—1nl+41,

3 6
1 1
If3l = (1+SOZ—+VOZ—> lz — 3]
Ss Dd
s=1 d=1
+2|z — 3] + 2/
< Kolz— 13| + 2|z — 3| +2I.

Now, in real-life situations, the half-length / of the quadro-
tor negligibly small compared to the distance between the
quadrotor and its target (11, 72, 73), with I < |x — 71], |y —
2], |z — t3|. Then, since 1/f; < 1,i =4, 5, 6, we have

VI < Ifil + vilvl < Ko + 6)lx — 1] + 1 lvl,
Wl < 2] + v2lwl < (Ko + 6)ly — 72| + y2lwl,

li] < 3] + y3lul < (Ko + 6)lz — 73] + y3lul.
Noting that Vi(x(?)) = G(x(t)) < Lo for t € [ty, o], we have
lg1] < Nolgl, 12| < Nolf| and |g3| < Nol¥/|,
where Ny := & LoMg. Since 1/g; < 1,i =4,5, 6, we have
1g] < lg1] + d4lg| < Nolo| + d4lql,

Pl < Ig2| + 85lq] = Nolf| + 85pl.
7] < 1831 + d6lr] < Nol¥| + delr|.

Hence,

[H|l = (Ko +0)(x — 71| + |y — 22| + [z — 13])
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FIGURE 5. The quadrotor motion at t = 0, 10, 36, 300 units of time in
Scenario 1. The quadrotor maintains a smooth trajectory (shown in cyan)
en route to its target and starts hovering from t; = 90 unit of time.

+ (1 + )] 4+ (1 4 82)w| + (1 4 83)|u|
+No(l¢| + 101 + 1¥ )
+ (1 +84)lgl + (1 + 85)|pl + (1 + Se)|r|,
so that if K := max{(148;1), (1+682), (14+383), (1+684), (1+
8s), (1 + 8¢), Ko + 6, No}, then
HI| < K (x — 7|+ |y — 2l + [z — 3]
vl + wl + @] + 0] + [ []ul
+lgl + Ipl + Ir]).

Accordingly, for some constant M > 0 independent of «,
we have

HX)| < M|x — X, (36)
where x, = (11,12, 173,0,...,0) € RZ Letu = x — Xe.
Then,

1d 2 .
EEIIUU)II = (u(), u@®)) = (u(@), G,(x(1))

la@)|[1Gpx@))|
Mu()|?. (37)

IA

IA

Let £(¢) := |lu(r)||>. Then we have the differential inequality,

L d <M = 2 38
EEW)— ¢(®), ¢(to) = ()l (38)
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FIGURE 6. The responses for the displacements pertaining to Scenario 1.
The x and y positions oscillate about and converge to zero as the
controllers converge to zero as time goes to infinity. The blue line in the z
position is indicative of the quadrotor reaching its target and hovering.

0.15¢ Roll angle ]

0.05 ¢ 1

ﬁ AT Mnﬂ.nnnmffmm
2 A

Time

FIGURE 7. The responses of attitudes by the proposed controllers
corresponding to Scenario 1. The roll, pitch and yaw angle motions are
shown in red, green and blue, respectively.

Comparing (37) and (38), it is easy to see that |u(f) 12 <
[lu(ro)||2e*K =) for t € [19, s]. This implies the existence of
the solution x(¢) of system (32) on [#y, @ + p], p > 0 being
independent of @ > 0. Hence, we can conclude that H(x) is
globally Lipschitz continuous on D(L).
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FIGURE 8. The responses of the translational velocities in Scenario 1. The
velocities are approaching zero, enabling the quadrotor to hover.

In addition, equation (36) shows that H(x) is bounded if
x € ID(L) is bounded.

We have thus proven Lemma 1.

Q.E.D.

‘We now come to the main theorem on the convergence of
solutions.

Theorem 2: Every bounded solution x(¢) in ID(L) of (32)
converges to

Q={xeDlL):v=w=u=p=qgq=r=0}

ast — oo.

Proof: Given the Lyapunov-like function L in (20) and
its derivative L in (29), we see that L € C![D(L), R41,
R4 := [0, 00). Hence L is locally Lipschtiz in x € ID(L).
Now, let W(x) := —L(x). It is clear that it is positive definite
with respect to 2. Thus, given Lemma 1, the conclusion of
Theroem 2 follows from Yoshizawa’s Theorem (1).

Q.ED.
Remark 2: Wenotethatv =w =u=p=q=r =0
at X,, and therefore at the target (71, 12, 13).

VI. SIMULATIONS
In order to exhibit the effectiveness of the proposed novel
controllers, computer simulations using virtual scenarios are
carried out. The scenarios involve a quadrotor that navigates
to a final configuration while the dynamic constraints associ-
ated with the dynamic model are satisfied.

We note here that in the previous Lyapunov-based meth-
ods, the major difficulty was obtaining hovering maneuvers
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FIGURE 10. The constituents of controller U; = /Ulzx + Ulzy + Ulzz in
Scenario 1.

within a neighborhood of the target. In the simulation of
these methods, the solutions diverge in a neighborhood of the
target, and therefore there was a need to stop the simulation.
In these methods, the main purpose is to show the effective-
ness of the controllers to take the quadrotor to its target but
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FIGURE 11. The responses of the control forces and torques by the
proposed controllers in Scenario 1.

not hovering [3], [10]. Our methodology solves this problem
completely where our solutions converge to the target and
remains there.

A. SCENARIO 1 - VERTICAL TAKE-OFF AND HOVERING

To show the effectiveness, robustness and the simplicity of
the proposed control laws, the first scenario exhibits a vertical
take-off maneuver for the quadrotor from an initial position
to its target configuration. The trajectory of the quadrotor
aircraft en route to its target is very smooth and the quadrotor
motion is observed to be hovering about its target. This
is a novel contribution of this paper, that is, via the new
controllers, the quadrotor hovers over the target for ¢+ >
tr, where f; is the time it takes the quadrotor to reach its
target. Table 1 provides all the values of the initial conditions,
constraints and different parameters utilised in the simulation.
The quadrotor flight motion is shown in Fig. 5. Fig. 6 shows
the displacement of the quadrotor at any time ¢+ > 0. The
control scheme ensures that the quadrotor UAV maintains
attitude angles to allow it to hover over the target configu-
ration. Fig. 7 shows the attitude angles corresponding to this
scenario. The angles aid in attaining the hovering motion of
the quadrotor. Fig. 8 and Fig. 9 show the translational and
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40
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FIGURE 12. The quadrotor motion at t = 0, 10, 45, 250 units of time in
Scenario 2. The quadrotor maintains a smooth trajectory (shown in cyan)
en route to its target, reaching a vicinity of its target ¢, = 70 unit of time
and continuously hovers about its target configuration.
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FIGURE 13. The responses for the displacements pertaining to scenario 2.
The x and y position fluctuations are a result of the control scheme trying
to attain zero. The blue line in the x, y and z position is indicative of the
quadrotor reaching its target position and hovering.

rotational velocities, respectively of the quadrotor. Fig. 10
shows the constituents of the controller U;. Fig 11 illustrates
the control inputs corresponding to the parameters utilised in
the scenario.
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FIGURE 14. The responses of attitudes by the proposed controllers
corresponding to Scenario 2. The roll, pitch and yaw angle motions are
shown in red, green and blue, respectively.
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FIGURE 15. The responses of the translational velocities in Scenario 2.
The velocities are approaching its maximum to allow the quadrotor to
hover about the target configuration.

We note here that a similar work has been done by Bouab-
dallah in 2004 [10], who was able to show only the vertical
take-off maneuvers. In this simulation, we are able to show
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FIGURE 17. The constituents of controller U; in Scenario 2.

not only the vertical take-off maneuvers but also that the
quadrotor has near-to-horizontal orientation during its flight
and hovering maneuvers about the neighborhood of the target.

B. SCENARIO 2
This scenario illustrates the hovering maneuvers about the tar-
get configuration. The quadrotor starts from its initial position
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FIGURE 18. The responses of the control forces and torques by the
proposed controllers in Scenario 2.

TABLE 2. Parameters of the quadrotor UAV pertaining to Scenario 2.

Parameters
k; =0.01,fori=1,...,6
(11,72, 73) = (50,90, 85)
Constraints for the quadrotor

Drag coefficient Ns/m

Target position

Dynamic constraints on |&s = 100fors =1,...,3
the angles
Dynamic constraints on|vy1 = 1, v = 2, v3 =

0.5, 74 =5 =76 = 100

61 = 0.1, 62 = 0.2, 63 =
0.05, 64 = 2, 65 = 1 and
d¢ = 0.5

the velocities
Convergence

and maintains a near-to-horizontal orientation en route to its
target. The quadrotor is observed to reach its target at time
t: = 70 unit of time and is observed to hover about the vicin-
ity of the target by rolling, pitching and yawing. At each time,
the quadrotor stabilises itself such that it does not pitch or
roll too much and maintains its near-to-horizontal orientation.
This feature is essential for the delivery of fragile packages
safely and precisely to the target location. Table 2 provides
all the values of the initial conditions, constraints and dif-
ferent parameters utilised in the simulation, if the values
therein are different from those used in the previous scenario.
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The quadrotor flight motion for Scenario 2 is shown in
Fig. 12. Fig. 13 shows the altitude of the quadrotor. The
control scheme has to maintain attitude angles to allow the
quadrotor to hover about a certain vicinity of the target con-
figuration. Fig. 14 shows the attitude angles which aid in
attaining the hovering motion of the quadrotor. Fig. 15 and
Fig. 16 show the translational and rotational velocities of
the quadrotor, respectively. Fig. 17 shows the constituents
of the controller U;. Fig 18 illustrates the control inputs
corresponding to the parameters utilised in Scenario 2.

VII. CONCLUSION

The design and simulation of autonomous controllers of
UAVs, though complex and computer intensive, is an inter-
esting problem. In this paper, a set of nonlinear control laws
for a quadrotor were derived using a Lyapunov-based control
scheme (LbCS). The continuous time-invariant acceleration
control laws govern the motion, namely the attitude, altitude
and position, of the quadrotor.

To the author’s knowledge, this is the first time in litera-
ture whereby the quadrotor is successfully controlled via the
LbCS to ensure the hovering of the quadrotor within a vicinity
of the target configuration. Another novel feature of the new
controllers is that they allow a near-to-horizontal orientation
of the quadrotor at each point in time whilst navigating from
some initial configuration to a final configuration. This is
important if the payload is sensitive to unsteady motion.
Moreover, the control laws guaranteed the stability of the
dynamic model.

This paper is a theoretical exposition into the application of
the Artificial Potential Fields (APF) method for the control
of quadrotors. We restrict ourselves to showing the effec-
tiveness of the proposed control laws using computer-based
simulations. Future work in this area includes applying the
LbCS motion planner to address the motion planning and
control problem of a flock of quadrotors performing hovering
maneuvers in the presence of obstacles.
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