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Abstract 

A road transportation network and its strategic utilization has a crucial role in 
emergencies occurring after natural disasters. After most natural disasters, such as 
floods, hurricanes, tornadoes, earthquakes and tsunamis, one of the most important 
emergency responses is to provide or deliver relief goods, such as water, food or 
medicinal supplies, to the affected areas. The complication is that in determining the 
routes to take for deliveries to affected areas, one has to take into consideration, at 
the very least, the costs, duration of trips and the availability of the routes. Also the 
supply and demand situation of the relief goods has to be taken into consideration 
before choosing the most preferred routes for the deliveries.  

In this paper, a Monte Carlo approach is applied for the emergency relief goods 
transportation strategy problem. Monte Carlo simulation has been used for varied 
applications in including project cost estimation, project schedule estimations, risk 
assessments, benefit cost analysis and selecting risk response strategies. The 
Monte Carlo model developed in this paper integrates costs, duration of routes and 
availability together with the supply and demands requirements to generate the most 
preferred routes. The results of the Monte Carlo simulations can be used by decision 
makers (emergency response team) to facilitate the decision making process while 
choosing the preferred and practical combinations of routes for various deliveries. 
The proposed approach is then applied to several simple situations to illustrate the 
simplicity, versatility and practicality of the approach. 

1 Introduction 

Throughout history, natural disasters have impacted various parts of the world 
causing terrible consequences for the inhabitants. According to the International 
Disaster Database (International Database of Disasters: EM-DAT, 2014), for the year 
2018, there were 315 climate related and geophysical disaster events with 11804 
deaths and over 68 million people affected across the world. Overall, floods affected 
more people than any other disasters, such as storms, droughts and extreme 
temperatures, earthquakes & tsunamis, volcanic activities and wildfires. In the 
Australasian region, it is usually floods, storms and wildfires that affect most 
communities. In terms of severity, Tonga topped the list of “Top 10 Countries by the 
number of people affected per 100,000 inhabitants in 2018”, followed by Fiji Islands.  
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Disaster management is generally divided into four phases of mitigation, 
preparedness, response and recovery/reconstruction. This paper is focussed on the 
response stage of the disaster management. This stage occurs immediately after a 
natural disaster and includes taking injured people to the hospitals and taking vital 
supplies such as drinking water, food and medical supplies. In most disaster 
management plans similar to one adapted in Parwanto et al. (2015), there are 
certain considerations that will be incorporated in this research. For instance, firstly 
the supplies are sourced from nearby centres (towns) which have surpluses before 
being sourced from outside and secondly effective resource management principles 
are applied. Effective resource management ensures the best use of scarce 
resources and contributes to streamlined and efficient disaster management 
processes. Resources management include logistics, deployment of personnel and 
volunteers and assistance arrangements for money and goods. While performing 
resource management, for instance planning for efficient routes to carry resources to 
affected destinations, one often has to take into consideration the damage to 
infrastructure such as roads and bridges and hence the unavailability of certain 
routes including one which would have otherwise been the most preferred option. 

This paper tackles the transportation strategy problem in disaster emergencies using 
a Monte Carlo simulation approach. The Monte Carlo model developed in this paper 
integrates costs, duration of routes and availability together with the supply and 
demand requirements to generate the most preferred routes. The results of the 
Monte Carlo simulations can be used by decision makers (emergency response 
team) to facilitate the decision making process while choosing the preferred and 
practical combinations of routes for various deliveries. When compared to other 
traditional exhaustive tree search algorithms, such as widely known depth first or 
breadth first search algorithms, Monte Carlo simulation approach uses sampling 
instead of exhaustive brute force approach. Hence Monte Carlo simulation approach 
can be used for instances when the traditional exhaustive tree search algorithms 
may fail due to a very high number of possible outcomes. This approach is simple to 
implement, likelihood of obtaining at least one solution is more and together with 
providing an optimal solution, other optimal solutions or near optimal solutions could 
be provided as well.   

The simplicity, versatility and practicality of the Monte Carlo simulation approach is 
illustrated by applying to a simple situation. 

2 Literature review 

A large number of studies have been published regarding emergency logistics, 
however, according to Jiang and Yuan, (2019), “research on emergency logistics is 
still in its infancy”. Emergency logistics problems can be broadly categorised as 
demand assessment, resource allocation, resource distribution and emergency 
evacuation. Demand assessment refers to the assessment of the damage from the 
disaster and the estimation of the possible resource allocation. Resource allocation 
refers to allocating limited resources to a disaster area using an agreed allocation 
approach. Resource distribution is solving the issue of how to deliver various needed 
resources to the affected area efficiently, and lastly emergency evacuation deals with 
evacuating people from dangerous areas.  

The research in this paper can be classed in the category of resource distribution 
and the related work on this approach is as follows. In most studies, the emergency 
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resource distribution problem is viewed as vehicle routing problem subject to various 
specific features such as infrastructure damage, delivery tools/vehicle availability and 
capacity. Haghani, Tian and Hu, (2004) developed a simulation model for evaluation 
of a medical service vehicle response that uses real-time travel time information to 
assist dispatchers and also to guide vehicles through efficient routes. Shen, 
Dessouky and Ordóñez, (2009) studied routing problems in response to large-scale 
bioterrorism emergencies. A chance constrained model for the planning stage and 
three different recourse strategies for the operational stage were proposed. (Lin et 
al., 2011) proposes a logistics model for delivery of prioritized items in disaster relief 
operations using a multi-objective integer programming approach. Yuan and Wang, 
(2009) proposed two mathematical models of single-objective path selection model 
and a multi-objective path selection model using Dijkstra’s algorithm and an ant 
colony optimisation approach, respectively. Tzeng et al. (2007), on the other hand, 
developed a relief-distribution model using the multi-objective programming method 
for designing relief delivery systems. Their method featured minimizing the total cost, 
minimizing the total travel time, and maximizing the minimal satisfaction during the 
planning period. Furthermore, models which account for uncertainty, multiple aid 
items and multiple time-periods were proposed by Yi and Özdamar, (2007) and 
Barbarosogu and Arda, (2004). Parwanto et al. (2015)  formulated a transshipment 
network flow optimization problem under various types of uncertain situations. A 
comprehensive literature review relating to Emergency logistics is provided in Jiang 
and Yuan, (2019). 

To the best of authors’ knowledge, there is no previously published work wholly 
applying Monte Carlo approaches to solve emergency relief goods transportation 
problem. The motivation to use this approach was derived from Jiang and Yuan, 
(2019), which after a comprehensive literature review recommended using the Monte 
Carlo approach for future research. 

3 Monte Carlo simulation 

Monte Carlo simulation is a computerized mathematical technique that approximates 
solutions to quantitative problems through statistical sampling. This technique is 
used by professionals in fields such as finance, project management, energy, 
manufacturing, engineering, research and development, insurance, oil & gas, 
transportation, and the environment, including project cost estimation, project 
schedule estimations, risk assessments, benefit cost analysis and selecting risk 
response strategies, see for example (Prakash and Jokhan, 2017; Prakash and 
Jokhan, 2016; Prakash, 2018; Prakash and Mitchell, 2015) to name a few. 

This method is useful for obtaining numerical solutions to problems which are too 
complicated to solve analytically. Monte Carlo simulations can be done using add-
ins, such as Crystal Ball from Oracle® and @RISK from Palisade, to commonly used 
spreadsheets software like Microsoft® Excel. Monte Carlo simulation furnishes the 
decision-maker with a range of possible outcomes and the probabilities of the 
possible outcomes. Also the reason for its wide usage is its applicability and also for 
the simplicity in which one can construct models as compared to certain optimisation 
models, which would require expert knowledge. 

The technique was first used by scientists working on the atom bomb (Kochanski, 
2005). 
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Monte Carlo simulation involves building models of possible results by substituting all 
the input values having inherent uncertainties, with probability distributions. It then 
calculates results repeatedly, each time using a different set of random values from 
the probability distributions. The results of Monte Carlo simulation are not single 
values but distributions of possible outcome values (Vose, 2008). 

Generally, the following steps are involved in performing a Monte Carlo simulation: 

 Step 1: Create one (or more) parametric Model(s), 𝑦 = 𝑓(𝑥1, 𝑥2, … . . , 𝑥𝑚) 

 Step 2: Represent the inputs (𝑥1𝑥2, … . . , 𝑥𝑚)using probability distributions 

 Step 3: Generate a set of random inputs (𝑥𝑘1, 𝑥𝑘2, … . . , 𝑥𝑘𝑚)  from the 

distributions for each iteration 𝑘, 𝑘 = 1 𝑡𝑜 𝑡 

 Step 4: Evaluate the model using the random inputs, 𝑦𝑘 =
𝑓(𝑥𝑘1, 𝑥𝑘2, … . . , 𝑥𝑘𝑚)for each iteration, 𝑘 

 Step 5: Analyse the results of 𝑦𝑘 = 𝑓(𝑥𝑘1, 𝑥𝑘2, … . . , 𝑥𝑘𝑚), obtained for all the 

iterations, 𝑘 = 1 𝑡𝑜 𝑡. 

4 Model formulation 

The transportation strategy selection problem involves choosing a combination of 
various routes from a selected origin to a particular destination, taking into 
consideration, the effects of implementing these combinations of strategies, at the 
very least, travel costs, duration, availability of routes and the supply and demand 
requirements of the origin and destination respectively. 

In graph theory, the widely known shortest path problem (Ahuja et al., 1990) is the 
problem of finding a path between two vertices (or nodes) in a graph such that the 
sum of the weights of its constituent edges is minimized. The problem of finding the 
shortest path between two towns on a road network can be viewed as a special case 
of the shortest path problem whereby the vertices correspond to the towns and the 
edges correspond to the road segments and the weights are the lengths of the 
segment. For the purposes of this paper and considering the possibility that the 
shortest path may not be available (due to road unavailability because of disasters), 
we apply Monte Carlo simulation to generate an extended set of routes going from 
various origin to destination towns. 

To formulate the Monte Carlo simulation model, given the origin, 𝐴𝑂  and the 

destination, 𝐴𝐷 towns, the task is to generate possible intermediate towns until the 
destination is obtained. That is: 

Given 𝐴𝑂 , randomly select the next town to be traversed from range of inputs 
(𝐴𝑖, … , 𝐴𝑗) represented using probability distribution. These input distributions can be 

derived from the adjacency matrix for the network. If the next input is the desired 
destination town, 𝐴𝐷 then stop otherwise select the next town visited from respective 
range of inputs represented by appropriate probability distribution until desired 
destination town, 𝐴𝐷 is reached. 

Hence following the sequence of steps as provided in Section 3: 

Step 1: Use parametric model: 𝑦 = 𝑓(𝐴1, 𝐴𝑖 … . . 𝐴𝑗 , 𝐴𝑛) , where 𝐴1  and 𝐴𝑛  are the 

origin and destination towns respectively and (𝐴𝑖, … , 𝐴𝑗 ) are the towns to be 

traversed to reach destination from the origin. 
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Step 2: Represent the inputs (𝐴𝑖 , … , 𝐴𝑗) using probability distributions (possibly 

derived from adjacency matrix) 

Step 3: Generate a set of random inputs from the distributions for each iteration 𝑘,
𝑘 = 1 𝑡𝑜 𝑡 

Step 4: Evaluate the model (cost, duration etc) using the random inputs, for each 
iteration, 𝑘 

Step 5: Analyse the results of 𝑦𝑘 = 𝑓(𝐴1, 𝐴𝑖 … . . 𝐴𝑗 , 𝐴𝑛), obtained for all the iterations, 

𝑘 = 1 𝑡𝑜 𝑡. 

With the results from step 5 in hand, analysis can be undertaken to choose the most 
practical and applicable combination of transport strategies to take. The analysis has 
to take into consideration factors such as available budget and other constraints 
such as availability of routes etc., though these can be incorporated into the Monte 
Carlo simulation as well. The advantage is that Monte Carlo simulations provide us 
with many choices and we don’t necessarily have to adapt the cheapest one 
because the next best option could provide greater benefits for small additional cost. 

5 Applied model 

In this section, we present an example adapted from Parwanto et al. (2015) to 
demonstrate the use for Monte Carlo simulation approach for transport strategy 
selection for application to the Indonesian Sumatra earthquake case.  

In 2009, two earthquakes of 7.6 and 6.2-moment magnitude struck off the coast of 
West Sumatra, Indonesia. These earthquakes caused widespread damages to 
housing and infrastructure in the communities in the 13 regions/cities (Parwanto, 
Morohosi and Oyama, 2015). The entire network of roads has been simplified by 
taking the main roads linking the capital cities of the affected cities as illustrated in 
Figure 1.  

Common practise is that immediately after a natural disaster, relief is sent 
immediately from neighbouring ‘Region with Excess Supply (RES)’ regions to the 
‘Region with Excess Demand (RED)’ regions. If this sent relief is not able to satisfy 
the demand requirements, then relief goods are transported from an established 
supply centre (SC). 

Hence the logistical problem to be solved here is twofold: 

1. To deliver relief good from RES to RED regions; and     (1) 
2. To deliver the remaining demand gap from the SC. 

For the purposes of this paper, we will focus on the demand and supply of drinking 
water at affected areas. Table 1 shows the demand and supply for drinking water for 
one week at each of the main cities with SC established at [1] Padang city having 

1058.76 𝑚3 of available drinking water for one week to be supplied where needed. 
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Figure 1: Simplified network of roads (adapted from Parwanto et al., (2015))                                                   

 

Table 1: Demand and supply for drinking water for one week 

Ref 
# 

Region/City Supply (S) 

 𝒎𝟑 

Demand (D) 

𝒎𝟑 

Gap (S-D) 

𝒎𝟑 

1 Padang city 843.4 984.0 -140.7 

2 Solok regency 295.4 323.5 -28.1 

3 South Pesisir regency 318.0 403.2 -85.3 

4 Padang Pariaman 
regency 267.2 438.0 -170.8 

5 Pariaman city 37.6 79.5 -41.9 

6 Solok city 64.8 53.8 11.0 

7 Padang Tanjang city 66.5 50.8 15.7 

8 Tanah Datar regency 309.1 302.7 6.5 

9 Bukttinggi city 134.9 96.9 37.9 

10 Agam regency 318.7 387.7 -68.9 

11 West Pasaman regency 21.9 304.4 -282.5 

12 Pasaman regency 230.2 235.2 -5.0 

 Total 2907.8 3659.7 -752.0 
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As shown in Table 1, there are two distinct groups of towns: one that can satisfy their 
demand and still have excess water (towns 6, 7, 8 & 9), denoted as RES regions, 
and the other group having demand shortage (towns 1-5, 10-12), denoted as RED 
regions. 

To solve the first of the two fold problem as stated in Equation (1), we demonstrate 
solving the logistical problem of delivering relief good from RES  (towns 6, 7, 8 & 9) 
to RED (towns 1-5, 10-12) regions such that: 

 The maximum demand gap is minimised; and 

 The cost of transportation is minimised (we assume that the cost is directly 
proportional to the length of the routes chosen). 

Given the possible origin, 𝐴𝑂 (in this case (towns 6, 7, 8 & 9)) and the destination, 𝐴𝐷 
town (town 11 having the maximum demand gap of 282.5 as shown in Table 1), the 
task is to generate possible routes from towns 6, 7, 8 & 9 to town 11. 

Given 𝐴𝑂 ,  each Monte Carlo iteration randomly selects the next towns to be 
traversed from range of inputs until destination town is reached and evaluates the 
total cost of that journey which in this case is the distance travelled. 

The adjacency list used for the generation of probability inputs is as shown in Table 
2. 

Table 2: Adjacency List for road network 

Town ID             

1 2 3 4 5     

2 1 6         

3 1           

4 1 5 6 7 8 10 

5 1 4 10       

6 2 4 7 8     

7 4 6 8 9     

8 4 6 7 9     

9 7 8 10 11 12   

10 4 5 9 11     

11 9 10 12       

12 9 11         

 

For instance, when 𝐴𝑂 = town 8, the input distribution for the possible next town is 
shown in Figure 2. 

This implies that the next town can be any of towns 4, 6, 7 or 9, as per Table 2 and 
Figure 1, with equal chances of being chosen. This process is repeated until town 11 
is reached. A subset of derived routes in ascending order of total distance is 
provided in Table 3.  
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Figure 2: Probability Distribution of possible next town traversed from Town 8  

 

Suppose there are 𝑚 number of towns in a road network denoted by (𝐴1, 𝐴2 … … 𝐴𝑚), 
from which a subset or combination has to be chosen to get from origin city to 
destination city, passing through various cities. Suppose there are 𝑛 routes possible 
from a nominated origin and destination city. A selected route, with town 𝑎 being the 

origin and town 𝑏  being the destination, is represented by 𝑅𝑗
𝑎−𝑏 =  (𝑥1, 𝑥2, . . , 𝑥𝑚) 

where 𝑗 = 1, 2, … 𝑛  and 𝑥𝑖 are integers and indicates the position of the respective in 
the sequence on the route. If a particular town does not fall in the selected route then 
it is 0. The town of origin, 𝐴𝑂  is represented as 1 and the last non zero variable 
corresponds to the destination town, 𝐴𝐷.  

Table 3: Subset of Monte Carlo simulation results of 𝑹𝟖−𝟏𝟏 

# 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 𝑨𝟔 𝑨𝟕 𝑨𝟖 𝑨𝟗 𝑨𝟏𝟎 𝑨𝟏𝟏 𝑨𝟏𝟐 Distance 
(km) 

𝑅8−11
1         1 2 3 4  178 

𝑅8−11
2        2 1 3 4 5  178 

𝑅8−11
3     2    1  3 4  197 

𝑅8−11
4     3   2 1  4 5  199 

𝑅8−11
5     2 3   1  5 6  207 

𝑅8−11
6     3 4  2 1  5 6  209 

𝑅8−11
7         1 2  4 3 231 

𝑅8−11
8        2 1 3  5 4 231 

Note: the zeros in the table have been omitted intentionally  

Thus, 𝑅8−11
1 = (0,0,0,0,0,0,0,1,2,3,4,0) represents a route where the origin is town 𝐴8 

and destination is town 𝐴11, and passes through towns 𝐴9 and then 𝐴10, with a total 
distance of 178 km.  
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Interestingly, 𝑅8−11
2 = (0,0,0,0,0,0,2,1,3,4,5,0)  represents a route where the origin is 

town 𝐴8and destination is town 𝐴11, and passes through towns 𝐴7, 𝐴9 and then 𝐴10, 
with a total distance of 178 km as well. 

Pictorial representation of 𝑅8−11
1  and 𝑅8−11

2  are shown in Figures 3A and 3B 
respectively.   

 

Figure 3A: Route 𝑹𝟖−𝟏𝟏
𝟏                                                  Figure 3B: Route 𝑹𝟖−𝟏𝟏

𝟐  

  

 

Similarly using Monte Carlo simulations, the routes of all the RES regions to town 11 
were derived. A subset of values sorted according to cheapest/shortest routes is 
presented in Table 4. 

Table 4: Subset of Monte Carlo simulation results of 𝑹𝟔−𝟏𝟏, 𝑹𝟕−𝟏𝟏 and 𝑹𝟗−𝟏𝟏 

# 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 𝑨𝟔 𝑨𝟕 𝑨𝟖 𝑨𝟗 𝑨𝟏𝟎 𝑨𝟏𝟏 𝑨𝟏𝟐 Distance 
(km) 

𝑅6−11
1       1 2  3 4 5  202 

𝑅6−11
2     3  1 2   4 5  223 

𝑅6−11
3     3 4 1 2   5 6  233 

𝑅6−11
4  3 2  4  1    5 6  238 

𝑅6−11
5       1 3 2 4 5 6  242 

              

𝑅7−11
1        1  2 3 4  148 

𝑅7−11
2     2   1   3 4  169 

𝑅7−11
3     2 3  1   4 5  179 

𝑅7−11
4        1  2  4 3 201 

𝑅7−11
5        1 2 3 4 5  208 
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# 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 𝑨𝟔 𝑨𝟕 𝑨𝟖 𝑨𝟗 𝑨𝟏𝟎 𝑨𝟏𝟏 𝑨𝟏𝟐 Distance 

𝑅9−11
1          1 2 3  129 

𝑅9−11
2          1  3 2 182 

𝑅9−11
3     3   2  1 4 5  188 

𝑅9−11
4     3 4  2  1 5 6  198 

𝑅9−11
5          1  2  199 

              

 

Hence looking at the values in Tables 3 and 4, to minimize the maximum demand 

gap (ie. to town 11 having a demand gap of 282.5𝑚3), the cheapest (shortest) route 
from any of the RES regions is from town 9, travelling via towns 10, having a 

distance of 129 km with a possible delivery of 37.9 𝑚3, ie. 𝑅9−11
1 . 

Even when the demand of town 11 is decreased to 244.6 𝑚3 by this delivery from 
town 9, it is still the town of maximum demand gap. Hence the next delivery should 
be from town 7, via towns 9 and then 10, having a distance of 148 km with a delivery 

of 15.7 𝑚3, ie. 𝑅7−11
1 . 

Similarly the next delivery would be using route  𝑅8−11
1  delivering 6.5 𝑚3 decreasing 

the demand gap for town 11 to 222.4 𝑚3, followed by  𝑅6−11
1  for delivering another 

11.0 𝑚3, making the final demand gap for town 11 to 211.4 𝑚3. 

Hence pictorially, the result is as shown in Figure 4. 

Figure 4: Illustration for delivering drinking water from RES to RED (Option 1)    

 

The result of Figure 4 is identical to the results provided in Parwanto et al. (2015).  



ATRF 2019 Proceedings 

  11 

The advantage of using Monte Carlo simulation and getting a few more results can 
contribute to the result provided in Figure 5 having the same cost/distance covered 
but using a different route. This is due to the result shown in Figure 3B. The supplies 

from town 8 can be delivered using 𝑅8−11
2  which has the same cost/distance covered 

as route 𝑅8−11
1 , hence providing us with yet another solution as shown in Figure 5. A 

situation could be that the route from town 8 to 9 is not available hence we don’t 
have any option but to adopt the solution provided by Figure 5 without compromising 
on the cost/distance of the delivery. 

If this situation was known beforehand, an alternative would be to use the adjacency 
list modified to reflect the change and hence the modified probability distribution. For 
instance in this case, town 8 won’t have town 9 as its next town to traverse, i.e. 
probability of traversing town 9 after town 8 would be zero.  

 

Figure 5: Illustration for delivering drinking water from RES to RED (Option 2)    

 

 

 

Another advantage of having the various Monte Carlo simulation results available, 
such as ones shown in Table 4, is that if, for instance, town 9 is not available to be 
traversed for all deliveries from any of the towns (i.e.towns 6-8). Note that, delivery 
from town 9 is still possible. For this, Table 4 can be used but taking all the routes 
traversing town 9 as shown in Table 5. Once town 9 is removed out of consideration, 
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the next available options are then listed. Hence from towns 6 and 7, the preferred 
route in terms of distance could be 𝑅6−11

2  and 𝑅7−11
2  having a travel distance of 223 

km and 169 km respectively. Similarly from town 8, it would be 𝑅8−11
3  with a distance 

of 197 km. Route from town 9 will be unaffected with it still being 𝑅9−11
1 . 

Table 5: Subset of Monte Carlo simulation results with town 9 unavailable for traversing. 

# 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 𝑨𝟔 𝑨𝟕 𝑨𝟖 𝑨𝟗 𝑨𝟏𝟎 𝑨𝟏𝟏 𝑨𝟏𝟐 Distance 
(km) 

𝑅6−11
1       1 2  3 4 5  202 

𝑅6−11
2     3  1 2   4 5  223 

𝑅6−11
3     3 4 1 2   5 6  233 

𝑅6−11
4  3 2  4  1    5 6  238 

𝑅6−11
5       1 3 2 4 5 6  242 

              

𝑅7−11
1        1  2 3 4  148 

𝑅7−11
2     2   1   3 4  169 

𝑅7−11
3     2 3  1   4 5  179 

𝑅7−11
4        1  2  4 3 201 

𝑅7−11
5        1 2 3 4 5  208 

              

𝑅9−11
1          1 2 3  129 

𝑅9−11
2          1  3 2 182 

𝑅9−11
3     3   2  1 4 5  188 

𝑅9−11
4     3 4  2  1 5 6  198 

𝑅9−11
5          1  2  199 

 

A pictorial representation of delivery for delivering drinking water from RES to RED 
(Town 9 unavailable for traversing) is shown in Figure 6.    
Now that the demand gap is still unfulfilled, one has to solve the second part of the 
problem stated in Equation (1) which is to solve the logistical problem of delivering 
relief good from SC  (town 1) to RED (towns 2-5, 10-12) regions such that: 

 The cost of transportation is minimised (we assume that the cost is directly 
proportional to the length of the routes chosen); 

 Available SC capacity is 1058.76 𝑚3; 

 Transactional time for loading (𝑇𝑐) is 2 hours; 

 Maximum time horizon of delivery (𝑇) is 24 hours; 

 Number of tanker trucks is 39; 

 Maximum capacity of tanker trucks is 6 𝑚3; (assuming all trucks deliver the 
maximum amount) 

 Average velocity of tanker trucks is 30km/hr; and 

 The demand gap at the destination towns is satisfied. 
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Figure 6: Illustration for delivering drinking water from RES to RED (Town 9 unavailable for 
traversing)    

 

Given the origin, 𝐴𝑂 (SC – town 1) and the destination, 𝐴𝐷 towns (towns 2-5, 10-12), 
the task is to generate possible number of tankers traversing possible routes from 
town 1 to each of towns 2-5, 10-12, applying the conditions provided above to get 
the best possible outcome. Note that the Monte Carlo approach provides results by 
simulating: 

 possible number of tankers delivering at each destination towns; and also 

 possible routes those tankers can take. 

Model Formulation: 

Suppose there are 𝑚 number of towns in a road network denoted by (𝐴1, 𝐴2 … … 𝐴𝑚) 

and also that there are 𝑛 = 39, number of tanker trucks available for delivery and let 
𝑇𝑇𝑗  denote the 𝑗 th tanker truck where 1 ≤ 𝑗 ≤ 𝑛 . Given 𝐴𝑂 ∈  (𝐴1, 𝐴2 … … 𝐴𝑚)  and 

𝐴𝑂 = town 1, each 𝑘th Monte Carlo iteration randomly selects the destination town 

requiring delivery, 𝐴𝐷 ∈  (𝐴1, 𝐴2 … … 𝐴𝑚), each truck, 𝑇𝑇𝑗, 1 ≤ 𝑗 ≤ 𝑛, goes to deliver 

supplies. After 𝐴𝐷 is randomly selected, it also randomly selects the next towns to be 
traversed from range of inputs until 𝐴𝐷 is reached and evaluates the total cost of that 

journey 𝑅𝑂−𝐷
𝑘 , which in this case is the distance travelled and also evaluates the over 

and under deliveries to towns. Note that the total deliveries to a town may involve a 
number of trips to and fro the SC as per time limitations 
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A subset of possible solutions is provided in Table 5. This subset of solutions can be 
chosen depending on the priorities to be considered. In our case, this could be the 
cost or the minimization of under/over deliveries. 

Table 5: Subset of Monte Carlo simulation results for the possible number of trucks delivering 
to possible RED regions from SC (town 1) 

 Number of trucks to each Red 
Town from SC (Town 1) 

    

Sample 
# 

𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 𝑨𝟏𝟎 𝑨𝟏𝟏 𝑨𝟏𝟐 Total 
no. of 
trucks 

Total 
Distance 
(km) 

Under-
delivery 
(by no. 
of 
trucks) 

Over-
delivery 
(by no. 
of 
trucks) 

1 1 5 6 2 5 21 1 41 22,734 0 5 

2 1 5 6 2 4 20 1 39 21,557 3 3 

3 1 4 6 2 5 20 1 39 21,602 3 3 

4 1 5 6 2 5 19 1 39 21,506 3 4 

 

All the results presented have different advantages and hence the decision makers 
can decide what they need to prioritize.  

Lets look at each of the samples presented in Table 5:  

Sample # 1, all the RED towns get at least the required amount with a few towns 
getting a bit more. The over-delivery amounted to 5 truck loads. However the total 
number of trucks required to achieve this with a total distance travelled of 22,734km, 
is 41. Hence two extra trucks are required. 

Sample # 2, 3 and 4 all use only the required amount of trucks, with sample # 2 and 
3 under delivers by 3 trucks and over delivers by 3 truck-loads. The distances 
travelled for samples 2 and 3 are 21,557 and 21,602 km respectively. The only 
difference the towns in each sample which get under-delivered and towns which get 
over-delivered varies. 

Sample 4 uses 39 trucks only but has the total distance travelled lesser than all the 
other samples but it over delivers by 4 truck-loads. 

Hence in making a decision, if the priority is to make sure that all the RED towns get 
the required amount of supplies then the authorities need to see if they can secure 
two more trucks and of course the distance travelled would be a little bit more as 
well. If two extra trucks cannot be secured, then that leaves us with samples 2, 3 and 
4. Samples 2 and 3 are almost the same but they both deliver similarly with 3 
truckloads of over-delivery and 3 trucks equivalent of under-delivery. Hence the 
better choice out of these two would be sample 2 since it has lesser total distance 
travelled. If however the distance travelled is still important with some deliveries 
being done, then sample 4 is good since the distance travelled is the least amongst 
the provided sample however the over-delivery is 4 truck-loads, which is 1 more than 
the over-deliveries in samples 2 and 3. 
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6 Conclusion 

In this paper, we have presented a Monte Carlo approach to solving emergency 
relief goods transportation problem. The results of the approach were presented and 
discussed in relation to the advantages that the Monte Carlo approach delivers. 
Apart from the obvious advantage of being provided with a few options (other optimal 
or near optimal solutions), which can be used by decision makers (emergency 
response team) to facilitate the decision making process as per their priorities and 
limitations, is to be able to use the results to deal with event of unexpected changes 
such as unavailability of certain roads as demonstrated in this paper. It is also 
important to note that the Monte Carlo approach can be used for instances when the 
traditional exhaustive tree search algorithms may fail due to a very high number of 
possible outcomes. This approach is simple to implement, likelihood of obtaining at 
least one solution is more and together with providing an optimal solution, other 
optimal solutions or near optimal solutions could be provided as well.   
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