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fractional calculus
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Abstract
The reliable performance of a complete control system depends on accurate model information being used to represent each subsystem. The identifi-

cation and modelling of multivariable systems are complex and challenging due to cross-coupling. Such a system may require multiple steps and decen-

tralized testing to obtain full system models effectively. In this paper, a direct identification strategy is proposed for the coupled two-input two-output

(TITO) system with measurable input–output signals. A well-known closed-loop relay test is utilized to generate a set of inputs–outputs data from a sin-

gle run. Based on the collected data, four individual fractional-order transfer functions, two for main paths and two for cross-paths, are estimated from

single-run test signals. The orthogonal series-based algebraic approach is adopted, namely the Haar wavelet operational matrix, to handle the fractional

derivatives of the signal in a simple manner. A single-step strategy yields faster identification with accurate estimation. The simulation and experimental

studies depict the efficiency and applicability of the proposed identification technique. The demonstrated results on the twin rotor multiple-input multi-

ple-output (MIMO) system (TRMS) clearly reveal that the presented idea works well with the highly coupled system even in the presence of measure-

ment noise.
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Introduction

In industry, various sophisticated processes have a multivari-

able nature. These processes are complex, owing to multiple

inputs, multiple outputs and the loop interactions that make

the identification of the multiple-input multiple-output

(MIMO) process difficult and time-consuming. Due to strong

interactions between outputs and inputs, such processes are

more complex to study than single-input single output (SISO)

systems. A closed-loop identification strategy is preferred to

extract the process dynamics when processes are not suitable

for open-loop configuration. These processes cannot be tested

in the open-loop configuration due to instability, safety and

reliability issues. In this work, the most general subcategory

of the MIMO process, the two-input two-output (TITO) pro-

cess, has been considered, with particularly emphasis on frac-

tional process identification. The helicopter is the most

familiar example of such a complex system with rotary wings.
Nowadays, more system models have adopted a non-

integer (fractional-order) transfer function for system

dynamics representation. An application of fractional calculus

(FC) has gained immense popularity due to its superior accu-

racy and an additional degree of freedom. This is the reason

for the increasing application of FC in the field of control

engineering (Chen et al., 2009; Gutiérrez et al., 2010; Monje

et al., 2010; Petráš, 2011). A detailed review on fractional-order

(FO) system identification was represented by Kothari et al.

(2019). In the literature, various operational matrix-based

identification methods have been developed using fractional

approaches for SISO systems (Kothari et al., 2018, 2020; Li

et al., 2015; Tang et al., 2017). However, the FO operational

matrix approach-based method is not available for TITO pro-

cesses in the literature.
Various identification techniques have been reported in

the literature for multivariable processes based on integer

low-order models. Generally, the processes were modelled as

a pair of first-order integer transfer functions for TITO

dynamics. The step-test-based identification was firstly illu-

strated by Wang et al. (2000), but applicable with decouplers.

A relay feedback technique and variances in the relay with

the type of tests are shown in studies (Bajarangbali and

Majhi, 2012; Berner et al., 2017a, 2017b; Kalpana et al., 2015;

Mehta and Majhi, 2011; Nema and Padhy, 2015; Semino and

Scali, 1998). The improved frequency-domain identification

technique for MIMO processes was described first by Semino

and Scali (1998), who utilized a two-step strategy. In the same

way, the relay feedback time domain explicit equations con-

sidering the controller in the loop have been adopted for
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cascade process identification (Mehta and Majhi, 2011). A
similar approach was used to revisit TITO processes
(Bajarangbali and Majhi, 2012). Further, Kalpana et al.
(2015) developed an identification scheme for the non-square
MIMO system using time-domain relay response expressions.

The expressions were derived using the block-relative-gain
method and were verified on the two-tank cylindrical system.
A state-space-based time-domain strategy for the TITO pro-
cess was illustrated to identify first-order models by Nema
and Padhy (2015). In this method, the conventional relay was
utilized without a controller. Berner et al. (2017a) demon-
strated autotuner TITO process identification based on a
relay method. This method uses only a single relay test to
identify four individual transfer functions, and one does not
need to wait for convergence. Therefore, it makes identifica-
tion faster. However, this method did not use controllers in
loops. Authors have evaluated practically a relay autotuner
with short excitation on a quadruple-tank setup (Berner
et al., 2017b). Besides the relay test, some alternative tech-
niques have been reported to identify TITO processes. For
instance, the applied source separation method (Broman
et al., 1999), curve fitting and genetic algorithm-based
method (Viswanathan et al., 2001), a closed-loop reaction
curve method (Ram and Chidambaram, 2014) and nonlinear
least square minimization method (Ram and Chidambaram,
2016) have been well explained in the literature. Various tech-
niques using step response data were developed for parameter
estimations and include a sequence of step signals (Li et al.,
2005a, 2005b; Pereira et al., 2017). A step response test with
particle swarm optimization and search algorithm for the
multivariable process was presented by Jin et al. (2012). Even
though much has been discussed for TITO processes, very
few studies have been discussed for FO identification applied
for TITO or multivariable processes. Recently, a decoupled
method on FO–TITO processes (Li and Chen, 2014) and a
multivariable FO model with time delay (San-Millan et al.,
2017) have clearly shown superior performance. This study
was carried out to demonstrate how non-integer models

would help to understand complex processes accurately.
In summary, it is clear that most of the methods available

require two-step procedures and estimate classical low-order
models. Among them, some methods require decoupling
before identification. Also, many methods utilize conventional
relays without controllers. Such methods are only applicable
to stable systems. In the case of an unstable system with a
large delay it fails due to the absence of controllers. The
Smith predictor-based sliding mode controller was discussed
to deal with large delayed unstable plant (Mehta and Rojas,
2017). Also, an FO sliding mode controller was applied to the
problem of trajectory control of a ball in a ball-and-plate sys-
tem by Roy et al. (2018). Although some good methods uti-
lized the closed-loop identification strategy, they are very
complex. The single-step method developed by Berner et al.
(2017a) is a fast open-loop identification strategy. However, it
was developed with a conventional relay. The above limita-
tions encourage researchers to develop a direct identification
strategy using simple closed-loop data. The data can be easily
obtained after a single test using relay autotuning. Such a
method shall be flexible enough to consider simple step
response data for identification. Overall, this work uses a

preload relay to obtain benefits, such as improved stability

during identification, quality estimation, shorter test time and

simplify implementation. More importantly, it is desired to

complete the test in a single run to estimate all four processes,

including loop interaction.
When an arbitrary system is unstable because of too many

inputs and outputs, it necessitates a promising identification

algorithm to estimate the main paths and loop interactions

accurately. Owing to the complex nature of highly coupled

TITO processes and FC, how to deal with identification prob-

lems in FO with less complexity and better accuracy is an

open problem. In this article, the TITO process is considered

with no prior knowledge of its counterpart integer-order

model or structure. The work is aimed at coupled processes

that do not take numerous tests and do not only depend on a

single ultimate frequency point. This paper proposes a single-

step identification strategy based on Haar wavelet and relay

feedback. The presented method uses a well-adopted relay

feedback test to generate input–output responses in a closed

loop and relay with a controller inducing a sustained oscilla-

tion to stimulate the TITO process. The technique can esti-

mate the process parameters by performing a single-step

closed-loop relay experiment without decentralizing the pro-

cess. Four independent fractional order models (FOMs) for

the considered TITO processes are obtained using simple

measurable responses. The performance of the model is illu-

strated with experimental validation on a twin rotor MIMO

system (TRMS). The strategy of linear identification is devel-

oped for a cross-coupled TRMS setup in a single step using

FO double-pole models. A fractional differential equation

can increase the computational complexity due to the non-

integer order. However, the proposed method converts the

complex integro-differential equations of any orders into sim-

ple algebraic equations. It can estimate four independent

FOMs without additional effort to decouple the process and

also without filtering the noisy measured data. Finally, this

new technique is verified on relevant process model examples.

Fractional derivative and integral concepts

A non-integer or FO derivative and integral can be explained

by its operator in a basic form as

cD
l
t =

dl

dtl

� �
ð1Þ

where c and t are the bounds of the operation and l(l 2 R) is

the real order whose value depicts the nature of the operation.

Usually, a positive value of l exhibits fractional differentia-

tion and negative value exhibits fractional integration (cI
l
t )

(Chen et al., 2009; Gutiérrez et al., 2010).
In the literature, multiple definitions are available having

similar characteristics with special conditions. In particular,

the Riemann–Liouville (R-L) definition is utilized in this

work, which is written as

cD
l
t x(t)=

1

G(n� l)

d

dt

� �n Z t

c

x(t)

(t � t)l+ 1�n
dt ð2Þ
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where n� 1\l\n, n 2 N and G denote Euler’s gamma func-

tion. Laplace transforms of the fractional derivative and inte-

gral with zero initial condition are given by

L 0D
l
t x(t)

� �
= slX (s) ð3Þ

L Il
0x(t)

� �
=

1

sl
X (s) ð4Þ

where sl is a fractional Laplacian operator.

Haar wavelet operational matrix of FO integration

In this work, the orthogonal Haar wavelet functions are uti-

lized due to high precision, mathematical simplicity, noise

immunity and ease of implementation with other standard

algorithms. Computationally, Haar wavelets are faster than

other functions of the wavelet family (Chen and Hsiao, 1999),

and can be defined as (Li et al., 2015)

hm(t)= h1 (2
it � kTf ) ð5Þ

where Tf is the total time period, m= 2i + k, and

i (i � 0), k (0 ł k ł 2i) are integers:

h0(t)= 1 for 0 ł t\Tf and h1(t)=

1 0 ł t\
Tf

2

�1
Tf

2
ł t\Tf

0 otherwise

8>>><
>>>:

The orthogonal basis functions such as block pulse, Walsh,

Chebyshev, and Haar are capable of converting real order dif-

ferential equations into simple algebraic equations (Kothari

et al., 2018; Li et al., 2015). The operational matrix of FO

integration (FOI) or differentiation will not only reduce the

computation burden, but also make it possible to identify the

system with arbitrary orders. Now, an arbitrary function

f (t) 2 L2½0,Tf � can be written in terms of Haar wavelets for

the first M number of terms as

f (t)=
XM�1

i= 0

fihi(t)=FT
M HM (t) ð6Þ

Here, FM ¼D ½f0, f1, . . . , fM�1�T is the Haar coefficient vector

and HM (t) ¼D ½h0(t), h1(t), . . . , hM�1(t)�T is the Haar function

vector. If collocation points are considered as

ti =(2i� 1)Tf =2M , i= 1, 2, ::,M , the M-square Haar matrix

O
M 3 M

can be defined by

O
M 3 M
¼D HM

1

2M
Tf

� �
HM

3

2M
Tf

� �
. . . HM

2M � 1

2M
Tf

� �� �
ð7Þ

The integration of the Haar wavelet can be obtained by its

multiplication with M-square matrix Pl
M 3 M

. The algebraic

expression of FOI of the Haar wavelet is written as

IlHM

� 	
(t)’Pl

M 3 M
HM (t) ð8Þ

where M-square matrix Pl
M 3 M

is called the HWOM of FOI,

which is computed as given by Li et al. (2015)

Pl

M 3 M
=O

M 3 M
FlO�1

M 3 M
ð9Þ

where Fl is the M-square generalized operational matrix of

FOI for block pulse functions (Tang et al., 2017) and can be

described as

Fl =
T

f

M

� �l
1

G l+ 2ð Þ

f1 f2 f3 . . . fM

0 f1 f2 . . . fM�1

..

. . .
.

f1 . . . fM�2

..

. . .
. . .

. ..
.

0 . . . . . . 0 f1

0
BBBBBB@

1
CCCCCCA

ð10Þ

where f1 = 1, fq = ql+ 1 � 2(q� 1)l+ 1 +(q� 2)l+ 1 and

q= 2, 3, . . . ,M . Similarly, the delayed Haar wavelet function

HM (t � L) can be characterized using a delay operational

matrix as

HM (t � L)=E
H

HM (t) ð11Þ

where L is the input time delay and M-square matrix EH is the

HWOM of delay, which can be given as (Kothari et al., 2018)

E
H
=O

M 3 M
EO�1

M 3 M
ð12Þ

where E is generalized delay operational matrix (Tang et al.,

2017), given by

E=

0 . . . 0 1 0 . . . 0

0 . . . 0 0 1 . . . 0

..

. ..
. ..

. ..
. . .

. ..
.

0 . . . 0 0 0 . . . 1

0 . . . 0 0 0 . . . 0

..

. ..
. ..

. ..
. ..

.

0 . . . 0 0 0 . . . 0

2
6666666664

3
7777777775
(M 3 M)

ð13Þ

Therefore, performing fractional integration on delayed Haar

function HM (t � L) using equations (8) and (11), we obtain

(IlHM )(t � L)=E
H
(IlHM )(t)

=E
H

Pl

M 3 M
HM (t)

ð14Þ

Therefore, (IlHM )(t � L) is obtained simply by matrix multi-

plication of HM (t) with Pl
M 3 M

and E
H
.

Now, consider a FO SISO linear time-invariant system

having n-poles and m-zeros with time delay. The differential

equation of this system is given as

Xn

i= 0

aiD
li y(t)=

Xm

j= 0

bjD
mj u(t � L) ð15Þ

where (ai, bj 2 R
2), (li,mj 2 R+ 2), y(t) and u(t) are the out-

put and input of the system, respectively, and L represents the

time delay. After expanding, this expression in general form is

Kothari et al. 3



anDln y(t)+ an�1Dln�1 y(t)+ � � � + a0Dl0 y(t)

= bmDmm u(t � L)+ bm�1Dmm�1 u(t � L)

+ � � � + b0Dm0 u(t � L)

ð16Þ

Integrating both sides with order ln gives

any(t)+ an�1Iln�ln�1 y(t)+ . . . + a0Iln�l0 y(t)

= bmIln�mm u(t � L)+ bm�1Iln�mm�1 u(t � L)

+ . . . + b0Iln�m0 u(t � L)

ð17Þ

The measured data can be expressed in terms of a Haar wave-
let and written as

u(t � L)=U T HM (t � L) ð18Þ

y(t)=Y T HM (t) ð19Þ

where Y T = ½y1, y2, . . . , yM �, UT = ½u1, u2, . . . , uM �, and super-
script T denotes the transpose. Therefore, the integral of input
and output terms can be simplified using equations (18), (19),
(8) and (11), and one can obtain the following expressions:

Iln�mm�1 u(t � L)=UT Iln�mm�1 EH (HM (t))=UT EH Pln�mm�1

M 3 M
HM (t)

ð20Þ

Iln�ln�1 y(t)=Y T Iln�ln�1 (HM (t))=Y T Pln�ln�1

M 3 M
HM (t) ð21Þ

Using these equations, equation (17) can be rewritten as

Y T (anI + an�1Pln�ln�1

M 3 M
+ . . . + a0Pln�l0

M 3 M
)

=UT EH (bmPln�mm

M 3 M
+ bm�1Pln�mm�1

M 3 M
+ . . . + b0Pln�m0

M 3 M
)
ð22Þ

Finally, one can express the output y(t), using equations (19)
and (22), in an algebraic form as

y(t)=UT EH ND�1HM (t) ð23Þ

where D=(anI+an�1Pln�ln�1

M3M
+...+a0Pln�l0

M3M
), N=(bmPln�mm

M3M

+bm�1Pln�mm�1
M 3M

+...+b0Pln�m0
M3M

) and I denotes the identity
matrix. Equation (23) represents the output y(t) for the gener-
alized nth-order transfer function. Suppose the identification
requires a low-order transfer function model with one frac-
tional pole, then the output expression can be characterized
from equation (23) as

y(t)=U T EH b0Pl1

M 3 M


 �
a1I + a0Pl1

M 3 M


 ��1

HM (t) ð24Þ

and the transfer function can be written as

G(s)= b0e�Ls=(a1sl1 + a0) ð25Þ

Similarly, the output expression for the fractional double-pole

model is obtained as

y(t)=U T EH b0Pl2

M 3 M


 �
a2I + a1Pl2�l1

M 3 M
+ a0Pl2

M 3 M


 ��1

HM (t)

ð26Þ

and the transfer function is

G(s)= b0e�Ls=(a2sl2 + a1sl1 + a0) ð27Þ

Furthermore, the matrix Pl
M 3 M

contains the unknown model

parameters and the fractional differential orders. This pro-

vides the estimation more simply than performing a complex

calculation of fractional differentiation of input and output
signals.

Proposed modelling technique for the
TITO system

The aim is to complete the estimation of the TITO system

(four transfer function model parameters) from single test run

data. The modelling scheme is as shown in Figure 1. During

the experiment, the position of two switches changes to col-

lect the online test data. This is different from the conven-

tional relay feedback method where the controller is replaced

by the relay. In the identification procedure, a relay height is

increased from zero to some acceptable value to induce oscil-

lations (limit cycle) at the output. The present scheme only

requires oscillations around the setpoint of the closed-loop

system, and no prior knowledge of the controller or system

dynamics is required. Furthermore, it is absolutely not neces-

sary to determine the frequency or peak amplitude of the per-

iodic signal. Unlike other procedures in the literature, it is not

required to determine the stable frequency, amplitudes and

series of test data. Conceptually, the method is a very simple

means to obtain the input/output test data of a small period

for identification purposes. It is evident that the estimation

takes into account the real behaviour of the system under
closed-loop conditions. The closed-loop controlled TITO sys-

tem is represented in terms of the system and controller out-

put signals as

y1

y2

� �
=

g11 g12

g21 g22

� �
u1

u2

� �
ð28Þ

where (u1, u2) represent inputs and (y1, y2) represent outputs

of the TITO system. Four unknown transfer functions, two

for main paths and two for cross-paths, need to be estimated

with the help of collected inputs and outputs. As mentioned

earlier, the proposed technique is a single-step technique and

Figure 1. Proposed online technique to obtain identification data.
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accesses only measurable real test data y1 and y2, for identifi-
cation purposes. However, it helps to compute immeasurable

outputs due to the cross-coupled nature. The estimated out-

put expressions in terms of immeasurable intermediate signals

y11, y21, y12 and y22 can be given as

y1(t)= ŷ11(t)+ ŷ12(t) ð29Þ

y2(t)= ŷ21(t)+ ŷ22(t) ð30Þ

The functional block diagram for estimated outputs is
depicted in Figure 2 as per the relation shown in equations

(29) and (30).
The first step is to collect appropriate data, and for that

switches close at time t= t0 to impose relay, parallel to the

controller. For the considered setpoints, measurable inputs

(u1, u2) and outputs (y1, y2) are collected for time up to t1, as

shown in Figure 3. As per the relay characteristics, the output
of the relay is constant until the switching instances. Therefore,

the correlation of inputs and outputs is negligible except at the

time of relay switching. Due to this reason, even though the

test is carried out in a closed loop, the system can be considered

as open-loop for identification purposes. Such behaviour of the

decentralized relay experiment is presented for the uncoupled
TITO system (Berner et al., 2017a). Consider each independent

unknown transfer function as g11, g12, g21 and g22, estimated

by the double-pole fractional transfer function:

gij(s)=
Yij(s)

Ui(s)
=

b0ij

a2ij
s

l2ij + a1ij
s

l1ij + a0ij

e�Ls ð31Þ

As given in the previous section, the estimated output of equa-

tions (29) and (30) can be rewritten in terms of algebraic equa-

tions, using equation (23), as

y1(t)=U1
T EH N11D�1

11 HM (t)+U2
T EH N12D�1

12 HM (t) ð32Þ

y2(t)=U1
T EH N21D�1

21 HM (t)+U2
T EH N22D�1

22 HM (t) ð33Þ

The aforementioned equations show the key contribution to

this work. The expressions contain the calculated matrices for
all unknown parameters of system transfer functions, and are

given by

N11 = b011
Pl211

D11 = a211
I

M 3 M
+ a111

Pl211
�l111 + a011

Pl211

N12 = b012
Pl212

D12 = a212
I

M 3 M
+ a112

Pl212
�l112 + a012

Pl212 )

N21 = b021
Pl221

D21 = a221
I

M 3 M
+ â121

Pl221
�l121 + a021

Pl221

N22 = b022
Pl222

D22 = a222
I

M 3 M
+ a122

Pl222
�l122 + a022

Pl222

Similarly, one can derive expressions for the fractional single-

pole model and even generalized n-pole and m-zero model.
Equations (32) and (33) help to estimate two main path trans-

fer functions (g11, g22) and loop interactions (g12, g21). Now,

in order to identify four transfer functions of the unknown

TITO system, the time response data sets,

fu1(k), u2(k), y1(k), y2(k)gk = 1, 2, ���M with M samples, are col-
lected after the relay experiment.

At the time of optimization, the performance index,

namely the time-moment weighted integral performance cri-

terion, has been used as an objective function to minimize the

error. It employs the integral of squared-time-weighted-error
(ISTE) to estimate the system parameters, and can be written

as

Ji, (i= 1, 2) = min
r

XM

k = 1
½k(yiactual

(k)� yi(k))�2 ð34Þ

where r is the vector of unknown parameters

(b0ij
, a0ij

, a1ij
, a2ij

,l1ij
,l2ij

), yi(k) is the simulated response,

yiactual
(k) is the collected actual data and M denotes the total

number of samples. The objective of the optimization is to

find the model parameters that would ideally reduce the ISTE
as far as possible. The MATLAB function fsolve has been

Figure 2. Block diagram of estimated outputs.

Figure 3. Single-run test data for identification.

Kothari et al. 5



used in this work to compute the best estimated parameters
that satisfy the objective function (equation (34)).

In this analysis, the time-domain error et has been calcu-
lated as below for each estimated transfer function parameter

and is the basis for the result comparison:

eti =
1

M

XM
k = 1

½yi(k)� ŷi(k)�2 ð35Þ

where yi(k) is the simulated response and yiactual
(k) is the col-

lected actual data from the same input excitation. The
frequency-domain identification error ef is measured by the
worst-case error as

ef = max
v2½0,vc�

Ĝ(jv)� G(jv)

G(jv)

�����
�����3 100%

( )
ð36Þ

where G(jv) is the frequency response of the actual model and
Ĝ(jv) is the frequency response of the estimated model.

The proposed technique of TITO system identification is
explained briefly in Table 1. In the following section, the tech-
nique is verified through numerical examples from the litera-
ture and real-time TRMS experimentation.

Results and validation

The simulation study was conducted, and the algorithm was
implemented in the MATLAB environment to identify the

well-known Wood and Berry binary distillation column plant
and higher-order integer model. In the proposed technique,
the selection of datalength value (samples) M is important to
achieve the desired accuracy. In the case of Haar wavelets, M

is a power of 2. The study concludes that higher values of M

provide better accuracy but reduce the speed of identification.
Therefore, the selection of M is a trade-off between speed and
accuracy. In general, the desired accuracy can be obtained
using M = 256 with a reasonable speed of the identification
routine. Furthermore, the proposed technique has been veri-
fied on a real-time TRMS, which is an example of a compli-
cated nonlinear unstable system.

Numerical simulation

The following examples have been considered for the simula-
tion study:

G1(s)=

12:8

1+ 16:7s
e�s �18:9

1+ 21s
e�3s

6:6

1+ 10:9s
e�7s �19:4

1+ 14:4s
e�3s

2
64

3
75 ð37Þ

G2(s)=

1

(s+ 1)2
e�s 0:3

(s+ 1)2
e�s

0:3

(s+ 1)2
e�s 1

(0:1s+ 1)2
e�s

2
664

3
775 ð38Þ

For identification purposes, the single-step data y1 and y2

have been collected, and corresponding four independent

transfer functions for each TITO system have been approxi-

mated. In order to collect the data, the relay with height

hi = ri60:1 (i= 1, 2) and proportional gains Kp = 1 were

taken, although fairly low values of relay height could be used

as per the tolerable plant variable swing. Practically it is only

required to generate a small output oscillation for identifica-

tion. Also, in the case of stable processes, one can use a pro-

portional controller instead of a PID (proportional integral

derivative) controller. Table 2 shows the obtained results

from the proposed method and the other method by Berner

et al. (2017a). The output responses from both actual and

estimated models are compared for efficacy purposes. For

G1, it is clear from Figures 4 and 5 that the technique can

handle the noisy signal without pre-processing or filtering the

signal, and estimate accurate system dynamics from single-

step test data. The frequency response Nyquist plots show the

same agreement in Figure 6. The second example, G2, also

proves the accuracy in the time domain without noise (Figure

7) and with noise of SNR = 20 dB (Figure 8). The Nyquist

plots are shown in Figure 9 for G2.
The above analysis shows that the proposed method identi-

fies parameters accurately and is comparable to another

single-step integer-order method (Table 2). The proposed

method can deal with noisy signals directly and also useful for

any order transfer function models. In the case of FO systems,

integer low-order models cannot produce a satisfactory result.

Experimental results on TRMS setup

Aircraft with rotary wings demonstrate prominent advantages

over classical counterparts with fixed wings. In surveillance,

small aircraft with rotary wings means only a small space is

required for landing and take-off (Toha and Tokhi, 2009). A

system like TRMS is the laboratory version of an unmanned

helicopter that is specially designed for modelling and control-

ler performance verification. It is rotary wing equipment with

significant cross-coupling between its two rotors. The beha-

viour of this system is similar to that of a flying helicopter,

with each rotor influencing angle and position simultaneously.

Therefore, for robust and precise control, it demands accurate

identification. Sometimes a system model is also useful for

investigating behaviour without damaging physical parts.
Some contributions have been shown in the literature

based on conventional integer-order modelling for the TRMS

setup. The higher integer-order linearized TRMS model was

obtained first for helicopter models. Ahmad et al. (2001,

2003) developed a linear identification method for both

degree of freedom (2-DOF) and one degree of freedom

Table 1. Simple steps of proposed technique for TITO system

identification.

Step 1 Connect two relays parallel to controllers and excite

the considered TITO system.

Step 2 Record the unfiltered data (u1, u2) and (y1, y2).

Step 3 Calculate HWOM, y1, and y2 as per equations (32) and

(33) for M samples.

Step 4 Use the ISTE objective function (34) to estimate the

optimum parameters.

ISTE, integral of squared-time-weighted-error; TITO, two-input two-

output.
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(1-DOF) TRMS systems. The parametric linear model-based
technique was proposed using a genetic algorithm by Toha

and Tokhi (2009), while the linear time-varying model was
approximated using the subspace method (Tanaka et al.,
2011). A least square-based parameter identification was
explained by Belkheiri et al. (2009). A nonlinear identification

method was illustrated by Subudhi and Jena (2009) using
metaheuristic optimization algorithms. First-principles mod-
elling has been used for TRMS (Chalupa et al., 2015). A tech-

nique based on active disturbance rejection control was
developed by Yang et al. (2016), and more recently identifica-
tion using the Euler–Lagrange technique was described by

Tastemirov et al. (2017). This study gives a motivation for
further investigation and accurate identification of a highly
cross-coupled system with nonlinear and unstable behaviour.

Unlike a helicopter, the TRMS is attached to a tower and the
desired pitch and yaw angle can be achieved through rotor

speed variation. The experimental setup for TRMS is depicted
in Figure 10, with an electrical and a mechanical unit. The
mechanical unit is made of a rotary unit attached to a tower.

The rotary unit comprises two rotors: the main rotor (pitch)
and tail rotor (yaw), positioned on a beam for counterba-
lance. The electrical unit is responsible for measurable output

signal and control signals transfer between the TRMS and
computer. The physical parameters of TRMS are described in
the lab manual (Feedback, 2008).

Due to multiple inputs, significant cross-coupling can be

observed, and system behaviour is nonlinear. The identified
model including cross-coupling can be used for control
design. Figure 11 shows loop interaction in the TRMS system

Table 2. Identification results.

Process Method Identified models et ef

G1(s) Proposed 12:67

17:01s0:952 + 0:95
e�0:84s �19:49

21:01s1:02 + 1:02
e�2:64s

6:63

10:89s0:89 + 0:91
e�6:75s �20:43

14:37s0:987 + 1:01
e�2:74s

2
64

3
75

0:0268 0:1348½ � 4:5087 7:7185
6:4401 4:4085

� �

Proposed (SNR= 20) 12:67

17:1s0:95 + 0:95
e�0:84s �19:49

21:0s1:02 + 1:02
e�2:64s

6:63

10:88s0:89 + 0:90
e�6:74s �20:43

14:37s0:98 + 1:01
e�2:74s

2
64

3
75

0:3740 0:4582½ � 4:0348 6:4044
6:9687 4:9170

� �

Berner et al. (2017a) 15:9

21:0s+ 1
e�1:03s �18:2

20:7s+ 1
e�3:00s

5:84

9:62s+ 1
e�7:02s �20:2

15:1s+ 1
e�2:99s

2
64

3
75

1:5146 0:0466½ � 12:9246 7:7301
3:2263 2:8706

� �

G2(s) Proposed 1:107

2:053s0:904 + 1:1
e�1:543s 0:323

2:166s1:001 + 1:006
e�1:443s

0:314

2:178s1:0413 + 0:984
e�1:351s 0:981

0:090s1:047 + 1:481
e�1:061s

2
64

3
75

0:0907 0:0063½ � 8:2123 7:6140
4:5299 10:0234

� �

Proposed (SNR= 20) 1:02

2:02s1:08 + 1:4
e�1:1s 0:316

2:176s0:98 + 0:98
e�1:4s

�0:319

2:216s1:01 + 0:95
e�1:4s 0:94

0:07s0:9 + 1:07
e�1:2s

2
64

3
75

0:1850 0:0155½ � 4:0527 5:7606
7:9155 17:2017

� �

Berner et al. (2017a) 1:13

2:09s+ 1
e�1:43s 0:32

2:17s+ 1
e�1:33s

0:32

1:90s+ 1
e�1:47s 1:02

0:17s+ 1
e�1:04s

2
64

3
75

0:1612 0:0181½ � 3:7090 5:0108
7:9213 5:3415

� �

SNR, signal-to-noise ratio

Figure 4. G1: outputs from the actual and identified. Figure 5. G1: noisy (SNR = 20) data and identified model output.
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whereby signals u1, u2 are the inputs and y1, y2 are the outputs

of the TRMS. Here, outputs for main paths are measured

with the influence of cross-coupling. Inputs are provided by

means of voltages, and the speeds of rotors are controlled for

desired yaw angle and pitch angle. Outputs are measured in

radians.
For the purpose of identification and evaluation of the pre-

sented method, the Simulink model was used first with the

same parameters as the real TRMS system. In order to obtain

a stable response, the closed-loop configuration is preferred.

The single-step data of the TRMS was collected, as mentioned

in the previous section. After getting steady-state outputs

according to setpoints, the switches close and relays play their

role at time t = t0. For this experiment, the pitch setpoint

= 0:4 and the yaw setpoint = 0:5 have been considered with

initial PID1 parameters as Kp = 3, Ki = 8 and Kd = 10, and

PID2 as Kp = 2, Ki = 0:5 and Kd = 5. Due to relay properties,

the system produced sustained oscillations around steady-

state outputs (y1, y2), as shown in Figure 12. The sampled

inputs (u1, u2) and outputs (y1, y2) were collected for identifi-

cation purposes.
After applying the presented technique, the unknown sys-

tem models are approximated as follows:

g11(s)=
4:178

3:082s2:164 + 5:576s0:947 + 10:622
ð39Þ

g12(s)=
0:293

0:993s2:022 + 0:916s1:332 + 0:348
ð40Þ

g21(s)=
0:522

0:184s2:435 + 1:589s1:115 + 10:083
ð41Þ

Figure 6. Frequency-domain responses for G1.

Figure 7. G2: outputs from the actual and identified. Figure 8. G2: noisy (SNR = 20) data and identified model output.
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g22(s)=
9:348

29:725s1:701 + 1:995s1:345 + 9:005
ð42Þ

The estimated model performances were verified with respect

to actual TRMS outputs. Table 3 shows the verification

results with two types of input setpoints. For both step and

mixed sinusoidal reference inputs, the identified models depict

nearly the same responses as the actual. Figure 13 shows the

same agreement with mixed sinusoidal input, and the esti-

mated model output follows the actual output closely.

Conclusions

In this work, the Haar wavelet-based single-step closed-loop

identification strategy for the class of TITO systems is

Figure 9. Frequency-domain responses for G2.

Figure 10. Experimental setup of TRMS.

Figure 11. Cross-coupling in the twin rotor multiple-input multiple-

output system.

Figure 12. Experimental data for identification.

Kothari et al. 9



presented. Even though fractional models are considered, the

algebraic operational matrix approach eventually reduces the

computational complexity of the identification. The proposed

technique can be directly applied on single test run data, and

thus could be faster than sequential or two-step approaches.

Moreover, the advantage of HWOM-based algebraic matrix

multiplication will allow the estimation of all four transfer

function parameters with single-step measured data.

Concerning the FO model, another advantage of the pro-

posed technique is to have a low-order model that can per-

form better with fewer unknown parameters. This method

can also be applied without controllers in the loop and with-

out non-zero setpoints to collect the identification data. For

complex plant like the TRMS, the fractional model represents

the system more accurately than the classical counterpart.

One downside to this method could be that it is a little less

accurate for some class of systems where a two-step or

sequential fractional approach can produce a better result

than a single-step method. This is because the single-step

method has to deal with more unknown parameters concur-

rently compared to the two-step method.
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Berner J, Soltesz K, Åström KJ, et al. (2017b) Practical evaluation of

a novel multivariable relay autotuner with short and efficient exci-

tation. In: 2017 IEEE conference on control technology and applica-

tions (CCTA), Mauna Lani, USA, 27–30 Aug., pp.1505–1510.

Broman H, Lindgren U, Sahlin H, et al. (1999) A TITO system identi-

fication approach. Signal Processing 73(1): 169–183.

Chalupa P, Prikryl J and Novak J (2015) Modelling of twin rotor

MIMO system. Procedia Engineering 100: 249–258.

Chen CF and Hsiao C (1999) Wavelet approach to optimising

dynamic systems. IEE Proceedings: Control Theory and Applica-

tions 146(2): 213–219.

Chen Y, Petras I and Xue D (2009). Fractional order control: a tutor-

ial. In: American control Conference, St. Louis, USA, 10–12 June,

pp.1397–1411.

Feedback (2008). Feedback instruments: twin rotor MIMO system

control experiments. Crowborough: Feedback.

Gutiérrez RE, Rosário JM and Machado JT (2010) Fractional order

calculus: basic concepts and engineering applications. Mathemati-

cal Problems in Engineering 2010: 375858.

Jin Q, Cheng Z, Dou J, et al. (2012) A novel closed loop identifica-

tion method and its application of multivariable system. Journal

of Process Control 22(1): 132–144.

Kalpana D, Thyagarajan T and Gokulraj N (2015) Modeling and

control of non-square MIMO system using relay feedback. ISA

Transactions 59: 408–417.

Table 3. Verification with various input types.

Test Setpoint type Pitch and yaw setpoint Error%

1 Step signal r1 = 0:4 et1 = 0:76

r2 = 0:5 et2 = 0:30

2 Random signal (mixed sinusoidal) r1 = 0:1 sin 0:6283t+ 0:1 sin 0:3141t+ 0:1 sin 0:1256t+ 0:4 et1 = 0:12

r2 = 0:8 sin 0:6283t+ 0:3 sin 0:3141t+ 0:3 sin 0:06283t et2 = 1:89

Figure 13. Pitch and yaw subsystems: actual and model outputs.

10 Transactions of the Institute of Measurement and Control 00(0)

https://orcid.org/0000-0001-8613-2490


Kothari K, Mehta U and Vanualailai J (2018) A novel approach of

fractional-order time delay system modeling based on Haar wave-

let. ISA Transactions 80: 371–380.

Kothari K, Mehta U and Prasad R (2019) Fractional-order system

modeling and its applications. Journal of Engineering Science and

Technology Review 12(6): 1–10.

Kothari K, Mehta U, Prasad V, et al. (2020) Identification scheme

for fractional Hammerstein models with the delayed Haar wave-

let. IEEE/CAA Journal of Automatica Sinica 7(3): 882–891.

Li Z and Chen Y (2014) Ideal, simplified and inverted decoupling of frac-

tional order TITO processes. IFAC Proceedings 47(3): 2897–2902.

Li S-Y, Cai W-J, Mei H, et al. (2005a) Effective decentralized TITO

process identification from closed-loop step responses. Asian Jour-

nal of Control 7(2): 154–162.

Li S-Y, Cai W-J, Mei H, et al. (2005b) Robust decentralized para-

meter identification for two-input two-output process from

closed-loop step responses. Control Engineering Practice 13(4):

519–531.

Li Y, Meng X, Zheng B, et al. (2015) Parameter identification of frac-

tional order linear system based on Haar wavelet operational

matrix. ISA Transactions 59: 79–84.

Mehta U and Majhi S (2011) On-line identification of cascade control

systems based on half limit cycle data. ISA Transactions 50(3):

473–478.

Mehta U and Rojas R (2017) Smith predictor based sliding mode con-

trol for a class of unstable processes. Transactions of the Institute

of Measurement and Control 39(5): 706–714.

Monje CA, Chen Y, Vinagre BM, et al. (2010) Fractional-order sys-

tems and controls. London: Springer.

Nema S and Padhy PK (2015) Identification of two-input two-output

process using state-space analysis. IET Control Theory Applica-

tions 9(13): 2029–2038.

Pereira RD, Veronesi M, Visioli A, et al. (2017) Implementation and

test of a new autotuning method for PID controllers of TITO pro-

cesses. Control Engineering Practice 58: 171–185.

Petráš I (2011) Fractional-order nonlinear systems: modeling, analysis and

simulation. Beijing and Berlin: Higher Education Press and Springer.

Ram VD and Chidambaram M (2014) Closed loop reaction curve

method for identification of TITO systems. IFAC Proceedings 47

(1): 989–996.

Ram VD and Chidambaram M (2016) Identification of centralised

controlled multivariable systems. Indian Chemical Engineer 58(3):

240–254.

Roy P, Das A and Roy BK (2018) Cascaded fractional order sliding

mode control for trajectory control of a ball and plate system.

Transactions of the Institute of Measurement and Control 40(3):

701–711.

San-Millan A, Feliu-Talegon D, Feliu-Batlle V, et al. (2017) On the

modelling and control of a laboratory prototype of a hydraulic

canal based on a TITO fractional-order model. Entropy 2017

19(8): 401.

Semino D and Scali C (1998) Improved identification and autotuning

of PI controllers for MIMO processes by relay techniques. Journal

of Process Control 8(3): 219–227.

Subudhi B and Jena D (2009) Nonlinear system identification of a

twin rotor MIMO system. In: TENCON 2009: 2009 IEEE region

10 conference, Singapore, 23–26 Jan., pp.1–6.

Tanaka H, Ohta Y and Okimura Y (2011) A local approach to LPV-

identification of a twin rotor MIMO system. IFAC Proceedings 44

(1): 7749–7754.

Tang Y, Li N, Liu M, et al. (2017) Identification of fractional-order

systems with time delays using block pulse functions. Mechanical

Systems and Signal Processing 91: 382–394.

Tastemirov A, Lecchini-Visintini A and Morales-Viviescas RM

(2017) Complete dynamic model of the twin rotor MIMO system

(TRMS) with experimental validation. Control Engineering Prac-

tice 66: 89–98.

Toha SF and Tokhi MO (2009) Real-coded genetic algorithm for

parametric modelling of a TRMS. In: 2009 IEEE congress on

evolutionary computation, Trondheim, Norway, 18–21 May,

pp.2022–2028.

Viswanathan PK, Toh WK and Rangaiah GP (2001) Closed-loop

identification of TITO processes using time-domain curve fitting

and genetic algorithms. Industrial & Engineering Chemistry

Research 40(13): 2818–2826.

Wang Q-G, Huang B and Guo X (2000) Auto-tuning of TITO decou-

pling controllers from step tests. ISA Transactions 39(4): 407–418.

Yang X, Cui J, Lao D, et al. (2016) Input shaping enhanced active

disturbance rejection control for a twin rotor multi-input multi-

output system (TRMS). ISA Transactions 62: 287–298.

Kothari et al. 11




