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Abstract:     Efforts made by computer scientists to model the visual system has resulted in various techniques from which

   the most notable has been the Convolutional Neural Network (CNN). Whilst the ability to recognise an object

          in various scales is a trivial task for the human visual system, it remains a challenge for CNNs to achieve the

     same behaviour. Recent physiological studies reveal the visual system uses global-first response strategy in its

       recognition function, that is the visual system processes a wider area from a scene for its recognition function.

              This theory provides the potential for using global features to solve transformation invariance problems in

                CNNs. In this paper, we use this theory to propose a feature extraction model called Stackedglobal-first

 Filter CNN (SFCNN) to improve scale-invariant classification of images. In SFCNN, to extract features from

      spatially larger areas of the target image, we develop a trainable feature extraction layer called Stacked Filter

                Convolutions (SFC). We achieve this by creating a convolution layer with a pyramid of stacked filters of

          different sizes. When convolved with an input image the outputs are feature maps of different scales which are

  then and used as global features. Our results show that by integrating the SFC layer within a CNNupsampled 

            structure, the network outperforms traditional CNN on classification of scaled color images. Experiments

   using benchmark datasets indicate potential effectiveness of our model towards improving scale invariance in

CNN networks.

 1 INTRODUCTION

        Understanding a scene from just a single exposure is
          a trivial task for the visual system (Han et al., 2017),

for example being able to recognise an object in vari-
       ous scales (scaling), able to distinguish rotated objects
           such as the ability to read signs on the wall while in

      laying position (rotation) or identify a moving object
    (translation). Efforts by computer scientists to model

      this behaviour has resulted in various techniques from

         which most notable in the last decade has been the
     Convolutional Neural Network (CNN) (LeCun et al.,

       1998). CNNs have achieved great success in numer-
   ous computer vision tasks such as in image classifica-

      tion, object detection and recognition, semantic seg-

mentation and boundary detection.
     The short comings of CNNs however, are in its in-

 ability to adequately handle invariances introduced in

    similar images it has been trained on (Jaderberg et al.,
     2015; Kauderer-Abrams, 2017; Lenc and Vedaldi,

a https://orcid.org/0000-0003-4693-0097
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       2015). Invariance refers to the ability of recognis-
      ing objects even when the appearance varies in some

        ways as a result of transformations such as transla-

      tions, scaling, rotation or reflection. Recent physi-
        ological studies of the visual pathway reveal the vi-

         sual system uses both local and global features in its
      recognition function. Cells tuned to global features

         respond to visual stimuli prior to cells tuned on lo-

       cal features leading to suggestions of a global-first

       response strategy of the visual system to speed-up
   recognition (Huang et al., 2017; Su et al., 2009). This

  theory provides the potential for using global features
      combined with local features to solve transformation

invariance problems in CNNs.
      In this paper, we address improving scale-

      invariant classification in CNNs by exploiting the

      global-first theory and propose a trainable feature
     extraction layer called Stacked Filters Convolution

        (SFC). The design of SFC layer enables the net-

       work to extract global features extracted from spa-
   tially larger areas of the target image. Inspired by the

          work of (Peng et al., 2017), we apply the concept of
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large filters (kernels) to cover broader areas of an im-

       age during convolution operation. In SFC layer, we
       create pyramids of stacked filters of different sizes.

      The stacking of filters create a conical filter structure

        referred to as filter pyramids. Input image data pass-
       ing through SFC layer are convolved with each filter

       resulting in feature maps of different scales. These

        feature maps are then upscaled and used as global
       features and passed to the next layer in the CNN net-

   work. In this work, we refer to the integration of SFC
        layer within an existing CNN as Stacked Filter CNN

(SFCNN) model.

     We conduct extensive experiments to evaluate
      scale invariance performance of SFCNN. We use

        LeNet5 CNN (LeCun et al., 1998) as our benchmark

        model. First, the datasets are trained on LeNet5 to
     establish benchmark results for comparison. Then

        we ensemble LeNet5 with SFC layer by placing it as
       the first layer in LeNet5 feature extraction pipeline.

        This location enables the SFC layer to pass fea-

  tures extracted from spatially broader areas of the im-
       age ( ) into the CNN network for furtherglobal-first

       processing. We train the ensemble SFCNN on the

      same datasets. We study the performance of SFCNN
       in classifying image samples on specific scale cate-

    gories. We also study the performance of SFCNN on

      individual classes where images from various scales
        per class are evaluated. For consistency we use the

 same test samples on all models developed. In all our
      case studies, performance of SFCNN are compared
       with our benchmarks. Our results show SFCNN out-

   performs traditional LeNet5 CNN in classifying color
   images across majority of the scale categories. In ad-

  dition, we report promising results on SFCNN’s abil-

        ity to classify images in various scale levels for each
dataset class in particular for color images.

        The main contributions of this paper are to im-
      prove CNNs towards classification of scaled images

       by showing the effectiveness of a) processing spa-

         tially broader areas of an input image in the initial
         stages of a CNN feature extraction pipeline, and b) en-

      hancing features extracted by applying upscaling on

feature maps.
   The rest of the paper is organised as follows: Sec-

        tion 2 reviews related work while Section 3 introduces
     our model. Section 4 describes our experiment design

 and results are presented in Section 5. We summarise

and point to future directions in Section 6.

 2 BACKGROUND

 Use of Global Features in CNNs. While local fea-

       tures are effectively extracted in CNNs using small

  filters performing a patch-wise operation with the tar-

      get image, extracting global features requires study-
          ing the whole image or spatially larger areas of the tar-
        get image. Here, local features are classified as lines

        (edges) and curves while shape, colour and shape con-
        tours are labelled as global features. In some stud-

        ies, global features have been studied and applied in

        CNNs but are limited to using feature descriptors such
as histogram of gradients (HOG) (Zhang et al., 2016)

        and SIFT (Zheng et al., 2017). However, they have
   not been tested on the networks ability to be spatially

    invariant and also feature extractors such as HOG and

SIFT are non-trainable.

         Use of Large Kernels in CNNs. The use of large
       kernels to extract features from spatially broader areas

         of the target image have been studied in some work.
        In the area of semantic segmentation (Peng et al.,

      2017) proposed a Global Convolutional Neural Net-

         work in which they studied the use of large kernels.
       Instead of directly applying large kernels as normal

     convolutions, they used a combination of vector type
              kernels of size 1 1 to connect with a large× ×k k+

   k k × region in the feature map. They conducted their

    experiments on PASCAL VOC dataset and concluded
    that large kernels play an important role in both clas-

       sification and localisation tasks. In their design, they

   did not use any non-linearity after convolution layers
   as is the practice in standard CNN models. In another

     piece of work, (Park and Lee, 2016) inform extracting
       information from a large area surrounding the target

    pixel is essential to extract for example texture infor-

mation.

      Pyramid based Methods in CNNs for Scale-

    Invariant Classification. Pyramid based methods

        have been used to address scale invariance in CNNs
        to some extent but have been limited to either generat-

  ing image pyramids or feature map pyramids. For ex-

       ample, (Kanazawa et al., 2014) describe work where
        they first create an image pyramid by scaling the tar-

         get image and using the same filter to convolve all

       scaled input. The feature maps generated are nor-
       malised to obtain the same spatial dimensions and

       then pooled to obtain a locally scale-invariant repre-
     sentation. However, in their implementation, scaling
     the target image is similar to applying scale augmen-

        tation. In our work, we present no augmentation of
         the input images. In another work, (Xu et al., 2014)

      propose a scale-invariant CNN (SiCNN) by applying

        a similar process of convolving a filter on different
        image scales. (Lin et al., 2017) exploit the pyrami-

       dal hierarchy of feature maps in deep convolutional
      networks by developing lateral connections from each
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                     Figure 1: Architecture of SFCNN with 3 filters in SFC layer. An input image (A) is passed to the SFC layer (B) whichk =
       applies convolutions with each filter from the filter stack (a) producing f1 3−      output feature maps of different scales (b). The

                output feature maps are then upsampled to generate uniform-sized outputs (c). The upscaled features are concatenated and
         passed to the CNN network (C) for further feature extraction. The flatten layer (D) vectorises the final output from the CNN

network and forwards to the classifier for learning (D).
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                       Figure 2: A detailed lateral view of the SFC layer with 3 filter stacks (A). Each stack in the filter pyramid containsk =
                    further -filters. An input image is convolved using each filter from the filter stack producing stacks of output featuren k n

                 maps of different sizes (B)-((a),(b),(c)). The feature maps are then upsampled to generate a uniform sized feature outputs
 (C)-((d),(e),(f)). The upscaled features are finally concatenated (D) for forward propagation.

    feature map in the pyramid to build high-level seman-

         tic feature maps at all scales. They show that feature
      pyramids generated in this way are scale-invariant as

          a change in an object’s scale is offset by shifting its
       level in the pyramid. Similar architectures are pro-
        posed in works of (Kim et al., 2018; Zhao et al., 2019;

Kong et al., 2018).
       Based on the concept of large kernels and pyramid

   based methods, (Kumar and Sharma, 2020) propose a

     distributed information integration CNN model called
       D-Net by combining local and global features from

      images. To extract global features, they developed

      a trainable layer called Filter Pyramid Convolutions
     (FPC). In FPC layer, various scale filters (from small

       to large filters) are applied to progressively cover
       broader areas of an image. The features extracted
   are then pooled, resulting compact sized feature maps

         as output in terms of its spatial dimension. This de-

          sign limited the output of the FPC layer to be used
       as input in subsequent convolution layers. In this pa-

          per, we adopt a similar design as the FPC layer for
   our SFC layer. However, to overcome the problem of

   small scaled output feature maps from FPC layer, the

        feature maps in SFC layer are instead upscaled. The
       upscaled feature maps allows SFC layer output to be

       used as input in subsequent feature extraction layers

of a CNN.
     Whilst much progress and state-of-the-art results

    are shown there is still little research that show the ef-

        fectiveness of exposing a CNN with global view of in-
      put images to solve scale-invariant classification prob-

 lem in CNNs. This paper achieves to fill this gap.
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 3 MODEL

        In this section we propose a novel method called
   Stacked Filters Convolution (SFC) that allows a CNN

       network take advantage of large kernels to extract
   global features to improve classification of scaled im-

    ages. The design of SFC layer is inspired by the work

         of (Huang et al., 2017) who show that biological vi-
     sual system utilizes global features prior to local fea-

      tures in detection and recognition. The integration

         of SFC layer within an existing CNN is referred to
  as Stacked Filter CNN (SFCNN). The SFCNN model

       comprises of five main parts (A-E) as shown in Figure
 1. They are explained in the following sub-sections.

 3.1 Stacked Filters Convolution (SFC)

Layer

        Unlike in a traditional CNN where normally a small
     filter is applied for each convolution in a convolution

       layer, the SFC layer houses a battery of filters of vary-

   ing sizes. This forms a pyramidal structure of stacked
       filters and operates on the target image using the same

    standard sliding window convolution technique (Fig-

          ure 1(a)). The important part in the setup of SFC is
 determining the sizes of each filter in the stack. Here,

  the dimensions (kh , kw        ) of each filter in the stack is
       manually chosen. The size of the largest filter (base of

  the pyramid) (k0
h

, k0
w       ) is carefully chosen so as to allow

         the convolution to produce a 2D output map ( f 0
h  , f 0

w)
        (considering height and width only). It is required that

 the output feature map size ( fh  , fw) from each filter is
      calculated after considering the other hyper parame-

         ters and . The size of the next filterstride padding

(k1
h, k1

w         ) is chosen by determining the output size of

     its resultant feature map ( f 1
h

 , f 1
w   ) where f 1

h
 and f1

w is

   a multiple of f 0
h  and f 0

w   respectively. This procedure
    is required in order to allow upscaling of feature map

 ( f 0
h

 , f0
w      ) by an integer upscaling factor. Subsequently

 sizes of other filters are identified using a similar pro-

cess.
        For example, for a 32 32 image, the filter sizes×

         chosen for the stack is 25 25, 17 17 and 3 3 with× × ×

       upscaling factors 4, 2 and 1 respectively. Table 1 de-
          scribes how the final output size of the SFC layer is

    calculated after considering the filter sizes, upscaling

     factors and appropriate uses of stride and padding on
the target image.

       Since each filter produces a different size feature

         map (Figure 1(b)), these maps then need to be nor-
  malised to produce a uniform size final feature maps.

         Here, we use the technique of upscaling and in our
     work use the upscaling method. The smallerbilinear

   feature maps are upscaled using a scale factor to pro-

         duce an output equal to the largest feature map (Fig-

     ure 1(c)). The largest feature map is unchanged. Ap-
        plying this approach to the above example results in

          the final output size as shown in Table 1. Finally all

  upsampled feature maps are concatenated and passed
 to the next layer (Figure 1(d)). In our implementation

           since the SFC layer is the only layer that gets to in-

        spect the target image, we maintain the inclusion of
           a small filter in our stack. This is done to allow ex-

       tracting local features from the target image which
        we would otherwise lose. In this way, SFC layer
        also allows local features to be collected and packed

      together with global features for onward processing.
   Figure 2 shows the lateral view of the components of

SFC layer and flow of information.

 3.2 Forward Propagation Process in

SFC

  To achieve the forward pass, an input image is passed
        to the SFC layer which applies convolutions with each

    filter from a filter stack and outputs a stack of feature
         maps as a result. This process repeats for all stacks

   of filters in the layer resulting in stacks of output fea-
       ture maps of different scales accordingly. The stack

        of output feature maps are then upsampled to gener-

        ate uniform-sized outputs in terms of height and width
         of the feature maps in all stacks. The upscaled stack

   of features are finally concatenated for forward prop-

         agation into the network. The shape of each stack of
        upscaled features is saved for use in backward prop-

        agation. Since the remainder of the network is com-
      posed of traditional convolution, relu, max pooling,

  flatten and fully connected neural network layers, the

        forward propagation is as described in (LeCun et al.,
1998).

 3.3 Backward Propagation Process in

SFC

       The backward function in SFC layer receives gra-
        dients from the network. It then unstacks or slices

the gradients in the exact same dimensions and shape

        of the individual stack of feature maps that were
      concatenated during the forward pass. This results

       in stacks of gradients maps corresponding to each
 stacked upscaled feature maps (during forward pass).

     Each stack of gradient is max pooled by the same fac-

 tor that was used to upscale the feature map to reduce
     the dimensions of the feature maps. Using chain rule

       derivative algorithm these gradients are then used to

        update the weights of filters in the corresponding filter
stacks.
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                     Table 1: Calculation of final output feature map sizes in the SFC layer. The output size of the intermediate feature map in
                       column (E) is dependent on the filter size (column (B)), and . It must also be a multiple of the sizes of otherstride padding

output maps in column (E).

(A)

image size

(Ih , Iw )

(B)

filter size
kh , kw

(C)

stride
s

(D)

padding
p

(E)

feature map output size

 ( fh  , fw)
 ( fh  = (Ih    + )2p − kh  + )1 /s

 ( fw  = (Iw    + )2p − kw  + )1 /s

(F)

up-scaling

factor

(G)

final output

map size

(Oh , Ow )

      32 32 25 25 1 0 8 8 4 32 32× × × ×

      32 32 17 17 1 0 16 16 2 32 32× × × ×

      32 32 3 3 1 1 32 32 1 32 32× × × ×

 4 THE EXPERIMENTS

    We describe the datasets, CNN architecture, SFC pa-
      rameters and our experimental design in the following

sub sections.

 4.1 Dataset Description

   Fashion-MNIST: The Fashion-MNIST (FMNIST)
        dataset (Xiao et al., 2017) consists of 60,000 train-

        ing images and 10,000 test images of fashion prod-
   ucts from 10 categories. The sample images are grey-

       scale (1-channel) of size 28 28 pixels. The training×

     and test batches have equal distribution of the number
of samples from each class.

     CIFAR10. CIFAR10 dataset (Krizhevsky et al.,

      2009) consists of 60,000 colour images of size 32 32×

       pixels with 3-channels. The dataset is divided into
   50,000 training and 10,000 test samples. The samples

       are divided into 10 mutually exclusive classes defin-

        ing various objects. The train and test batch contain
equal number of images from each class.

 4.2 CNN Architecture and SFC

Parameters

 For benchmarking and also for combining global fea-
       tures through SFC to a CNN network we used LeNet5

CNN structure as described below.

      LeNet5 Network. Proposed by (LeCun et al.,

       1998), the LeNet5 network in our work comprises of
        three sets of convolution layers and two max pool-

        ing layers. The architecture is described in Table 2.

  Since we are using two datasets with different dimen-
        sions for the input images (32 32 for CIFAR10 and×

     28 28 for FMNIST) the hyper-parameter× padding

     for the second convolutional layer in the LeNet5 net-
         work trained on CIFAR10 is set to 1. For LeNet5

        model trained on FMNIST, for the first andpadding

         second convolutional layers is set to 2 and 1 respec-

tively.

  SFC Parameters. For training on CIFAR10 dataset
        we setup SFC layer with 3 stacks of filters (k stacks =

            3) having filters of sizes (3 3), (17 17) and (25× × ×

       25) respectively. Each stack is initialised with 6
            filters ( 6). We set 1 for alln f ilters = stride =
         stacks, 1 for stack with 3 3 filters,padding = ×

          padding = 0 for the rest of the stacks and upscal-
       ing factors 4 2 1 respectively for each filter stack., ,
        The final shape of the concatenated stacks of feature

          maps on CIFAR10 dataset is (18 32 32) where× ×

           18 . On FMNIST dataset, we= k stacks n f ilters×

        use the same values for parameters in SFC except

           the filter sizes in each stack are changed to (3 3),×

            (15 15) and (22 22). The final shape of the con-× ×

     catenated stacks of feature maps on FMNIST dataset

    is (18 28 28).× ×

 4.3 Training Process

        First we train the benchmark CNN (LeNet5) on CI-
     FAR10 and FMNIST datasets separately. This estab-

       lishes our benchmark results against which we com-
       pare results of SFCNN networks. Then we integrate
       SFC layer within LeNet5 network pipeline as de-

    scribed in Figure 1. We train SFCNN using the same
       training parameters as used on LeNet5 resulting in
      SFCNN models for CIFAR10 and FMNIST datasets

        respectively. Hence, we obtain a total of four trained
models for comparison (two models per dataset).

 End-to-end training was performed on all models.
       For networks trained on CIFAR10 dataset we start

    with a warm-up strategy for 4 epochs with a learning

  rate of 10−2  , 10−3     from epochs 5-50 and decreasing
it to 10−4    for the rest of training. For training on FM-

      NIST dataset the learning was adjusted to 10−2  for 2

 epochs, 10−3       from epochs 3-50 and decreasing it to
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10−4         for the rest of training. Training on all models

       were stopped at 100 epochs. Stochastic gradient de-
 cent and cross-entropy were used as learning and loss

       function respectively. We use weight decay of 10−4

  and momentum of 0 9. For training we use batch size.
         of 8 and 4 for testing. We implemented our mod-
        els using PyTorch version 1.2.0 on a Dell Optiplex

       i5 48GB RAM computer with Cuda support using
NVIDIA GeForce GTX 1050 Ti 4GB graphics card.

 4.4 Preparing Scaled Images for Testing

Models

  To test our models on scaled images we first establish
      7 scale categories - 150 140 120 100 80 60 50 .[ , , , , , , ]

       The numbers indicate percentage an image is scaled
        to. In this research we consider both reduction and

        enlargement of image size from the original. We se-

        lect at random 100 images per class from CIFAR10
        and FMNIST test datasets. Then, we scale each im-
         age to a size defined in our scale category list. Since

          the images in our dataset are small we stop at scale
      50%. In this fashion for a single test image of a class

        we generate 7 scaled test images. Each scaled im-
         age is allocated to its own class and scale category

         folder resulting in 1000 scaled images in each of the

        7 scaled categories. We further pool all images from
all 7 scale categories into an ensemble test dataset re-

        sulting in 7000 scaled images. We analyse our mod-

         els on scaled images from each of these scale cate-
      gories independently (Section 5.2). Finally we use

       the ensemble dataset to analyse the performance of
       our models for individual classes (Section 5.3). Fig-

 ure 3 shows an example image from each dataset and

    its corresponding scaled versions for testing. Table 3
     provides detailed information on the number of scaled

images generated for testing.

         Figure 3: An example of scaled test images from datasets
         CIFAR10 - airplane ( ) and FMNIST - ankle boot (top bot-

        tom). The numbers indicate percentage image is scaled to.
100 indicates no scaling.

 4.5 Evaluation Metrics

   Analysis on Scale Categories. We use metrics pre-

       cision recall accuracy, and to analyse results of

        SFCNN on scale categories. Since we do not have
       imbalanced class distribution in our datasets we use

     macro-average weighting to calculate andprecision

recall.

       Analysis on Dataset Classes. We use metrics sen-

      sitivity specificity(recall) and to analyse results

       of SFCNN for scaled images in individual dataset
classes.

 5 RESULTS AND DISCUSSION

 5.1 Comparing Model Training

Statistics on Regular Images

        Table 4 compares the train losses and test accuracy
         for all the networks used in our experiments on reg-

        ular images from the test datasets. These are evalu-
        ations on images that have not been subjected to any

   form of scale transformations. Our ensemble SFCNN

  model outperforms the traditional LeNet5 network on
  test accuracy metrics (indicated in bold). The highest

   test accuracy increase of 2.3% is recorded on SFCNN

     on CIFAR10 dataset. This indicates combining global
       feature information in network training is useful in

  improving the overall generalisation capability of the

models, in particular for color images.

 5.2 Effects of Feature Map Upscaling

on Classification of Scaled Images

       The classification results of our models on differ-

        ent scale categories and on different datasets can be
         viewed in Tables 5 and 6. From these results, we ar-

rive at three observations.
    First, classification accuracies on CIFAR10 scaled

   categories obtained by SFCNN networks show the in-

         clusion of the SFC layer as a global feature extrac-
      tor, gives promising results in classification of scaled

     imaged. SFC provides significant improvement in

the overall network’s ability to classify scaled images
      compared to the benchmark LeNet5 network. The

   column hit-rate in Tables 5 and 6 indicate the number

      of scale categories SFCNN outperformed the bench-
         mark. For purposes of our study hit-rate of 50%>=

        is desirable, that is SFCNN should at least perform
 better on 50% of the scale categories compared to the

    benchmark LeNet5 only network. Since the ensemble
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 Table 2: Architecture of LeNet5 network used in our experiments (Hosseini et al., 2017).

 Model Layers

LeNet5
   (conv 5x5x6) (maxpool 2x2) (conv 5x5x16) (maxpool 2x2) → → → →

   (conv 5x5x120) (fc 84) (fc 10) softmax→ → →

   Table 3: Information on scaled images generated for testing
our models.

 Number of classes 10

Scale categories
150,140,120,100,
80,60,50

 Image per class 100

Total images per category 1000

Total ensemble images
over all scale categories

7000

    test dataset combines all scaled images in one batch it

      is excluded from this ratio. The hit-rate on CIFAR10
         accuracy scores are 70% which is well above the>

        desired threshold meaning the model was able to iden-

         tify a higher number of samples in its correct class
      despite the images being scale transformed. Since

        we apply bilinear upscaling of feature maps in SFC
       layer which enlarges the extracted features, we test

        the effects of this operation particularly on the scale

        reduced images (categories 80, 60 and 50 in Tables
        5 and 6). We observe SFCNN on overall performs

       better than LeNet5 on these scale categories, specif-

        ically on scale category 80 where the test accuracy
        is higher by 8 6%. Performance on SFCNN on FM-.

       NIST scale categories however are not very promising

   where LeNet5 benchmark results are higher. This in-
dicates SFCNN works better on color images than on

grey-scale images.
    Second, macro-average precision reveals SFC-

         NNs ability to classify a high number of scaled im-

       ages identified as positive to be actually positive.
       On CIFAR10 dataset, SFCNN achieves a hit-rate of

       100% over all scale categories. On the contrary

 we observe the benchmark LeNet5 model performing
 better on FMNIST dataset compared to on CIFAR10.

     These results further show SFCNNs ability to classify
    color scaled images better but at the same time its in-

   ability to achieve a similar performance on grey-scale

        images. We also note in general precision scores of
       both SFCNN and the benchmark LeNet5 models de-

cline with increasing scale reduction (Figure 4).

      Third, macro-average recall statistics of all models
        on both datasets are identical to the accuracy scores.

       While this shows SFCNNs superior ability to return
         most of the relevant results in nearly all scale cat-

       egories compared to the benchmark LeNet5 on CI-

        FAR10 dataset, LeNet5 on the other hand has higher
recall scores on FMNIST grey-scale images.

 Figure 4: Drop in precision with declining scale of images.

 5.3 Performance of SFCNN on

Individual Classes

   The classification results of the studied models on en-
       semble scaled test set evaluated on datasets classes

         can be viewed in Tables 7 and 8. From these results,
we arrive at two observations.

      First, sensitivity (recall) scores on SFCNN net-

      work have reasonable hit-rate (50%) showing bet-
       ter performance on most classes than the benchmark

       LeNet5 models on CIFAR10. This is however not

     consistent on both datasets where the hit-rate on sen-
      sitivity score on FMNIST dataset is below our desired

        50% threshold. Here hit rate− is the ratio of counting

   the number of classes SFCNN produced a higher sen-
       sitivity score than the benchmark LeNet5 to the total

     number of classes. Though comparatively achieving
       higher sensitivity scores than the benchmarks on CI-
      FAR10 dataset, we note that the scores for majority of

    the classes in both datasets are low (below 50%). We
      investigated the false negative (FN) and true positive

          (TP) scores to reveal FN scores to be higher than TP

           for several classes but not in all. This is also true on
the benchmark LeNet5.
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 Table 4: Train losses and test accuracy for all models used in our experiments.

Model
train loss

CIFAR10

test acc

CIFAR10
difference

train loss

FMNIST

test acc

FMNIST
difference

    LeNet5 1.734 0.568 0.8991.535

  SFCNN 1.733 0.591
-0.001 (loss)

+2.3% (acc)
 1.566 0.901

+0.031 (loss)

+0.2% (acc)

 Table 5: Performance summarization of the studied models on all the scale categories on CIFAR10 dataset.

scale categories

         Model metric ensemble 150 140 120 100 80 60 50
hit

rate

LeNet5
acc

        0.381 0.449 0.478 0.531 0.577 0.265 0.217 0.149 0.714

         SFCNN 0.438 0.193 (5/7)0.394 0.487 0.547 0.586 0.351 0.159

LeNet5
precision

        0.388 0.427 0.448 0.490 0.525 0.386 0.157 0.129 1.000

         SFCNN (7/7)0.419 0.467 0.516 0.568 0.591 0.401 0.206 0.165

LeNet5
recall

        0.381 0.449 0.478 0.531 0.577 0.265 0.217 0.149 0.714

         SFCNN 0.438 0.193 (5/7)0.394 0.487 0.547 0.586 0.351 0.159

      Second, our tests results show specificity scores
        on overall are higher than sensitivity scores for all

         classes on both datasets and for each of the tested
        models. This is also true on the benchmark LeNet5
       network. We investigated the true negative (TN) and

         false positive (FP) scores to reveal TN scores to be
        higher than FP for all classes. These results are

     promising as high TN scores indicates SFCNN is able

     to produce a high number of correctly predicted neg-
      ative values. Comparatively SFCNN network on CI-

     FAR10 performed better on specificity than the same
      networks on FMNIST dataset when considering the

      hit-rate indicating better performance on color than

grey-scale images.

 5.4 Model Complexity

        The advantage of SFCNN lies in the application of
        larger kernels that are used to detect features from

        spatially larger areas of the input image. This over-
       comes the shortcomings of standard CNNs that usu-

          ally address a small area of the input image or fea-

        ture map at a time using smaller kernels. However,
        the limitations of SFCNN include a) an increase in

        network parameters due to the use of large kernels

         in the SFC layer, b) the SFC layer generates larger
         feature maps as a result of upscaling which in turn

     requires more convolution operations in the network,
   c) increase in the volume of feature maps due to con-

       catenation of upscaled features maps in the SFC layer,

           and d) the model is still not able to inspect the entire
    image globally due to design constrains of the kernels

     in the filter pyramid. Limitations a), b) and c) further

lead to increased computation time.

 6 CONCLUSION

          In this work we propose a method to learn scale in-
      variance in CNNs by introducing a new technique of

    using large kernels to extract spatial information from

       the target image and combine it with local features for
   learning by the network. The proposed method called

       Stacked Filters Convolution (SFC) uses a stack of

        large and small filters arranged in a pyramidal struc-
    ture. Each group of filters from the stack is convolved
        with the input image producing feature maps of dif-

   ferent scales. These feature maps are upscaled to pro-
      duce a uniform sized output map which is then passed

to the next layer.
       We study the effects of feature ex-global-first

        traction by adding the SFC layer and evaluating the

       networks ability to classify test images subjected to
      scale transformations and compare with our bench-
  mark. Our results show overall improvements in clas-

       sification of scaled images in comparison to classifi-
  cation results from our benchmark networks. Further,

 the results also indicate better performance of ensem-
        ble SFCNN network on color images than on grey-

   scale images. From our experimental results we con-

     clude that spatial features extracted from larger areas
      of the target image during training help in improving
       the scale invariance capability of CNN networks, in

particular for color images.
    Problems and opportunities that require further in-

      vestigations are to evaluate other upscaling methods
          as information may be lost due to the type of inter-

       polation method used, test this technique to evaluate

       other forms of transformations such as rotations and
       translations and apply SFC layer with other bench-
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 Table 6: Performance summarization of the studied models on all the scale categories on FMNIST dataset.

scale categories

         Model metric ensemble 150 140 120 100 80 60 50
hit

rate

LeNet5
acc

        0.611 0.575 0.654 0.785 0.895 0.703 0.373 0.295 0.000

         SFCNN 0.566 0.480 0.573 0.743 0.880 0.647 0.369 0.267 (0/7)

LeNet5
precision

        0.676 0.616 0.708 0.813 0.894 0.733 0.342 0.307 0.142

         SFCNN 0.579 0.527 0.596 0.756 0.880 0.681 0.300 (1/7)0.369

LeNet5
recall

        0.611 0.575 0.654 0.785 0.895 0.703 0.373 0.295 0.000

         SFCNN 0.566 0.480 0.573 0.743 0.880 0.647 0.369 0.267 (0/7)

 Table 7: Performance summarization of the studied models on CIFAR10 classes.

[CIFAR10 classes] [Scale category - ensemble]

Model
air-

plane

auto-

mobi

le

       bird cat deer dog frog horse ship truck
hit

rate

 metric - sensitivity scores -

          LeNet5 0.353 0.469 0.000 0.377 0.316 0.439 0.624 0.339 0.430 0.463

          SFCNN 0.273 0.374 0.559 0.317 0.3790.389 0.517 0.240 0.469 0.439
0.500
(5/10)

 metric - specificity scores -

          LeNet5 0.970 0.972 1.000 0.854 0.957 0.838 0.887 0.943 0.962 0.929

          SFCNN 0.959 0.946 0.950 0.9260.856 0.974 0.890 0.920 0.961 0.946
0.600
(6/10)

 Table 8: Performance summarization of the studied models on FMNIST classes.

[FMNIST classes] [Scale category - ensemble]

Model
t-shirt

-top

tro-

user

pull-

over
 dress coat

san-

dal
shirt

snea-

ker
bag

ankle-

boot

hit

rate

 metric - sensitivity scores -

          LeNet5 0.796 0.824 0.424 0.521 0.303 0.933 0.206 0.510 0.926 0.671

          SFCNN 0.531 0.734 0.303 0.857 0.179 0.7500.727 0.313 0.561 0.700
0.400
(4/10)

 metric - specificity scores -

          LeNet5 0.851 0.999 0.957 0.988 0.981 0.894 0.974 0.993 0.936 0.994

          SFCNN 0.991 0.901 0.970 0.966 0.968 0.900 0.9900.939 0.960 0.932
0.300
(3/10)

      mark network configurations using larger and more

complex datasets.
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