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Abstract. Incorporation of vermin culture in the composting system produces “vermicompost”, an 

enriched biofertilizer known to improve the physical, chemical, and biological properties of soil. It 

is applied in granular form and/or in liquid solution (vermiwash), and in both open fields and green-

houses. Vermicompost has been shown to contain plant growth hormones, which stimulate seed 

germination and improve crop yield, the ‘marketability’ of products, plant physiology, and their 

ability to fight against disease. In recent years, South Pacific island countries (SPICs) have placed an 

increasing emphasis on the importance of organic agricultural practices as a means of achieving 

more sustainable and environmentally friendly farming practices. However, vermiculture is not 

practiced in South Pacific island countries (SPICs) largely due to the lack of awareness of this type 

of application. We consider the inclusion of vermiculture in this region as a potential means of 

achieving sustainable organic agricultural practices. This study represents a systematic review in 

which we collect relevant information on vermicomposting and analyze the applicability of this 

practice in the SPICs based on these nations’ physical, socioeconomic, and climatic conditions. The 

tropical climate of the SPICs means that they meet the combined requirements of a large available 

biomass for composting and the availability of earthworms. Perionyx excavatus and Pontoscolex 

corethrurus have been identified as potential native earthworm species for vermicomposting under 

the conditions of the SPICs. Eisenia fetida, a well-known earthworm species, is also effectively 

adapted to this region and reported to be an efficient species for commercial vermicomposting. 

However, as a new input into the local production system, there may be unforeseen barriers in the 

initial stages, as with other advanced technologies, and the introduction of vermiculture as a prac-

tice requires a steady effort and adaptive research to achieve success. Further experimental research 

is required to analyze the productivity and profitability of using the identified native earthworm 

species for vermiculture using locally available biomass in the SPICs.  

Keywords: vermicompost; vermiwash; plants nutrients; organic fertilizer; South Pacific island 
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1. Introduction 

Chemical fertilizers and pesticides are commonly used in agriculture to improve soil 

fertility and combat pests due to the perceived ease of their application and the fact they 

give more rapid results. However, such rapid methods are associated with a decline in 

the potentiality of surrounding ecosystems [1–4]. These methods may also have adverse 

effects on the health of humans and animals due to the accumulation of residues from 

these agrochemicals in food chains. There has therefore been increasing focus on using 

alternative interventions, namely organic practices. 
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Any intervention used to combat the noxious effects of synthetic chemical traces in 

the food chain needs to focus on soil health, as this represents the primary element in 

agricultural production and underpins the optimization of the productivity or profitabil-

ity of agricultural production system. The integration of organic amendments in agricul-

ture has been shown to result in the long-term improvement of the soil’s physical, chem-

ical, and biological properties [5]. Indeed, organic amendments help to provide a stable 

niche for soil microorganisms, thus improving soil fertility [6,7]. Organic amendments 

improve the productivity of the soil by facilitating water infiltration, increasing the avail-

ability of plant nutrients, and enhancing the capacity for plants to tolerate biotic stress [8–

11]. They also lead to improved soil aggregation and a reduction in soil bulk density [12]. 

Vermicompost is an organic fertilizer obtained by the decomposition of degradable 

residues through the digestive tracts of earthworms. It is regarded both as a sustainable 

approach to agricultural production and a safe means of waste management [7]. Indeed, 

it can be produced from waste that is rapid-growing and has a deleterious impact on 

groundwater resources [13–15]. Waste is converted into vermicompost, which has a high-

nutrient value that has been shown to contribute to an improvement in soil fertility and 

plant productivity [1,3,4]. Figure 1 summarizes the waste conversion to beneficial ver-

micompost and its influences on soil fertility and crop productivity. Studies have high-

lighted numerous benefits following its application to many crops, such as cereals and 

field crops [16–19], legumes [20], and vegetables [21–23], with different amounts of ver-

micompost applied in each study. It has been shown that vermicompost contains plant 

hormones that stimulate growth and anticipate the spread or the severity of disease [1,3,7]. 

Vermicompost provides essential nutrients to the plants in a form they can readily utilize 

[16,23]. Vermiculture is therefore regarded as a slow and steady application that can be 

both beneficial for soil health and crop productivity. 
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Figure 1. Schematic summary of the vermicomposting process and its beneficial effects on soil 

health and crop productivity (Adapted from Chatterjee et al. (2021) [24]). 

In the tropical South Pacific islands nations, including Samoa, agriculture is one of 

the main sources of income and a major source of employment. For example, in Samoa, 

40% of its population is employed in agriculture [25]. The Samoan government has in-

creasingly recognized the importance of organic amendments, particularly after several 

natural disasters back in the 1990s [26]. Since then, the government has initiated several 
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programs promoting the application of organic fertilizer in the region. Through such ini-

tiatives, awareness amongst farmers has improved and they have shown greater interest 

in following organic practices in their crop production. However, there is a lack of 

knowledge regarding the quality of organic amendments and the appropriate amounts 

needed for maintaining soil fertility and productivity in Samoa, along with other South 

Pacific Island countries (SPICs) [27]. Vermicomposting is arguably an affordable and sus-

tainable organic practice that could be introduced in the region to help farmers in improv-

ing soil fertility and crop production. However, there is currently only a very limited 

amount of information regarding the potential application of vermicompost in the SPICs. 

This warrants a systematic review to fill the knowledge gap about vermicomposting in 

the region that includes an assessment of its potential based on the physical, socioeco-

nomic, and climatic conditions in the SPICs. 

2. The Vermicomposting Process 

Vermicomposting is a non-thermophilic (mesophilic) process that uses the digestive 

system of earthworms to transform organic waste into a humus-like product that repre-

sents a high-value nutrient fertilizer and soil amendment [28–30]. In this complex decom-

position process, earthworms feed on fungi and other available microorganisms and pro-

duce vermicompost that is enriched relative to the initial status of the ingested wastes. 

The vermicomposting process has both physical and biochemical components. Physical 

processes include fragmentation, turnover, and aeration, while biochemical processes in-

clude enzymatic digestion, nitrogen enrichment, and transformation of inorganic and or-

ganic materials [31]. Through these supplementary microbial processes, important plant 

nutrients such as nitrogen, potassium, phosphorus, and calcium present in the organic 

waste are converted into inorganic forms that are much more soluble and available to the 

plants than those in the parent substrate [32,33]. Consequently, the application of ver-

micompost could both reduce the demand for chemical fertilizers and their adverse effects 

on soil and other natural resources and reduce the amount of organic waste going to land-

fill [34]. 

3. Earthworm Species Used for Vermicomposting 

Presently, there are more than 3000 species of earthworms in the ecosystem. How-

ever, not all of them are appropriate for vermicomposting [35]. Earthworms that are typ-

ically used in the vermicomposting process are categorized as ‘epigeic’ species, that is 

‘surface dwellers’ [35,36]. Because of their high reproductive rates, endurance, and toler-

ance to living in close proximity to each other, epigeic species have the capacity to colonize 

in high numbers in organic waste and therefore produce large volumes of vermicompost. 

Their presence has no harmful effects on the soil structure as the worms create small bur-

rows [37]. One study identified six earthworm species as the most suitable for vermicom-

posting: Eisenia andrei, Eisenia fetida (old spelling: foetida), Dendrobaena veneta, Polypher-

etima elongate, Perionyx excavates, and Eudrilus eugeniae [38]. Other studies have suggested 

that Perionyx sansibaricus, Pontoscolex corethrurus, Megascolex chilensis [39], Lumbricus ter-

restris and Dendrobaena veneta [40], Lumbricus rubellus and Amyanthes diffrigens [41] have 

strong potential for vermicomposting. 

4. Characteristics of Vermicompost 

The vermicompost product is a fine, enriched manure, made of digested cocoons or 

‘worm castings’ excreted by the earthworms. The earthworm castings are garnished with 

various microorganisms and are clear of disease pathogens [42]. Due to the presence of 

humic acid, vermicompost is seen as a biofertilizer and both sustainable and ‘eco-friendly’ 

[43]. Such enriched manure contains humus, which could be used in horticultural crop 

production systems. The moisture content of vermicompost ranges between 32 and 66% 

[40]. Vermicompost is generally found in a granular form, which can be mixed with the 
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soil like a nutrient supplement. Alternatively, ‘vermiwash’ can be applied in liquid form 

produced by allowing water to pass through a column of vermicompost where worms 

have been active [44]. Vermiwash is composed of organic matter, microorganisms, and 

nutrients from the vermicompost and can be sprayed directly to the physical parts of the 

plants and to the soil to enhance biological activity [45]. 

Overall, vermicompost is rich in polysaccharides, which improve soil aeration, drain-

age, and aerobic conditions [46]. Vermicomposts produced from different sources of or-

ganic waste have a diverse range of nutritional compositions and pH, as outlined in Table 

1 [24,31,47]. For example, a sheep-manure vermicompost has a typical pH of 8.6, whereas 

a cattle-manure vermicompost has a pH of around 6.0, and a pig manure vermicompost 

has a pH of ~5.3 [48]. Depending on the type of organic waste used in the vermicompost-

ing process, the nutritional composition of the end product varies widely, for example in 

terms of organic carbon (9.15–34%); Ca and Mg (22–70 Cmol (+)/kg); available S (128–548 

ppm); Cu (100 ppm); Fe (1800 ppm); and Zn (50 ppm) [24,40]. 

Table 1. Nutrient content of vermicompost produced from different starting materials (Source: Lim et al. (2015) [30]) and 

Chatterjee et al. (2021) [24]). 

Organic Waste 
pH 

(-) 

TOC 

(%) 

TN 

(%) 

TP 

(%) 

TK 

(%) 

TS 

(%) 

Zn 

(mg/kg) 

Cu 

(mg/kg) 

Fe 

(%) 

Mn 

(mg/kg) 

KW - 10.30 0.85 0.15 - - - - - - 

ST 6.55 24.62 1.14 0.46 1.61 - - - - - 

CD 7.04 32.16 3.60 0.23 0.89 - - - - - 

FW 7.30 34.0 1.30 2.70 9.20 - - - - - 

PL + SP 8.89 16.70 2.06 0.67 5.09 0.48 440 51 0.50 300 

PL + AZ 8.23 16.50 1.82 0.87 3.68 0.41 520 49 0.40 390 

PL + BA 9.01 15.40 1.54 0.74 3.99 0.46 415 45 0.45 280 

PL + PS 8.91 16.20 1.54 1.06 7.23 0.58 520 61 0.50 590 

CD + SP 6.92 20.90 1.75 0.25 1.84 0.47 290 10 0.60 100 

CD + AZ 6.35 19.30 2.17 0.30 1.70 0.49 285 20 0.59 210 

CD + BA 7.00 16.50 1.89 0.24 1.65 0.46 215 9 0.78 110 

CD + PS 6.75 29.30 2.24 0.34 1.51 0.41 225 12 0.60 310 

PD + SP 7.34 19.00 2.20 0.35 2.05 0.33 210 19 0.70 120 

PD + AZ 6.69 28.70 2.20 0.32 1.76 0.40 220 22 0.81 115 

PD + BA 7.15 20.10 2.17 0.22 2.10 0.28 150 12 1.10 110 

PD + PS 6.80 13.90 2.48 0.56 2.15 0.36 230 19 1.00 300 

Note: KW = kitchen waste, ST = sugarcane trash, FW = food waste, PL = poultry litter, CD = cow dung, PD = pig dung, SP 

= Spermacoce, AZ = Azolla pinnata, BA = banana pseudo stem and leaf, PS = paddy straw, TOC = total organic carbon, TN = 

total nitrogen, TP = total phosphorus, TK = total potassium, TS = total sulphur. 

Often, vermicompost nutrient concentrations are optimized by using different 

sources of raw material in the vermicomposting process, as the combination of raw mate-

rials decreases the chances of the vermicompost being deficient in a certain element. No-

table combinations include sewage sludge [49], vegetable and kitchen waste [30], and 

agro-industrial waste [50,51]. Some experiments favor a combination of cattle manure and 

sawdust [52], or vegetable waste combined with cow dung [53]. Regardless of the source, 

the vermicomposting end-product tends to have higher nutrient content than traditional 

compost (Table 2) [24,30,49]. 
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Table 2. Nitrogen (N), phosphorus (P), and potassium (K) content of different organic fertilizers 

(Source: Chanda et al., 2010 [34]; Murmu et al., 2013 [54]; Hernandez, 2010 [52]). 

Element Vermicompost Farmyard Manure Bacterial Compost 

N (%) 1.3–1.84 1.10 1.40 

P (%) 0.92–1.3 0.42 0.016 

K (%) 0.21–1.2 2.00 0.55 

5. Use of Vermicompost 

Vermicompost has been applied as an organic fertilizer to multiple crops in green-

houses and in open fields. As well as supplying plant nutrients, it has been used as a plant 

growth regulator, a bio pesticide, and as a soil amendment agent. The vermicomposting 

process is also a useful method for recycling solid organic wastes. Applications of ver-

micompost are described below in more detail. 

5.1. Plant and Soil Nutrients Supply 

Vermicompost has high concentrations of humus, nitrogen (2–3%), phosphorous 

(1.55–2.25%), potassium (1.85–2.25%), micronutrients, and beneficial soil microbes such as 

nitrogen-fixing bacteria, mycorrhizal fungi, phosphate solubilizing bacteria, and actino-

mycetes [15,40]. Bio-oxidation and stabilization of organic matter and biomass occur dur-

ing the vermicomposting process and increase enzymatic activities such as amylase, li-

pase, cellulose, chitinase, urease, dehydrogenase and phosphatase, and microbial popu-

lations [15,55,56]. For example, vermicomposting stimulates nitrogenase enzyme activity, 

and therefore nitrogen mineralization and nitrogen availability. Mineralization of nitro-

gen induces phosphorus availability and uptake. Additionally, vermicomposting also in-

creases the availability of other nutrients such as soluble potassium, nitrates, calcium, and 

magnesium [44]. Vermicompost application increases the availability of nitrogen in soil 

mostly in the form of nitrate relative to ammonium due to better soil aeration [24]. Plots 

treated with vermicompost showed higher levels of total N [57]. In parallel, phosphorus 

was shown to be more available, and it was released in large amounts due to microorgan-

ism activity [15]. Interestingly, reports have shown that when vermicompost is applied in 

combination with commercial NPK fertilizer, nitrogen availability improved to a greater 

extent than when only NPK fertilizer was applied [58]. It has also been proposed that, due 

to the slow mineralization of N with the use of vermicompost, its application leads to 

improved crop yields and an increase in plant leaf area and number of leaves per plant 

[58]. Furthermore, with the application of vermicompost, the organic matter releases the 

nutrients slowly and steadily into the soil and allows the plants to absorb the available 

nutrients. Hence, the application of vermicompost leads to an increase in cation exchange 

capacity [59]. High activity of basic cations, e.g., Ca, Mg, K etc., was also reported in the 

vermicast (earthworms castings) compared to soil [38]. 

Vermicompost has been included in plant nutrient management programs in large-

scale greenhouse production systems. For both fruit and vegetable crops cultivated in 

greenhouses, when vermicompost is used as a growing medium alone or in combination 

with soil, it has been shown to improve the release and availability of plant nutrients. 

Hence, a fertigation practice in greenhouse production systems that includes vermicom-

post would substitute other plant nutrients within the range of 20–40%. Under large open 

field conditions, vermicompost is typically applied to soil at a rate of 1–5 tons ha−1 yr−1 

[60]), unless the soil is unfertile where it is applied in larger doses. The application of ver-

micompost significantly improves the organic carbon content in soil as it is enriched with 

stable organic matter [44,61]. The application of fully decomposed vermicompost has been 

shown to reduce the loss of nutrients through leaching [24], due to an increase in total soil 

organic carbon [62]. In addition, vermicompost helps to remediate the stability of the soil 

from toxicity [63]. This shows that the application of vermicompost in soil enhances soil 

physicochemical properties and biological activity, and, thereby, crop production [64]. It 
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has been reported that the population of microbes is more than three times greater where 

vermicompost is applied compared with a control (only soil) [65]. 

Nonetheless, there are reasons to approach the use of vermicompost with caution 

[29]. A few studies have shown negative impacts on plants and soil, typically related to 

the quantity of vermicompost applied. The application of higher percentages of ver-

micompost could create an uncomfortable zone for root growth, which directly induces 

phytotoxicity [66,67]. Furthermore, high concentrations of vermicompost could result in 

the rapid destruction of the plant due to the accumulation of salt in the soil. 

5.2. Growth Regulator 

Many studies have reported that improvement in plant growth parameters is 

achieved rapidly with the addition of vermicompost [68]. Vermicompost application en-

hances the release of plant hormones, which lead to desirable changes in plant growth 

parameters [40]. The presence of gibberellic acid (GA) in vermicompost influences Ca and 

K uptake and leads to better development of shoot elongation [69]. Experiments on the 

use of vermicompost along with other organic matter substrates show that it leads to rel-

atively more branching than where inorganic fertilizer is used alone, due to phytohor-

mones in the vermicompost [34]. Additionally, the quality of humic and fulvic acids orig-

inally obtained from animal manure is improved through the vermicomposting process: 

vermicompost retains humic and fulvic acids in more active forms, which act as growth 

promoters similar to hormones and lead to plant nutrients being converted into bioavail-

able mineral nutrients [30,70]. Consequently, the application of vermicompost improves 

fruit quality parameters such as firmness, color, and the multiplication of marketable 

fruits [71]. Improved lettuce weights and plant heights were reported where vermicom-

post was used due to the presence of the plant growth regulators viz. auxins, IAA, gibber-

ellins, and cytokinins in plots treated with food and paper vermicomposts [52,57,66]. Ver-

micompost application is reported to have led to improved seed germination in cabbages, 

radishes, and Swedish turnips [72,73]. Similarly, vermicompost was shown to accelerate 

the germination of beetroot, bean, and pea seeds [74], as well as tomato and marigold 

crops [34,57,72]. Results also suggest that leaf chlorophyll, carotenoid content, and the 

efficiency of plant photosynthesis also improved [75]. Some reports show that the concen-

tration of essential oils in the leaves of mint plants (Thymus vulgaris) also increased with 

the use of vermicompost, as did total concentrations of carbohydrates, fiber, and vitamin 

C in cabbage heads [76]. Similarly, tomato crops treated with vermicompost were shown 

to have higher Ca and vitamin C contents compared with control plots. Due to better in-

teractions between microbes and vermicompost, tuber quality (based on N and protein 

content) in potato crops improved when treated with vermicompost [73]. 

In some studies, plants grown with pot mix and vermicompost as growing media 

produced better quality and heavier products than those treated with plant growth regu-

lator Metro-Mix 360 (Sun Gro Horticulture, Agawam, MA 01001, USA) [57]. Similar trends 

were also observed in the production of different seasonal crops such as okra, cucumber, 

pepper, eggplant, strawberry, and Amaranthus species [44,53,77–84]. 

5.3. Bio-Pesticide 

The digested organic waste in the form of earthworm casts contains antifungal com-

pounds such as phenolic substances, which contribute to plants’ defense mechanisms and 

help combat the spread of disease and attacks from pests [75]. The synthesized hormones 

strengthen the plants and create a barrier for pathogen multiplication [75,85,86]. Protec-

tion of plant system against diseases is also possible because of the availability of oxidative 

enzymes in the earthworm casts. These oxidative enzymes facilitate the formation of a 

lignin (via the phenylalanine ammonia lyase (PAL) enzyme) which, in turn, reinforces the 

cells of the plant [75]. It has been shown that actinomycetes present in vermicompost help 

develop resistance within the plants cells and improve their ability to combat pests and 

diseases [40]. This combating mechanism is mainly due to microbially-mediated synthesis 
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of the enzyme chitinase, which breaks down the chitin in the insect exoskeleton [87]. It 

can be deduced that the promotion of enzymatic activities through vermicompost appli-

cation both ameliorates and promotes soil rehabilitation/regeneration and leads to the 

protection of plant cells and their ability to tolerate biotic and abiotic stress [46,88]. E. eu-

geniae creates a barrier to soil against contamination with glyphosate-based herbicides 

(GBH) [89]. 

Field experiments also suggest that the application of vermicompost leads to the sup-

pression of diseases and a reduction in pest attacks. Application of vermicompost to a 

field site was shown to reduce attacks by jassid (Empoasca verri) and aphids (Aphis 

cracivora) [90]. It was also associated with reduced incidences of parasitic fungi such as 

Pythium, Rhizoctonia, and Verticulum as well as populations of parasitic nematodes and 

other types of parasite. The application of vermicompost was also associated with a re-

duction in the growth of Fusarium oxysporum f. sp. Lycopersici in an in vitro trial [91]. Ex-

periments consistently show that plants are more resistant to insect attacks where ver-

micompost is used and the final plant products are less damaged by sucking or chewing 

by insects. This was attributed to the presence of organic matter in the vermicompost 

which, in turn, provides a suitable environment for a balanced nutrient regime required 

for plant growth and better physiological development [92–94]. With a dose of 75% (by 

volume), vermicompost was applied in the cultivation of balsam (Impatiens wallerana), and 

this was linked to a reduction in the occurrence of Rhizoctonia disease [95]. A significant 

reduction in numbers of mealy bugs was observed in the pots of pepper plants that were 

treated with varying percentages of vermicompost [92]. It has also been observed that the 

spray application of aqueous vermicompost is effective in controlling foliar diseases. It 

was demonstrated that 20% of the aqueous solution could suppress the numbers of aphids 

on tomato plants for up to 14 days [60]. 

5.5. Recycling of Solid Waste 

Vermicomposting creates a win-win situation by offering a means of recycling or-

ganic waste as well as an organic fertilizer [14]. The waste utilized in the process of ver-

micomposting remains a key parameter for determining the nutrient value of the “end 

product”. A wide range of parent materials can be used in vermicomposting, such as food 

waste [70], sugarcane trash, sugar industry bi-products, municipal organic waste, bio sol-

ids, animal manures [48,96], and paper [97]. It was found that pig manure vermicompost 

produces a humus-rich odor free vermicast with Zn and Cu as the limiting nutrients [20, 

98]. Vermicompost produced from sugarcane trash showed the following composition: 

24.62% organic carbon, 1.14% nitrogen, 0.46% phosphorus, and 1.61% potassium [30]. 

However, vermicompost prepared from sugar industry waste bagasse is enriched with 

nutrients, with 55.53% organic carbon, 0.26% total Kjeldahl nitrogen, a C:N ratio of 213.57, 

a Zn concentration of 21.54 mg kg−1, and an Mn concentration of 16.79 mg kg−1 [99]. Some 

studies favor a 50:50 mix of bagasse and cattle dung, which gave optimal results in terms 

of earthworm biomass, cocoon production, and hatchling formation [99,100]. Conversely, 

vermicompost produced from of a 100:0 mix of bagasse and cattle dung resulted in a max-

imum increase of total nitrogen, which was attributed to the deterioration of dead earth-

worm tissue and a subsequent improvement in nitrogen content in the vermicompost [99]. 

Furthermore, analysis shows that the use of bagasse mixed with cattle dung induces a 

reduction in total organic carbon, which was more pronounced in the 50:50 mix compared 

to the 100:0 mix. The total productivity of vermicompost was amplified when sugar cane 

bagasse was combined with rice straw [100]. 

6. Potentiality of Vermicompost in South Pacific Island Countries 

South Pacific Island Countries (PICs) are scattered across the world’s largest ocean, 

which covers almost one third of the Earth’s surface. They comprise only a very small 

landmass and have a tropical climate with little seasonal variation. Agriculture remains 

the backbone of the SPIC economies: it is the main source of livelihood for the population 
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as well as a major export earner. Agriculture in most of the SPICs still mostly follows 

traditional subsistence farming systems, very much in line with organic agriculture prac-

tices with no or minimal use of chemical inputs. This leads us to believe that there are 

good prospects for incorporating vermicomposting into organic traditional subsistence 

farming systems in the SPICs. The potentiality of vermicomposting in the SPICs is ana-

lyzed below with considerations of climate, soils, economy, and existing agriculture sys-

tems. 

6.1. Availability and Adaptability of Earthworm Species Suitable for Vermicomposting 

To exploit the possibility of vermicomposting in the SPICs, such as Samoa and Fiji, 

the suitability of endemic earthworms for vermicomposting needs to be investigated. If 

the native earthworm species do not perform well in vermicomposting, non-endemic spe-

cies need to be imported. The success of the vermicomposting process is greatly depend-

ent on the adaptability of the earthworm species, with different factors influencing their 

performance. The selection of appropriate earthworms for vermicomposting should fol-

low a set of criteria, which include (a) ease of culturing, (b) high reproduction rate, (c) high 

affinity for the substrate, and (d) high rate of vermicomposting. Furthermore, one must 

consider the following parameters that determine the activity and the distribution of 

earthworms: (a) food, (b) moisture, (c) temperature, (d) light, (e) pH, and (f) protection 

from predators [101]. A handful of sources within the literature have commented on the 

availability and suitability of earthworms in the SPICs (Table 3). Perionyx excavatus and 

Pontoscolex corethrurus were identified in Upolu of Samoa and Fiji [102]. Additionally, Eu-

drilus eugeniae was found in St Helena [103] and Polypheretima elongate species activity was 

recorded in American Samoa [104]. Initial screening showed that Eisenia fetida is well 

adapted under SPIC conditions [105]. The use of Eisenia fetida will increase the efficiency 

of the vermicomposting process in SPICs as observed elsewhere [48,70,75]. It is important 

to mention, however, that E. fetida is not endemic to Samoa, and neither to Fiji [105]. The 

preference for this species is based on its identified antifungal trait, which has the capacity 

to suppress certain diseases, such as Fusarium moniliforme, as well as its rapid development 

and endurance [43]. Studies have suggested that, along with E. fetida, other earthworm 

species such as Eudrilus eugenia and Perionyx excavatus also exhibited a greater ability to 

decompose a wide range of organic wastes. All these species have a high reproduction 

rate and inhabit the humus-laden upper layers of garden soil. P. excavatus has a life cycle 

of 40–71 days and tolerates a temperature range of 20–30 °C, dying at temperatures below 

5 °C and above 30 °C [55]. Eisenia fetida tolerates a similar temperature range to that of P. 

excavatus, but can also live at higher temperatures up to 40 °C [82]. Other beneficial traits 

associated with E. fetida include its ability to adjust to a greater variety of organic waste 

types with a wide range of moisture contents (75–90%). Interestingly, E. eugeniae is the 

preferred vermicomposting species used in some tropical countries due to its rapid mul-

tiplication and thus high volume. It can tolerate higher temperatures (25–30 °C) but its 

reproduction and growth rates decrease considerably at below 15 °C. It can tolerate a 

range of moisture content of 80–82% and its life cycle is 50–70 days [55]. 

Studies investigating the potential of vermicomposting under SPICs are limited and 

so it has not been commonly integrated into farming practices. However, a vermicom-

posting startup program has been initiated by the Grace Road Food Company based in 

Suva, Fiji. At the start, the company obtained the earthworm, Eisenia fetida (the “Red Wig-

gler”) from Australia. Since then, the earthworms have multiplied and the company con-

tinues to use the same culture in vermicomposting. 
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Table 3. Potential earthworm species for vermicomposting in South Pacific island countries. 

Earthworm Species Reference 

I. Indigenous  

Perionyx exavatus [102] 

Pontoscolex corethrurus [102] 

Polypheretima elongate [104] 

Eudrilus eugeniae [103] 

II. Introduced  

Eisenia fetida [105] 

6.2. Traditional Organic Farming Systems 

Organic farming with minimal or no use of chemical fertilizers is commonplace in 

traditional farming practices in the SPICs. Due to the high cost of chemical fertilizers, in 

some SPICs it is obligatory for farmers to use organic fertilizers. However, many still opt 

to use chemical fertilizers for ease and rapidity. 

Most of the SPIC governments emphasize the importance of using natural or organic 

inputs into the production of crops and some of them restrict chemical use in agriculture. 

For example, the Republic of Kiribati announced a policy regarding the restriction of 

chemical applications in agriculture, unless permission is granted. The Food and Agricul-

ture Organization of the United Nations is in partnership with some small islands in the 

South Pacific to reinforce food self-reliance and reduce the dependence of food imports 

[106]. Many islands have organizations and institutions that educate scholars and farmers 

about chemical fertilizers and there is an emphasis on sharing knowledge about compost 

preparation and usage. In Niue, the Cook Islands, and the Republic of Marshall, organic 

farming is highly recommended. Niue is in the process of being named an ‘Eco-Nation’ 

that practices exclusively organic farming. In the Solomon Islands, a guide has been pub-

lished to educate farmers about different methods of organic food production [106]. This 

shows that organic farming is considered an integral part of the economic evolution and 

food security of each nation. We propose that vermicomposting could be a good option 

for promoting organic farming in the region. Some SPICs (particularly atoll nations) are 

dealing with soil infertility and subsequent reductions in crop yield. The input of ver-

micompost could be applied in these soils to determine the extent to which it can replenish 

their nutrient content. The benefits of the product should also be examined in the high-

salt soils that exist in many of the SPICs. 

6.3. Tropical and Sub-Tropical Climates 

The activity and productivity of earthworms in vermicomposting are highly influ-

enced by temperature and humidity. Some species have a tolerance to higher tempera-

tures while others produce more cocoons in cold environments. Indeed, the most com-

monly used vermicomposting species, E. fetida, performs profitably in a temperature 

range of 0 to 35 °C and the same range is applicable for P. excavatus and a few other species 

[82,107]. The vermicomposting process requires a temperature around 10 °C to 32 °C [40]. 

The question remains whether their optimal temperature ranges are aligned with the tem-

peratures in the SPICs. 

The annual temperatures of the SPICs are very similar. Among them, the lowest av-

erage annual temperature registered at 20 °C and the highest at 31 °C. Samoa has an an-

nual average temperature of 28.5 °C [108]. The Australian Bureau of Meteorology and 

CSIRO (2011) [109] reported an annual average temperature in the Cook Islands of 24.5 

°C in the South and 28 °C in the North, an annual temperature range of 23.5–27.5 °C in 

Vanuatu, and 20–27 °C in Fiji. Additionally, Kiribati has an average annual temperature 

of 27 °C [109, 110]. Therefore, the SPICs have a climate that is suitable for maintaining the 

fertility and growth of earthworms. 
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6.4. Availability of Biomass for Vermicomposting 

The South Pacific region has a year-round growing season. Due to the high temper-

atures, high humidity, heavy precipitation, and fertile volcanic soil, there is continuous 

growth of large amounts of plant biomass that could be used as the raw material for ver-

micomposting alone or in combination with locally available pig, poultry, or cattle ma-

nure. In addition, Fiji has a large sugarcane industry that produces lot of sugarcane bag-

gage and trash. Utilization of these industrial by-products (waste) for vermicomposting 

would be beneficial for these industries as it allows them to be recycled. Vermicomposting 

would transform these wastes into a product that can be used for promoting organic ag-

riculture in this region. Moreover, the rapidly expanding urbanization in this region pro-

duces huge amounts of organic waste that are presently only partially collected and 

mostly landfilled. This waste causes environmental pollution and greenhouse gas (GHG) 

emissions, as they are not managed sustainably. Thus, recycling of organic waste through 

vermicomposting may reduce the deterioration of the environment as well as produce 

organic inputs for agriculture. 

6.5. Demand for Biopesticides 

As with chemical fertilizers, pesticides are not easily accessible by the farmers of 

SPICs, and therefore, are not widely used in agriculture in the SPICs. Vermiwash can be 

used as a growth fertilizer [111], but also as bio pesticide. It produces a layer of protection 

for the plants against diseases and pests. The fungus, Phytophtora colocasiae, is one of the 

major sources of crop destruction in taro production within the SPICs. There has been no 

effective method found to date to control the destructive impact of the fungus especially 

in Samoa, except with synthetic chemicals, but their high cost makes their use prohibitive 

and they have harmful effects on the environment [112]. Vermiwash could provide a sus-

tainable environmentally friendly alternative and should be investigated as a means of 

effectively protecting these crops from disease. In addition, it could be used to control wilt 

disease in banana crops in the Solomon Islands [113], Panama disease in banana crops 

(Musa sp.) in Vava’u, or to fight against Yam anthracnose (Glomerella cingulata), which 

affected several countries in the South Pacific [113]. 

6.6. The Low-Tech Nature of Vermicomposting Systems 

The materials used in the vermicomposting process are mostly handmade. The struc-

tures are built using cement blocks, wood, or plastic materials. The three main types of 

vermiculture systems are as follows: beds or bins, flow-through reactors, and windrows 

[87,114]. All of them are affordable but the choice of the system and its methodology 

should be made and mastered to suit South Pacific crop production systems, weather con-

ditions, and the availability of materials. 

6.7. Suitability for SPICs Crops 

South Pacific agriculture incorporates a lot of organic inputs and organic farming 

continues to be promoted in the region, as there is an increased demand for high quality 

products in export markets. In addition, there is a national desire of SPICs to protect the 

environment, biodiversity, and family farming structures. To address this, vermicompost 

could be very much suitable as an organic fertilizer. Most of the crops cultivated in the 

region, viz. sweet potato, taro, cassava, tomato, capsicum, spinach, watermelon, squash, 

okra, eggplants, ginger, papaya, banana, and lemon, respond well to vermicompost based 

on the literature from other parts of the world (Table 4). 
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Table 4. Potential South Pacific Islands crops that might benefit from vermicompost application. 

Crops Vermicompost Application Rate Reference 

I. Field crops   

Taro (Colocasia esculenta) 5–10 t/ha [115] 

Sweet potato (Ipomoea batatas) 10–15 t/ha [116,117] 

Cassava (Manihot esculenta) 5–10 t/ha [118,119] 

Sugarcane (Saccharum officinarum) 5 t/ha [120] 

II. Horticulture crops   

Eggplant (Solanum melongena L.) 3–6 t/ha [121] 

Tomato (Solanum lycopersicum) 5 t/ha [122,123] 

Okra (Abelmoschus esculentus) 5 t/ha [124] 

Capsicum (Capsicum annuum) 10 t/ha [24] 

Water melon (Citrullus lanatus) 10 t/ha [125] 

Ginger (Zingiber officinale) 2–5 t/ha [126] 

Turmeric (Curcuma longa) 2–5 t/ha [126] 

Papaya (Carica papaya) 20 kg/plant [127] 

Coconut (Cocos nucifera L.) 2–20 kg/plant [115] 

6.8. Required Adaptive Research 

Although the literature suggests that production and use of vermicompost is very 

much feasible in the region, some tailor-made adaptive research interventions are re-

quired for adjusting the technology under Pacific agro-eco systems. The following are 

some suggestions for future adaptive research: 

Assessments of the suitability of native earthworm species for vermicomposting; 

Analysis of the suitability of available raw materials (substrate) for vermicomposting; 

Standardization of protocols for vermicompost production in a Pacific context; 

Situation-based crop response studies; 

Awareness development for adoption of vermicompost use. 

7. Conclusions 

The South Pacific region has a suitable climate and sufficient amounts of organic bi-

omass for promoting vermicomposting technology. Furthermore, the declining soil fertil-

ity of the South Pacific region must be addressed if they are to sustain food security. More-

over, the organic based agriculture system of the South Pacific region requires organic 

inputs. Thus, it can be concluded that vermicomposting has a high potential in this region 

for sustaining organic based agricultural production systems and improving the environ-

ment. However, some adaptive research is required to identify suitable and efficient earth-

worm species and utilization of locally available biomass before promoting this technol-

ogy to farmers. 
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