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1  Introduction

Weather and climate are key drivers of all ecological and 
socioeconomic systems (Steiner, 2018). Global warming 
has led to significant climate changes, including shifts in 
weather patterns and an increase in the intensity and fre-
quency of extreme weather events (IPCC, 2023a). These 
extreme events can result in devastating loss of lives and 
property if not managed well. Small island nations in the 
South Pacific are particularly vulnerable to climate change 
due to their heavy reliance on weather- and climate-depen-
dent sectors for socioeconomic sustainability, and their 
geographic location (IPCC, 2023b). Rainfall is one of the 
most significant and challenging climate variables to fore-
cast. Seasonal rainfall forecasts are invaluable for sectors 
such as agriculture, water management, tourism, and disas-
ter preparedness, providing essential information to aid 
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Abstract
Accurate and skillful seasonal rainfall forecasting is crucial for various socioeconomic activities, particularly providing 
essential climate information for agricultural planning and decision-making, prepare and respond to disasters such as 
droughts, landslides and floods and provide support to water resources management. In Fiji, where the economy is highly 
reliant on rainfall, reliable forecasts can significantly mitigate the adverse impacts of hydroclimate variability. Although, 
Fiji Meteorological Services (FMS) issues seasonal rainfall forecast for the country, validation of forecasts has not been 
done before. This study aims to evaluate the seasonal forecasts for the Fiji Islands using probabilistic verification meth-
ods to assess their accuracy and skill. The forecasts, produced by the FMS, are analyzed through probabilistic categories: 
below-normal (BN), normal (N), and above-normal (AN), across five regions of Fiji (Western, Central, Eastern, and 
Northern Divisions, and Rotuma). To assess forecast performance, the study compares the regional seasonal forecasts with 
observations from the FMS. Additionally, the study delineates the climatological zone for Fiji to ensure consistency in the 
forecast approach. The results show that the percentage correct exceeds 50%, and the Probability of Detection indicates 
that more than half of the forecasted categories are accurate. However, the False Alarm Ratio shows that 60% of the 
forecasted events are false alarms. In terms of the Critical Success Index for N category, all Divisions and Rotuma (except 
Eastern Division) show that more than half of N rainfall events are correctly predicted based on observations. The Heidke 
skill score ranges from 0.23 (Western Division) to 0.003 (Rotuma), indicating varying degrees of forecast skill across 
the regions. The study also identifies that some stations belong to different climatological zones than initially assumed. 
Therefore, there is a need to improve the seasonal forecasts, and the use of consistent and homogeneous climatological 
zones is recommended to enhance forecast accuracy.
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decision-making and reduce the risks associated with cli-
mate variability (Gold et al. 2019; Shah et al. 2017).

Seasonal rainfall forecasts play a vital role in minimizing 
the loss of lives, preventing destruction of property, and aid-
ing in the planning of agricultural activities such as timing 
for planting and harvesting (Ministry of Agriculture 2014; 
Bruno Soares et al. 2018). Over the years, the accuracy of 
weather forecasts has significantly improved globally fol-
lowing advancements in computer technology, numerical 
models, and the availability of quality climate data. Sev-
eral studies have explored the value of weather forecasts 
and their applications across various socioeconomic sec-
tors (Hewitt et al. 2013). However, the primary criterion for 
any forecast is that it must accurately predict the observed 
weather conditions, perform better than the climatology of 
the area of interest and provide a measure of uncertainty to 
assess forecast reliability.

Fiji has experienced extreme rainfall events that have 
led to floods and droughts. During the 2015–2016 rainfall 
season, a severe drought affected 50% of the population, 
prompting the need for humanitarian assistance (Glantz 
2022). In 2012, Fiji recorded two of its most devastating 
floods. The first occurred in January, resulting in eight fatali-
ties, with roads washed away and extensive damage to crops 
and infrastructure. The estimated loss was around FJ $40 
million (Kuleshov et al. 2014). The second event occurred in 
March, causing widespread destruction on the western side 
of Viti Levu. Businesses, residential areas, and infrastruc-
ture suffered significant damage, including the destruction 
of major roads and bridges (Kuleshov et al. 2014), with total 
damages estimated at FJ $70 million (Kuleshov et al. 2014). 
Floods have severe impacts on Fiji’s agriculture and tour-
ism sectors as well. These two sectors are the pillars of the 
economy, especially for the rural population, with 35.72% 
of the total employment in agriculture (International Labour 
and Organisation 2021). The sugar industry, one of Fiji’s 
most significant agricultural sectors, occupies 50% of the 
country’s cultivated land and employs a quarter of the labor 
force (Meier et al. 2023). Sugar production, like many other 
agricultural activities, is highly dependent on weather and 
seasonal climate variations (An-Vo et al. 2019). Given the 
vital role of weather in these sectors, assessing the contribu-
tion and effectiveness of weather and seasonal rainfall fore-
casts is crucial. However, studies on agriculture in Fiji often 
fail to give due consideration to the importance of weather 
forecasts, nor do they assess the accuracy of these forecasts.

Timely and accurate seasonal rainfall forecasts are crucial 
for the agricultural sector, providing farmers with essential 
information for planning, especially during planting and 
harvesting seasons. This information helps farmers make 
informed decisions about crop management, such as select-
ing appropriate crops, determining optimal planting times, 

need-based fertilizer application, and planning for harvests 
while developing adaptation strategies (Bedane et al. 2022). 
In rainfed agriculture, the intensity, timing, and duration of 
seasonal rainfall significantly influence crop yields (Wakjira 
et al. 2021). Therefore, reliable seasonal rainfall forecasts 
are vital for guiding farmers’ decisions and reducing losses 
associated with climate-related risks (Guido et al. 2020). 
Similarly, such forecasts can aid government planning by 
allowing authorities to anticipate and address food insecu-
rity and drought preparedness in case of poor rainfall and 
early action to reduce flooding impacts from severe rain-
fall. The adverse consequences of inaccurate seasonal fore-
casts on public health and key socioeconomic sectors pose 
a threat to the realization of several United Nations Sustain-
able Development Goals (SDGs) (IPCC, 2023b).

The Fiji Meteorological Services (FMS) produces a vari-
ety of weather products, including seasonal forecasts. Two 
key models historically used by the FMS are the Rainfall 
Prediction Model (RPM) for three-month period forecasts 
and the Australian Rainman (AusRain) for monthly rainfall 
forecasts (Pahalad and McGree 2012). The RPM was origi-
nally based on successful schemes developed by the Aus-
tralian Bureau of Meteorology’s National Climate Centre 
(NCC) (Pahalad and McGree 2012). FMS aligns its fore-
casting regions with Fiji’s administrative divisions: Central, 
Eastern, Northern, and Western, while considering Rotuma 
as a separate entity due to its geographical isolation. The 
seasonal rainfall forecasts are produced using statistical 
models that link the Southern Oscillation Index (SOI) with 
subsequent three-month rainfall totals. For each Division, 
two sets of forecasts are generated. The first scheme utilizes 
the SOI averaged over the most recent three-month period, 
while the second scheme uses the SOI averaged over two 
consecutive three-month periods, covering the initial three 
months of the most recent six-month period (Pahalad and 
McGree 2012). The RPM became operational in July 1999 
and was further refined in March 2000 by the Climate Ser-
vice Division of FMS to cover twenty-five individual sites 
across four Divisions. For each site, probabilities were 
calculated for low, medium, and high rainfall in the com-
ing three months (Shiwangani S, personal communication, 
October 12, 2023). However, the RPM was phased out in 
2005. Since 2006, FMS has relied on the Seasonal Climate 
Outlook for Pacific Island Countries (SCOPIC; Cottrill and 
Kuleshov, 2014) as its main tool for producing seasonal cli-
mate outlooks on a 3- to 6-month timescale.

SCOPIC is a stand-alone seasonal climate prediction 
system that employs discriminant analysis, specifically mul-
tiple linear regression, to assess the correlations between 
sea surface temperatures or SOI and monthly rainfall. This 
scheme is used to forecast rainfall at different lead times 
based on these relationships (Cottrill et al. 2013). When 
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forecasting seasonal rainfall for a 3-month period, SCOPIC 
uses observed rainfall data from the current 3-month period 
to identify similar oceanic patterns from historical records, 
known as analog years. These historical patterns serve as 
reference points when compared to current conditions that 
exhibit similar characteristics. Based on these analogs, 
SCOPIC computes (in tercile probabilities) the most likely 
rainfall categories (below-normal, near-normal, and above-
normal) for the following three-month period (Fiji Meteoro-
logical and Services 2020). In addition to SCOPIC, the FMS 
also incorporates global models from the National Centers 
for Environmental Prediction (NCEP) and the European 
Centre for Medium-Range Weather Forecasts (ECMWF) to 
compare and develop a consensus for the seasonal forecast 
for the Fiji Islands.

Various approaches are used for seasonal forecast verifi-
cation, each with different resolutions and methodologies. 
These methods differ in their accuracy and are suitable for 
specific locations and contexts (Ferranti et al. 2015). Evalu-
ating seasonal forecasts is essential for improving tech-
niques (Guido et al. 2020). Forecasts can be assessed either 
qualitatively or quantitatively, using different approaches to 
measure various aspects of forecast quality (Brown 2001). 
Due to their probabilistic nature, seasonal forecasts describe 
a range of possible climate outcomes and, therefore, require 
appropriate ensemble verification tools to effectively assess 
their quality. Numerous metrics have been developed to 
evaluate different characteristics of forecast quality (Calì 
Quaglia et al. 2022). The FMS seasonal forecasts are pro-
vided as probabilities of rainfall occurrence, requiring the 
transformation of probabilistic forecasts into a contingency 
table to calculate forecasting skills (WWRP/WGNE, 2009). 
Probabilistic forecasts can be dichotomous (yes/no), multi-
categorical, or ensemble-based (Brown 2001). This study 
uses a multi-categorical verification process to evaluate the 
FMS seasonal rainfall forecasts.

Classifying a multi-category probabilistic forecast as 
‘good’ or ‘bad’ based only on correct or incorrect forecasts 
is challenging. For example, a multi-category probabilistic 
forecast outcome is never exactly 0%. When the probabil-
ity is greater than 0%, it suggests that any outcome could 
potentially be correct. Therefore, it is important to define the 
attributes that make a probabilistic forecast ‘good’ (Mason 
2015). According to Murphy (1993), a good weather fore-
cast can be classified based on consistency, quality, and 
value. This study focuses on evaluating the quality of sea-
sonal forecasts. However, forecast quality cannot be mea-
sured by a single metric, given that several attributes (such 
as resolution, discrimination, reliability, and skill) contrib-
ute to what constitutes a ‘good’ probability forecast (Mason 
2015). For probabilistic forecasts, reliability and resolution 
are particularly important in determining forecast quality 

(Ben Bouallègue and Theis 2014). Reliable forecasts exhibit 
a consistent relationship between each class of forecasts and 
the corresponding distribution of observations (Bröcker 
2023). Resolution refers to how strongly the outcome is 
conditioned by the forecast. When the forecast correctly 
differentiates between different outcomes, it is considered a 
good or useful forecast (Mason 2015).

In this study, the forecasting divisions used by FMS 
were examined. Given Fiji’s small size and the significant 
variability in rainfall across the country, the use of homo-
geneous climate zones is more relevant for seasonal fore-
casting than divisions based on administrative boundaries. 
Some divisions have weather stations located close to each 
other, whereas others have stations separated by ocean bod-
ies, for example, the Eastern division (Fig. 1) which may 
be affected by different weather systems. Forecasting rain-
fall for homogenous climatological zones, instead of using 
administrative boundaries, could improve forecast skill and 
accuracy. This is because station within the same climate 
zone are more likely to be influenced by similar weather 
systems, leading to more consistent and reliable predictions 
(Shahfahad et al. 2022).

Therefore, this study aims to provide a comprehensive 
analysis of the reliability and accuracy of the FMS seasonal 
rainfall forecasts. The findings will serve as a valuable refer-
ence for enhancing the skill and accuracy of seasonal rain-
fall forecasts across Fiji.

2  Study area, data and methodology

2.1  Study area

Fiji is a group of islands in the South Pacific. Rainfall in the 
region displays high spatiotemporal variability (Kumar et 
al. 2014). The country records two main rainfall seasons: 
the dry season from May to October and the wet season 
from November to April. The rainfall seasonality is mainly 
influenced by the movement of the South Pacific Conver-
gence Zone (SPCZ; Mataki et al. 2006). Further, the El 
Niño-Southern Oscillation (ENSO) is known to influence 
the rainfall interannual variability, causing above- and 
below-normal rains during the La Niña and El Niño phases, 
respectively (Kumar et al. 2014; McAneney et al. 2017). 
Tropical cyclones commonly occur in the wet season and 
influence interannual rainfall variability, causing above-
normal rainfall (Kuleshov et al. 2013).

Figure 1 shows the Divisions used by FMS for rainfall 
forecasting, which are based on administrative boundaries 
in Fiji. The Central Division boundary is relatively small, 
with ground stations located close to one another, while in 
other Divisions, stations are more sparsely distributed and 
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Fig. 1 Location of the FMS meteorological stations and the delineation of the Western, Central, Eastern and Northern Divisions, and Rotuma
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Methodology: The 3-month forecasts were obtained from 
the FMS. The forecast data were in the form of probabilities 
of rainfall occurrence. Their reliability was assessed by com-
paring them to the station observation data for 2000–2020. 
The study period starts from 2000 because the forecast data 
only dates to 2000. However, the long-term mean used in 
the study is from 1981 to 2010, which is the climatological 
period used by FMS in their forecasting.

This study employs a multi-categorical probabilistic veri-
fication approach to categorize forecasts into tercile prob-
abilities: below-normal (BN), normal (N), and above-normal 
(AN). Advanced statistical metrics, including Percent Correct 
(PC), Post Agreement (PA), False Alarm Ratio (FAR), Prob-
ability of Detection (POD), Bias, Heidke Skill Score (HSS), 
and Threat Score are utilized to provide a comprehensive 
evaluation. These metrics are chosen for their robustness in 
capturing the nuanced performance of probabilistic forecasts, 
which have been underexplored in Fiji’s unique climate.

The rainfall forecast is verified qualitatively, relative to 
the mean, calculated from 1981 to 2010 period. The clas-
sification is based on standardized anomalies of data, which 
is calculated as follows (Eq. 1)

may be influenced by different weather conditions. This 
study considers Rotuma as a separate division due to its dis-
tance from the major divisions.

2.2  Data and methodology

Data: Daily rainfall data for twenty-one (21) rain gauge sta-
tions for 2000–2020 were sourced from the FMS. The data 
were converted to a seasonal scale by accumulating the daily 
observed rainfall data from all the stations in each Division 
for the November– January and February– April period and 
calculating the mean for each Division. The seasonal data 
were then used to calculate the total rainfall during the study 
period for the Western, Central, Eastern and Northern Divi-
sions, and Rotuma (Fig. 2). This calculation was done for 
the climatological period 1981–2010, since FMS used this 
period for their forecasting. This approach was adopted due 
to the availability of the forecast data, which is provided in 
quarterly intervals: November– January, February– April, 
May– July, and August– October. December– January and 
February– April comprise the wet season, and both were 
computed in the same contingency table for further analysis.

Fig. 2 Distribution of rainfall amount (mm) during the wet season (November– April) based on rain gauge data from 1970–2020
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PA (BN) = BN (Hits)
D

PA (N) = N (Hits)
E

PA (AN) = AN (Hits)
F

 (3)

False alarm serves as a warning for a forecasted event 
that does not occur. FAR gives the ratio of non-events that 
are incorrectly forecasted to the total number of forecasts 
(Barnes et al. 2009). It is given by 1-PA as presented in Eq. 
(4):

FAR (BN) = 1 − BN (Hits)
D

FAR (N) = 1 − N (Hits)
E

FAR (AN) = 1 − AN (Hits)
F

 (4)

POD is a measure of the ability to correctly forecast a cer-
tain category (Eq. 5):

POD (BN) = BN (Hit)
A

POD (N) = N (Hit)
B

POD (AN) = AN (Hit)
C

 (5)

Bias (Eq. 6) measures the relative frequencies of forecast 
and observed events. The bias score ranges from 0 to ∞ and 
indicates whether the forecast system is under-forecasting 
(Bias < 1) or over-forecasting (Bias > 1) (WWRP/WGNE, 
2009).

Bias (BN) = D

A

Bias (N) = E

B

Bias (AN) = F

C
 (6)

SA = Mean rainfall for each division − climatological period mean for the division

standard deviation  (1)

Table 1 A 3 × 3 contingency table showing general weather verifica-
tion classification and general description

Observed
BN N AN Total

Forecast BN BN(Hits) Under 
forecast 
(UF1)

Under fore-
cast (UF2)

BN (Hits) 
+ (UF1) 
+(UF2) = D

N Over 
forecast 
(OV1)

N (Hits) Under fore-
cast (UF3)

(OV1) 
+ N (Hits) 
+(UF3) = E

AN Over 
forecast 
(OV2)

Over 
forecast 
(OV3)

AN (Hits) (OV2) + 
(OV3) 
+ AN(Hits) 
= F

Total BN(Hits) 
+ (OV1) 
+ (OV2) 
= A

{(UF1) 
+ N 
(Hits) 
+(OV3)} 
= B

(UF3) + 
(UF2) + AN 
(Hits) = C

(A + B + C 
OR D + E 
+ F) = T

BN (Hits), N (Hits) and AN (Hits)– are the number of correct fore-
casts in each category. BN, N and AN are below-normal, normal and 
above-normal, respectively. T is the total number of forecast/obser-
vations. A is the number of BN events observed. B is the number 
of N events observed. C is the number of AN events observed. D 
is the number of BN events forecasted. E is the number of N events 
forecasted. F is the number of AN events forecasted. UF1 and UF2 
are the number of under forecasts. OV1 and OV2 are the number of 
over forecasts

The rainfall is classified as normal, below normal and above 
normal, if −1 < SA < 1, SA < −1 and SA > 1, respectively. 
The standardized (classified) observed rainfall is paired with 
the respective forecast and then summarized in a 3 × 3 con-
tingency table (Table 1). Contingency tables provide a com-
mon method of verifying probability forecasts, commonly 
applied in operational meteorology (Gold et al. 2019).

2.2.1  Performance metrics

This study employs various statistical metrics to assess the 
accuracy and skill of the forecasts. Based on the contin-
gency table, common performance metrics are used, such as 
the PC, PA, FAR, and POD.

PC is the ratio of correct forecasts to the total number of 
forecasts (Eq. 2).

PC =
{

BN (Hits) + N (Hits) + AN (Hits)
T

}
∗ 100% (2)

 PA is the ratio of correct forecasts to the total number of 
forecasts for each category. The PA scores for the three clas-
sifications are computed by Eq. 3;
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of factors by maximizing the variance of the squared load-
ings within each factor. This process results in a structure 
where each variable tends to have a high loading on one 
factor and near-zero loadings on others, enhancing inter-
pretability (Kaiser 1970). A Pearson correlation coefficient 
test between stations is done to determine the level of cor-
relation between stations. Kaiser-Meyer-Olkin (KMO) and 
Bartlett’s tests were done to test the suitability of the data for 
PCA. The KMO test evaluates the adequacy of a correlation 
matrix for factor analysis by comparing the magnitudes of 
observed correlation coefficients to partial correlation coef-
ficients. A value closer to 1 indicates that the data are suit-
able for PCA, while values below 0.5 suggest inadequacy.
Bartlett’s Test of Sphericityevaluates the null hypothesis 
that the correlation matrix is an identity matrix (i.e., vari-
ables are uncorrelated). A significant result (typically p < 
0.05) indicates that the data have sufficient correlations to 
justify PCA (Bartlett 1950).

3 Results and discussion

3.1  Climatology of the study area

On Fiji’s two main islands, Viti Levu and Vanua Levu, high 
mountain peaks strongly influence spatial rainfall variability 
through orographic effects. The orographic effect favors the 
mean annual rainfall in the southeastern side of Viti Levu 
(Central Division) that reaches an average of 1980.87 mm 
in the wet season, while the lowlands on the western side of 
Viti Levu (Western Division) are on the leeward side and 
record an annual average rainfall of 1780.10 mm. The North-
ern Division which includes all the stations in Vanua Levu 
experienced a mean annual rainfall of 1,660.4 mm, while 
the Eastern Division received the lowest average rainfall 
at 1,281.4 mm. Rotuma in the far North of the Fiji Islands 
recorded 1,807.7 mm of rainfall. The variations indicate the 
diverse climatic conditions for Fiji Islands, influenced by 
the topography and atmospheric factors.

Figure 3 shows the annual cycle of mean daily rainfall 
over Fiji. The months of January to March receive the most 
rainfall, while July– August record the least amount of rain-
fall. The mean daily rainfall for the study period shows that 
Rotuma (9.54 mm) and the Central Division (8.78 mm) 
receive more rainfall than the other Divisions. The Eastern 
Division records the least rainfall (5.32 mm). These results 
show that the spatial rainfall variability in Fiji is influenced 
by topography, with the windward side (Central Division) 
receiving more rainfall than the leeward side (Eastern Divi-
sion) (Kumar et al. 2014; Mataki et al. 2006). However, 
Rotuma records higher mean daily rainfall than all the other 

2.2.2  Critical success index

Critical Success Index (CSI) is equal to the total number of 
correct event forecasts (hits) divided by the total number 
of rainfall forecasts plus the number of misses (hits + false 
alarms + misses) (Stanski et al. 1989) as given by Eq. (7):

CSI (BN) = BN (HIT )
D + A − BN (HIT )

CSI (N) = N (HIT )
E + B − N (HIT )

CSI (AN) = AN (HIT )
F + C − AN (HIT )  (7)

The CSI is more complete than the POD and FAR since 
it is sensitive to missed events and false alarms (Forecast 
verification for the African severe weather forecasting dem-
onstration projects, 2014). The value for CSI ranges from 0 
to 1, indicating poor to good skill.

2.2.3  Skill score

Although the performance metrics in Eqs. (1–7) give a 
commonly employed overview of forecast performance, 
skill scores are necessary to determine the true quality of 
a forecast.

The HSS (Heidke 1926; Eq. 8) measures the fraction of 
correct forecasts, which excludes those forecasts that would 
be correct due to purely random chance (WWRP/WGNE, 
2009) and compares the forecast performance to a refer-
ence. HSS varies from -∞ to 1, where a negative value indi-
cates that the random forecast is better, 0 indicates no skill 
compared to the random forecast and 1 indicates a perfect 
forecast (Sahu et al. 2022).

HSS =
[
BN (Hit) + N (Hit) + AN (Hit) − DA+EB+CF

T

]

T − DA+EB+CF
T

 (8)

2.2.4  Principal component analysis (PCA)

To identify uniform climatological zones, Principal Compo-
nent Analysis (PCA) is applied to data from all observation 
stations used in the study. The PCA derives the principal 
components (PCs) through the Varimax rotation with Kaiser 
Normalization method (Kaiser 1970), where the explained 
variance is represented by the eigenvalues. Key parameters 
from each PC are determined by selecting error indices 
whose factor loadings or eigenvalues fall within 10% of the 
highest factor loading. The Varimax rotation is an orthogo-
nal rotation method designed to simplify the interpretation 
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3.2 Seasonal rainfall forecast evaluation using 
contingency table matrix

The frequency of each tercile is calculated for the 5 regions 
(Northern, Eastern, Central, and Western Divisions, and 
Rotuma) to generate the contingency table for the forecast 
period (Table 2.). Western Division has 7 stations, Central 
Division has 3 stations, Eastern Division has 4 stations, 
Northern Division has 6 stations and Rotuma has 1 station. 
The Western Division and Rotuma have missing data for 2 
seasons. Hence, there are 37 seasons for the Western Divi-
sion and Rotuma, while the other Divisions have 39 seasons. 
Missing data accounts for less than 10% of the complete 
data set.

3.3 Assessment of seasonal rainfall forecast using 
performance metrics

3.3.1  Percent correct

The PC results (Fig. 5) indicate that more than 50% of the 
forecasts match the observed values for all the divisions. 
The analysis reveals that the Percent Correct (PC) is high-
est for the Western Division (62.2%), indicating a relatively 

Divisions since it has no mountainous barriers and receives 
abundant and consistent oceanic rainfall (Deo 2011).

Figure 4 shows the standardized rainfall anomaly over 
Fiji from 2000 to 2020. The graph shows that rainfall exhib-
its large interannual variability across all Divisions over 
the 20 years. Generally, the study area receives higher than 
average rain during 2008, 2009, 2011, 2012, 2017, and 
2018, which coincides with La Niña years, whereas 2003, 
2004, 2005, 2006, 2007, 2009, 2010, 2011, 2013, 2014, 
2015, 2016, 2019 and 2020 exhibited lower than average 
rainfall, coinciding with El Niño years. Inter-annual rain-
fall variability is strongly associated with ENSO activity. 
During an El Niño event, depressed rainfall is observed in 
the Fiji Islands, and the opposite occurs during a La Niña 
event. However, Rotuma presents a nearly inverse pattern 
compared to all the other Divisions. This is due to the posi-
tion of the SPCZ. In the La Nina years, Rotuma tends to 
record significant below-average rainfall, whereas during 
El Niño years, it receives above-average rainfall while all 
the other Divisions display contrasting patterns (see Fig. 4). 
The SPCZ is displaced southwest of its normal position due 
to La Nina conditions causing rainfall deficits in Rotuma 
and moves northwards during El Niño years, causing above-
average rainfall for Rotuma (Juillet-Leclerc et al. 2006).

Fig. 3 Annual rainfall cycle (mean daily rainfall) for the Western, Central, Eastern, Northern and Rotuma from 2000 to 2020
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from the forecast range, indicating significant disparity in 
the forecast accuracy.

3.3.3  Probability of detection

POD is not sensitive to FAR and FAR is not sensitive to 
missed events. Since they are both incomplete scores, 
they should be used in connection with each other (Fore-
cast verification for the African severe weather forecast-
ing demonstration projects, 2014). The receiver operating 
characteristic (ROC) curve is plotted using POD and FAR 
to assess the overall diagnostic performance of the fore-
cast to determine the presence and absence of events and 
non-events, hence, discrimination. Figure 7 shows that N 
for all Divisions and Rotuma, and AN for the Western and 
Eastern Divisions occur above the diagonal line, indicating 
POD is always greater than FAR. However, N values for the 
Western and Northern Divisions appear on the upper left, 
meaning forecasts can better distinguish between N events 
than non-events (BN and AN categories). None of the points 
lie on the diagonal line, showing discrimination between 
events and non-events based on the forecasts. The diagonal 
line is where POD equals FAR indicating no discrimination 

better performance in this region. This could be attributed 
to the unique topographical and climatic conditions preva-
lent in the Western Division. Comparatively, the Eastern 
Division exhibits the lowest PC (53.8%), possibly due to 
its dispersed geographical setup. Notably, the Post Agree-
ment (PA) values are significantly higher for the normal (N) 
category across all divisions, reflecting the forecast model’s 
proficiency in predicting average rainfall conditions but 
highlighting its limitations in accurately forecasting extreme 
conditions (BN and AN). This discrepancy underscores the 
need for model improvements to enhance predictive accu-
racy for extreme weather events.

3.3.2  Post agreement

As shown in Fig. 6, the PA values of N categories for all 
Divisions are high (Western: 1.00, Northern: 0.84, Rotuma 
0.75, Eastern: 0.74, and Central 0.68), which shows that the 
forecasted rainfall falls within the observation range more 
than 75% of the time. The PA for all the BN and AN cat-
egory for all Divisions and Rotuma is notably low, which 
suggests that the observed rainfall deviates significantly 

Fig. 4 Standard anomalies of the wet seasonal rainfall for 2000–2020 average over the Western, Central, Eastern and Northern Divisions, and 
Rotuma. The dotted lines denote ± 1 indicating dry and wet years
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close to the upper left, which shows that overall discrimi-
nation is poor. AN for Eastern Division falls almost on the 
diagonal line, indicating no discrimination between events 
and non-events. FAR for BN and AN for all Divisions and 
Rotuma are higher than 0.6, which indicates that over 60% 
of the BN and AN forecasts of the event are false alarms.

3.3.4  Heidke skill score

The HSS results presented in Table 3 show that forecasts 
for all categories are closer to 0, indicating very low skill. 
HSS for the Central Division is −0.15, indicating that the 
forecast is worse than the reference forecast. In this case, 
the reference forecast is a simple random guess as to which 
of the three categories will occur (Forecast verification for 
the African severe weather forecasting demonstration proj-
ects, 2014). The Western Division indicates moderate posi-
tive skill, with a slightly better performance than the other 
Divisions.

3.3.5 Bias

Bias is computed to assess the accuracy of the forecast. 
The results are presented in Table 4. Bias does not measure 
how well the forecasts correspond to the observation, but it 
shows whether the forecasts are underestimating or overes-
timating rainfall (Gold et al. 2019). The results show that 
the forecast is either underestimated or overestimated, with 
generally low skill and accuracy. The Bias analysis results 
(Table 4) indicate a significant deviation from 1 for all cat-
egories. This indicates that the forecasts overestimate and 
underestimate the observed values. However, the BN for the 

between different categories. However, points lie above and 
below the diagonal line, and except for the N category for 
Western and Eastern Divisions, there is hardly any point 

Table 2. Contingency tables for (a) Western Division; (b) Central 
Division; (c) Eastern Division; (d) Northern Division; and (e) Rotuma 
for the wet season (November– April) from 2000–2020. BN, N and 
AN are below-normal, normal and above-normal, respectively

Observed
BN N AN Total

(a) Forecast
BN 0 11 0 11
N 0 20 0 20
AN 0 3 3 6
Total 0 34 3 37
(b) Forecast
BN 0 4 1 5
N 5 21 5 31
AN 0 3 0 3
Total 5 28 6 39
(c) Forecast
BN 1 6 1 8
N 4 17 2 23
AN 1 4 3 8
Total 6 27 6 39
(d) Forecast
BN 2 7 0 9
N 1 21 3 25
AN 0 5 0 5
Total 3 33 3 39
(e) Forecast
BN 2 8 1 11
N 3 18 3 24
AN 1 1 0 2
Total 6 27 4 37

Fig. 5 Percent correct for Western, 
Central, Eastern, and Northern 
Divisions, and Rotuma during the 
wet season (November– April) 
from 2000–2020
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an inconsistent forecast (S. Shiwangani, personal communi-
cation, November 29, 2022).

Moreover, verification results for different Divisions do 
not show any significant differences in the accuracy or skill 
for the Divisions, which indicates that forecast model per-
formance is similar for all the Divisions. Usually, climate 
models perform better for some regions than others, but the 
study area has a very small landmass surrounded by a vast 
expanse of ocean. The ocean is the key part of the climate 
system that influences weather on land (Sun et al. 2018). 
The rain gauge stations in the Eastern Division are located 
on very small land masses separated by ocean compared to 
all the other Divisions, where all gauge stations are on the 
same land mass and close together. This may be why the 
Eastern Division has the lowest accuracy and skill com-
pared to all the other Divisions and Rotuma. In contrast, 
there is a significant difference in the results among different 
categories. The accuracy and skill seem to improve when N 
is forecasted, with none of the scores for N falling below 
50%. This highlights how extreme events, such as tropical 
cyclones, which are difficult to predict on a seasonal time 
scale, can reduce the accuracy of seasonal forecasts.

The FMS use Linear Error in Probability Space (LEPS) 
metric to assess forecast skill, categorize the confidence of 
the outlook as very low, low, moderate, good, high, very 
high, and exceptional. The LEPS score is used to assess 
forecasts of both continuous and categorical variables and 
is independently sensitive to bias and forecast variance, 
particularly in cases where the forecast underestimates the 

Central Division has a score of 1, which means that all fore-
casted BN events perfectly match the observed.

3.3.6  Critical success index

Finally, the critical success index was computed to assess 
the relative accuracy of correct forecast events correspond-
ing to observed events (Table 5). N for Western, Central, 
Eastern, Northern Division, and Rotuma have a critical suc-
cess index of 0.59, 0.55, 0.52, 0.57 and 0.55, respectively, 
showing that slightly more than half of the predicted normal 
rainfall is correctly forecasted. However, BN and AN for 
these Divisions and Rotuma have less than half of the pre-
dicted BN and AN rainfall, therefore, are not accurate.

3.4 Verification and bias correction of seasonal 
rainfall forecasting

FMS uses the percent of normal rainfall for the verification 
process, comparing the BN, N, and AN category with sea-
sonal predictions. They categorize the comparison based on 
consistent, near-consistent, and inconsistent forecasts. For 
example, if the rainfall outlook (forecast) for a particular 
Division is above-average and the observed rainfall is in 
the above-average category, then FMS categorizes that as 
a consistent forecast, and if it is near to the above-average 
value, then they categorize it as near-consistent. When rain-
fall falls under the below-average value, it is categorized as 

Fig. 6 Post Agreement results for 
Western, Central, Eastern, and 
Northern Divisions, and Rotuma. 
BN, N and AN are below-normal, 
normal, and above-normal, 
respectively
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observed values, while being less sensitive to outliers (Potts 
et al. 1995). Table S1 summarizes the results of the verifica-
tion process by FMS for the study period. The results from 
this study and Table S1 show that the forecast model works 

Table 3 Heidke skill score (HSS) for the Western, central, Eastern and 
Northern divisions, and Rotuma during the wet season of 2000–2020

Western Central Eastern Northern Rotuma
HSS 0.23 −0.15 0.13 0.046 0.003

Table 4 Bias for the Western, central, Eastern and Northern divisions, 
and rotuma. BN, N, AN are below-normal, normal, and above-normal, 
respectively, during the wet season of 2000–2020
Divisions BN N AN
Western 0 0.6 2
Central 1 1.11 0.5
Eastern 1.33 0.85 1.33
Northern 3 0.76 1.67
Rotuma 1.83 0.89 0.5

Fig. 7 A receiver operating char-
acteristic (ROC) curve showing 
discrimination between probability 
of detection and false alarm rate for 
Western (a), Central (b), Eastern 
(c), Northern (d) and Rotuma (e) 
for the wet season (November– 
April) from 2000–2020. BN, N and 
AN are below-normal, normal and 
above-normal, respectively
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require many physical parameters and involve complex 
computations of mathematical and physics equations hence 
reducing bias into the predictions which may be due to the 
subjective reasoning in conventional methods based on 
operator’s experience. (Hung et al. 2009) used an Artifi-
cial Neural Network (ANN) technique to improve rainfall 
forecast performance. The study indicated that the wet bulb 
temperature is the most important input parameter besides 
rainfall in forecasting rainfall. Another study by (Badr et 
al. 2014) on the Sahel region of Africa revealed that nearly 
all statistical models in forecasting use linear models. In 
contrast, ANN, which can capture nonlinear influences on 
rainfall, demonstrated a higher level of predictive accuracy 
than the other eight statistical models examined (Badr et al. 
2014). Climate models provide a platform for continuous 
monitoring of the land-atmosphere system processes and 
parameters, which are more reliable. However, their per-
formance must be understood across space-time scales and 
factors relating to their errors (Kimani et al. 2017). Climate 
models are used to predict seasonal rainfall forecasts that 
cover a wider area, including the ocean. Fiji has a sparse 
distribution of land-based rain gauges. Therefore, the draw-
backs associated with these measurements are the incom-
plete areal coverage and deficiencies in most oceanic and 
sparsely populated areas (Sun et al. 2018).

3.5  Homogenous climatological zones in seasonal 
forecasting

Seasonal rainfall forecast for Fiji Islands is done in divisions 
where ground stations are grouped into divisions based on 
administrative boundaries rather than homogenous clima-
tological zones. Dimension reduction techniques (PCA) 
identified five principal components for our station rainfall 
datasets accounting 75.89% cumulative variance (Tables 6 
and 7). The five components are the most essentials dis-
tinct indices for the rainfall stations for Fiji. The use of the 
Division boundaries rather than the climatological zone 
may reduce the accuracy of the forecast for a small coun-
try with many small islands which has high rainfall vari-
ability like Fiji. The correlation matrix for annual and all 
three months rainfall period showed very high correlations 

better for the Western Division when compared to the other 
Divisions and Rotuma.

To address these biases, FMS could enhance seasonal 
forecasts using station observations for bias correction, a 
process involving historical comparison of model outputs 
with observed data and applying techniques like quantile 
mapping or ensemble recalibration (Manzanas et al. 2019). 
For example, quantile mapping adjusts the model’s rain-
fall distribution to match observed distributions, reducing 
systematic errors, as demonstrated in (Hemri et al. 2020). 
This improves forecast accuracy and reliability, critical for 
Fiji’s agriculture and disaster preparedness given its oceanic 
exposure.

Rainfall has a high spatio-temporal variability and is one 
of the most complex elements of the hydrological cycle to 
model owing to the complexity of the atmospheric processes 
and since it is highly variable over a wide range of spatial 
and temporal scales (French et al. 1992). Weather forecast 
models provide forecasts for a grid cell, posing a challenge 
to compare and evaluate forecast accuracy with point-based 
observed values (Hogan and Mason 2011). As a result, 
rainfall forecasts directly provided by weather models may 
contain a large bias or variance that limits the accuracy of 
quantitative rainfall forecasts (Lima et al. 2021). However, 
station observation can be used for bias correction in sea-
sonal forecasting models. It involves identifying systematic 
errors by comparing historical model outputs with observed 
data and applying techniques like quantile mapping or 
ensemble recalibration to adjust forecasts, thereby improv-
ing their overall performance and consistency (Hemri et al. 
2020; Manzanas et al. 2020).

The high bias and variance in rainfall forecasts has led to 
the emergence of empirical models, statistical techniques, 
and machine learning-based models as an alternative to 
weather forecasting models for daily rainfall forecasts. 
Including rainfall predictors from weather models in empir-
ical models can help improve forecasting at seasonal scales 
(Lima et al. 2021). There has been significant progress from 
the conventional approach of linear mathematical relation-
ships supported by the operator’s experience, mathematical 
curves, and guidelines to machine learning tools for rain-
fall forecasting (Tokar and Markus, 2000). These methods 

Table 5 Critical success index for the Western, central, Eastern and 
Northern divisions, and rotuma. BN, N and AN are below-normal, 
normal, and above-normal, respectively, during the wet season of 
2000–2020
Divisions BN N AN
Western 0 0.59 0.33
Central 0 0.55 0
Eastern 0.077 0.52 0.27
Northern 0.2 0.57 0
Rotuma 0.13 0.55 0

Table 6 Detailed variability accentuated by the respective PCs for sta-
tion variance
Principal Component Eigen Value % of Variance Cumula-

tive vari-
ance %

PC1 9.874 47.021 47.021
PC2 2.215 10.550 57.571
PC3 1.370 6.524 64.094
PC4 1.302 6.200 70.295
PC5 1.176 5.601 75.895
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weather patterns affecting rainfall for the four locations and 
grouping them into same forecasting zone may be the rea-
son for low accuracy skill.

Some stations in the Central and Northern Divisions 
display considerably different behavior compared to the 
rest of the stations. For Central Division, Laucala Bay and 
Nausori are highly correlated and PC analysis also confirms 
this; however, Navua behaves differently. Navua shares 
characteristics with Western and Central Division due 
to its location. It is not strongly aligned with either Divi-
sions (Table 6). The stations in the Northern Division show 
variability in their grouping for both annual and seasonal 
periods (November– January and February - April) (S3). 
Matei, Nabouwalu and Udu Point do not show correlation 
with other stations in the Northern Division for the wet sea-
son and Nabouwalu only shows moderate correlation with 
Labasa, Seaqaqa and Savusavu for the annual period. Matei 
is a separate island from Vanua Levu and Udu Point and 
Nabouwalu are located at the opposite tips of Vanua Levu 
and their weather patterns maybe influenced more by ocean 
conditions than inland influence and differ from the stations 
inland.

The PCA analysis indicates that the Division are not 
appropriate for the seasonal forecast, due to high variabil-
ity of rainfall within each division and hence low skill and 
accuracy in the seasonal forecast.

4 Conclusions and recommendations

According to Scher and Messori (2019), the ability to make 
accurate weather forecasts in the Northern Hemisphere is 
affected by the current changes in the global climate, espe-
cially rainfall forecasts. Global warming and climate change 
are not unique to the Northern Hemisphere, meaning simi-
lar challenges can also be expected in the Southern Hemi-
sphere. Rainfall prediction might become more challenging 
in the future as climate variability increases. Seasonal fore-
casts are influenced by the large-scale climate drivers, such 
as ENSO and Madden-Julian Oscillation (MJO) which are 
difficult to predict with precision then there are uncertainties 
associated with initial climatic conditions and model bias 
adding to the issue of forecast accuracy. These factors con-
tribute to the challenging nature of probabilistic forecasts 
given that the probabilistic forecasts produce probabilities 
of different outcomes unlike deterministic forecasts which 
provide a single expected outcome. The probabilistic nature 
of forecast outcomes introduces added complexity to sea-
sonal forecasting (Pirret et al. 2020).

This study uses a probabilistic 3 × 3 contingency table to 
verify multi-category seasonal rainfall events. Tercile fore-
casts of BN, N, and AN seasonal rainfall for the wet season 

between stations within the Western Division, such as Nadi 
and Lautoka, Nadi and Ba, Lautoka and Ba and Nacocolevu 
and Nadi, Penang showed strong correlation with Nadi, Ba 
and Lautoka for the wet season (S2). However, Monasavu 
does not show strong correlation with any of the stations 
in the western division and neither with any other station 
in the other Divisions and Rotuma, while Yasawa shows 
moderate to low positive correlation with the stations in 
the western division. The PCs further confirm that Mona-
savu is not loaded with stations from the western division 
and Yasawa does not show high loading in the component 
with all the stations from the western division. It is grouped 
with Ono-i-Lau in PC5 but has a negative value, which 
indicates opposite weather pattern in Yasawa, which may 
be due to its remoteness. Monasavu is grouped with PC 3 
and 4 for November– January and February– April period, 
respectively (Table 7). Monasavu station is located at a high 
elevation of 808 m above sea level and therefore, may be 
influenced by local microclimate conditions such as stron-
ger winds and wind- driven rain and cooler temperatures 
reducing evaporation rates.

The stations in the Eastern Division are dispersed between 
different islands and separated by ocean and have the lowest 
accuracy skill in terms PC, POD, FAR and CSI compared to 
all the other Divisions and Rotuma. The correlation among 
the stations is weak (S2) and they are not grouped together 
in the PCs as well (S3). The variance between the stations is 
considerably different and therefore, may not share the same 

Table 7 Factor loading of rainfall stations for respective PCs in rotated 
component matrix
Stations Component

PC1 PC2 PC3 PC4 PC5
Nadi 0.844
Ba 0.830
Lautoka 0.829
Matuku 0.792
Nacocolevu 0.747
Ono-i-Lau 0.669
Penang 0.646
Matei 0.885
Udu Point 0.807
Labasa 0.782
Seaqaqa 0.550
Laucala Bay 0.809
Nausori 0.748
Yasawa 0.731
Lakeba 0.617
Navua 0.765
Nabouwalu 0.617
Monsasavu 0.535 0.579
Vunisea 0.546 0.548
Savusavu 0.520
Rotuma 0.871
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