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A closed-form solution for asymmetric free vibration analysis
of composite cylindrical shells with metamaterial honeycomb
core layer based on shear deformation theory

Hamidreza Eipakchia and Farid Mahboubi Nasrekanib

aFaculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, I.R. Iran;
bSchool of Information Technology, Engineering, Mathematics and Physics, The University of the South Pacific
(USP), Suva, Fiji

ABSTRACT
Asymmetric free vibration analysis of composite cylindrical shells with a
honeycomb core layer and adjustable Poisson’s ratio is performed analytic-
ally in this study. The equations of motion which are a system of coupled
partial differential equations are extracted using Hamilton’s principle by
employing the first-order shear deformation theory and they are solved
analytically. To study the sensitivity of the results to the different parame-
ters of the honeycomb structure, geometrical parameters, and boundary
conditions, a parametric study is presented. It is concluded that for the
auxetic composite shell with a negative Poisson’s ratio, by decreasing the
Poisson ratio, the frequency decreases. Also, it is shown that by employing
the composite shells the weight decreases significantly, while the asym-
metric frequency will not change remarkably. By adjusting the Poisson
ratio, the frequency variations are studied for a composite shell with a
honeycomb core layer. The results are compared with the finite element
method and some other references.
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1. Introduction

Honeycomb structures are materials with minimal density and relatively high out-of-plane shear
and compression characteristics. In order to provide strength in tension, the honeycomb struc-
tures are usually made by layering between two isotropic layers. Nowadays, due to the lightness,
high specific strength, and high energy absorption, applications of the honeycomb structures are
greatly increased. The free vibration analysis and determination of natural frequencies have been
done in some research but only a few studies especially for honeycomb structures were conducted
by considering the asymmetric conditions, while, in the real world most of the cases are catego-
rized under asymmetric conditions.

Chen and Babcock (1975) analyzed large-amplitude asymmetric vibrations of isotropic thin
cylindrical shells based on the Donnell shallow shell theory and using the perturbation technique.
Raju and Rao (1976) presented a finite element (FE) method to analyze the large amplitude asym-
metric vibrations of isotropic shells of revolution based on the Sander nonlinear theory. Sivadas
and Ganesan (1991) studied the asymmetric vibration of isotropic and composite shells of revolu-
tion with variable thickness based on the Naghdi theory and employing the FE method.
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Ganapathi and Varadan (1996) studied the nonlinear free vibrations of isotropic thin cylindrical
shells using the FE method and by employing the Mindlin and von Karman theories. Akyuz and
Ertepinar (1999) investigated the stability and asymmetric vibrations of isotropic, homogeneous,
hyperelastic cylindrical shells under uniform radial tensile or compressive load using the shooting
and FE methods. Singh, Yadav, and Iyengar (2002) obtained the effect of the variations of the
mechanical properties of laminated composite cylindrical panels on its natural frequency using
the higher-order shear deformation theory and FE method. By applying spline function approxi-
mations and point collocation method a free vibration analysis of circular thin layered shells has
been studied by Viswanathan and Navaneethakrishnan (2003) based on Love’s theory. Ozerciyes
and Yuceoglu (2008) investigated free asymmetric vibrations of composite cylindrical shells based
on the Timoshenko-Mindlin theory. The governing equations were solved numerically using the
modified transfer matrix method with Chebyshev polynomials. Garg, Khare, and Kant (2006) pre-
sented a closed-form solution for the free vibrational behavior of simply supported laminated
composite shells based on the higher-order shear deformation theory, Sander’s theory, and using
the Navier technique. Wahl et al. (2012) conducted an analytical, numerical, and experimental
study on the shear stress in the honeycomb layer of composite plates using the FE method.
Zhang, Hao, and Yang (2012) studied the nonlinear dynamic behavior of a functionally graded
(FG) circular cylinder with clamped boundary conditions (BCs) subjected to an external loading
based on the first-order shear deformation theory (FSDT) and von Karman relations and by
employing the Galerkin method. Wang et al. (2013) determined an approximate solution of nat-
ural frequencies for anisotropic glass-fiber-reinforced plastic cylindrical shells with asymmetric
BCs using Love’s theory. Isvandzibaei, Jamaluddin, and Raja Hamzah (2014) studied the natural
frequency of thin multiple layered cylindrical shells subjected to lateral pressure based on Love’s
theory and the Ritz method. The cylindrical shell consisted of two inner and outer steel layers
and one aluminum core layer. Zhang et al. (2014) investigated the nonlinear behavior of a three-
dimensional Kagome truss core sandwich plate with simply supported BCs using the third-order
shear deformation theory and von Karman relations. The governing equations were solved using
the Galerkin method. Liu et al. (2015) conducted a nonlinear vibrational analysis of an FG cylin-
drical shell with simply supported BCs and initial geometric imperfection subjected to complex
load. The equations were obtained using third-order shear deformation theory and von Karman
relations and they were solved be applying the Galerkin method. Khan, Patel, and Nath (2015)
presented a free and forced vibration analysis for bimodular cross-ply laminated cylindrical shells
using Bert’s model and the FSDT employing a numerical procedure by the iterative method.
Javed, Viswanathan, and Aziz (2016) proposed a numerical solution for free vibration analysis of
composite cylindrical shells with variable thickness by employing spline approximation and the
FSDT. Thinh and Nguyen (2016) proposed a new model for free vibration analysis of composite
cylindrical shells filled with fluid based on the dynamic stiffness method or continuous elements
using the Reissner-Mindlin theory. Mohammadimehr and Mehrabi (2017) investigated the free
vibration and stability of double-bonded micro composite sandwich cylindrical shells conveying
fluid flow under magneto-thermo-mechanical loadings based on Reddy cylindrical double-shell
theory and using modified couple stress theory and generalized differential quadrature method.
Liu, Zhang, and Wang (2017) studied the nonlinear vibrations of a composite laminated cylin-
drical shell with clamped BCs and radial pre-stretched membranes at both ends using the third-
order shear deformation theory and nonlinear von Karman relations. The solution was extracted
by employing the Galerkin method. Biswal and Mohanty (2018) proposed a shear deformable
shell element to study the free vibration of doubly curved sandwich panels with viscoelastic core
based on the FE method. Zhu et al. (2019) investigated the natural frequency and energies of
honeycomb sandwich plate using the third-order shear deformation theory, von Karman nonlin-
ear relations, and Hamilton energy method. Bagheri, Kiani, and Eslami (2018) studied the free
vibration of isotropic joined conical-cylindrical-conical shells based on the FSDT and the
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equations were solved using the generalized differential quadrature method. Zhang, Liu, et al.
(2018) investigated the nonlinear vibrations of a carbon fiber reinforced polymer laminated cylin-
der using the FSDT and von Karman relations. The solution was based on the Galerkin method.
Wang et al. (2018) analyzed free vibrations and static bending of FG graphene nanoplatelet rein-
forced composite shells with simply supported BCs. The equations were derived using the higher-
order shear deformation theory and the solution was based on the Navier technique. Zhang, Liu,
et al. (2018) studied the resonant responses of a composite laminated cylindrical shell clamped
along a generatrix and radially pre-stretched membranes at both ends using the multiple-scale
method. Liu et al. (2019) investigated the nonlinear vibrations of an eccentric rotating composite
laminated cylinder based on the Donnell thin shear deformation theory and von Karman rela-
tions. The equations were solved by applying the Galerkin method. Li, Pang, et al. (2019) pre-
sented a solution for the free vibration of non-Levy-type cylindrical shell panels using a
Hamiltonian system-based superposition method. Nekouei, Raghebi, and Mohammadi (2019)
investigated the vibrational behavior of composite conical shells reinforced with shape memory
alloy fibers, based on the classical shell theory and von Karman theory. The governing equations
were solved by employing the generalized differential quadrature method. Li, Pang, et al. (2019)
presented a semi-analytical method to study the free vibration behavior of laminated cylindrical
and spherical shells based on the multi-segment partitioning, the FSDT, and Rayleigh-Ritz
method. Lopatin and Morozov (2019) studied the free vibrational behavior of a composite cylin-
drical shell with a rigid weightless disk that is attached to its end. By employing the Ritz method,
the axisymmetric frequencies were obtained. Li, Yao, and Wang (2020) investigated the flexural
vibration of honeycomb sandwich cylindrical shell experimentally and FE method. The free and
forced vibration problem of an axisymmetric auxetic composite shell was solved by Eipakchi and
Mahboubi Nasrekani (2020) using the classical plate theory (CPT) and Galerkin’s method under
moving internal pressure. Eipakchi, Mahboubi Nasrekani, and Ahmadi (2020) presented an ana-
lytical method to investigate the free and forced vibrational behavior of axisymmetric viscoelastic
shells under moving load using the CPT. Eipakchi and Mahboubi Nasrekani (2020) studied the
nonlinear vibrational behavior of viscoelastic axisymmetric cylindrical shells using CPT, von
Karman theory, and by employing the method of multiple scale. Eipakchi and Mahboubi
Nasrekani (2020) solved the equilibrium equations of auxetic composite cylindrical shells with
variable thickness and axisymmetric conditions using matched asymptotic expansion method and
FSDT. The composite shell was made of three layers with a honeycomb core layer. Safarpour,
Rahimi, and Alibeigloo (2020) carried out static and free vibration analysis of FG graphene plate-
lets-reinforced composite conical shells, cylindrical shells, and annular plates based on the three-
dimensional elasticity theory. The solution procedure was proposed using the differential quadra-
ture method. Shahgholian-Ghahfarokhi et al. (2022) studied the free vibrational behavior of sand-
wich cylindrical shells with grid cores using experimental and FE methods. Banijamali and Jafari
(2021) investigated the free vibration behavior of a rotating FG conical shell based on the CPT.
The conical shell was reinforced by an anisogrid lattice structure. The governing equations were
solved using the Galerkin method. Li, Zhou, and Zheng (2021) presented an analytical procedure
for free vibration analysis of doubly curved shells using the symplectic superposition method.
Bagheri et al. (2021) analyzed the free vibration of an FG cylindrical shell closed with two hemi-
spherical caps based on the first-order theory of shells and Donnell equations and the equations
of motion were solved using the generalized differential quadrature method. Wang et al. (2021)
evaluated the response of corrugated core composite metal sandwich structures under fluid-struc-
ture interaction by employing a numerical model in ABAQUS. Eipakchi and Mahboubi
Nasrekani (2021) presented an analytical method for nonlinear free vibration analysis of compos-
ite cylindrical shells with honeycomb core layer under axisymmetric conditions based on the
FSDT and nonlinear von Karman relations and using the multiple-scale method.
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There is a lot of research that studied the vibrational behavior of isotropic or traditional com-
posite cylindrical shells under asymmetric conditions using a numerical method such as the FE
method, which is a complicated and time-consuming procedure, especially for honeycomb struc-
tures. In this study, an analytical method is proposed to investigate the free vibrational behavior
of asymmetric composite cylindrical shells with adjustable Poisson’s ratio using the FSDT. There
are some analytical studies in this field (e.g., Eipakchi and Mahboubi Nasrekani (2020) and
Eipakchi and Mahboubi Nasrekani (2021)) that do not consider the asymmetric conditions and
in this study, the effects of this condition on the free vibrational behavior of composite shells
have been studied. It should be mentioned that frequencies have been affected by considering the
asymmetric conditions and the governing equations have been changed. It is observed that axi-
symmetric frequency is not necessarily the minimum frequency and for some cases, the frequency
of asymmetric case is less than the axisymmetric case. The different BCs are investigated and the
effect of honeycomb structure on the natural frequency and mode shapes are studied and com-
pared with the axisymmetric cases. The effect of different parameters of the honeycomb structure
on the Poisson ratio has been studied by employing a parametric study and the effect of
Poisson’s ratio on the vibrational behavior of the composite shell is presented. The following key
points are considered in this study:

� Geometry: The composite shell is an asymmetric finite-length cylindrical shell with
three layers.

� Material: The inner and outer layers are made of isotropic materials and the core layer is a
honeycomb structure with a negative Poisson’s ratio. The thickness of the isotropic layers can
be equal or unequal.

� Theory: The displacement field is considered according to the FSDT in asymmetric condi-
tions. The stress-strain relations of the honeycomb core layer are obtained based on the plane
stress theory and the isotropic layers have been extracted according to the three-dimensional
theory of elasticity.

� Solution method: The solution procedure is proposed based on the mathematical methods to
perform a parametric study on the free vibrational behavior of composite cylindrical shells
with adjustable Poisson’s ratio.

2. Equations of motion

An auxetic composite cylindrical shell with a honeycomb core layer of thickness h2 and two inner
and outer isotropic layers of thickness h1 and h3 respectively and length L has been considered as
Fig. 1. Rm is the radius of the mid-plane and the origin of the coordinate system is assumed on
this point. By employing the cylindrical coordinates the location of each point is defined by three
parameters r, x, and h, where r¼Rmþz, and z is a variable measured from the mid-plane of the
shell. The thickness of the isotropic layers (h1 and h3) can be either equal or unequal. Figure 1
shows the geometry of the honeycomb cell structure in which p, l, q, and u are the thickness of
the cell wall, length of the inclined cell rib, length of the vertical cell rib, and inclined angle,
respectively.

The honeycomb properties are defined as the following (Li, Yao, and Wang 2020; Eipakchi
and Mahboubi Nasrekani, 2020):
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ECx ¼ E:ap3

cos/ðaq þ sin/Þð tan 2/þ ap2Þ ; EC
h
¼ E:ap3ðaq þ sin/Þ

cos 3/ð1þ ap2ð tan 2/þ aq sec 2/ÞÞ
�C

xh
¼ sin/ð1� ap2Þ

ðaq þ sin/Þð tan 2/þ ap2Þ ; �C
hx
¼ sin/ð1� ap2Þðaq þ sin/Þ

cos 2/ð1þ ap2ð tan 2/þ aq sec 2/ÞÞ

GC
xz ¼

G:ap cos/

aq þ sin/
; GC

xh ¼
Ea3p

aqð1þ 2aqÞ cosu ; GC
zh ¼

Gap
2 cosu

aq þ sinu

1þ 2aq
þ aq þ 2 sin 2u

2ðaq þ sinuÞ

 !

qC ¼ q
ap aq þ 2ð Þ

2 cos/ aq þ sin/
� � ; ap ¼ p

l
; aq ¼ q

l

(1)

where q, �, E, and G are density, Poisson’s ratio, Young’s modulus, and shear modulus of the iso-
tropic original material, respectively. The superscript c indicates the core layer properties.
According to Eq. (1), it is observed that Poisson’s ratio of the honeycomb structure is negative
for the negatively inclined angle u. By employing the FSDT for the asymmetric case, the displace-
ment field is defined as the following:

Ux ¼ u0ðx, h, tÞ þ zu1ðx, h, tÞ; Uh ¼ v0ðx, h, tÞ þ zv1ðx, h, tÞ; Uz ¼ w0ðx, h, tÞ (2)

where Ux, Uh, and Uz are displacement components in x, h, and z directions, respectively. u0, v0,
and w0 are displacement components of the mid-plane, and u0, u1, v0, v1, and w0 are unknown
functions of x, h, and t. The small-strain relations are as the following (Gibson and Ashby 1997):

ex ¼ @Ux

@x
¼ @u0

@x
þ z

@u1
@x

; ez ¼ @Uz

@z
¼ 0; eh ¼ Uz

r
þ 1

r
@Uh

@h
¼ w0

r
þ 1

r
@v0
@h

þ z
@v1
@h

� �

czh ¼
@Uh

@z
þ 1

r
@Uz

@h
� Uh

r
¼ v1 þ 1

r
@w0

@h

� �
� v0 þ zv1

r
; cxz ¼

@Uz

@x
þ @Ux

@z
¼ @w0

@x
þ u1

cxh ¼
1
r
@Ux

@h
þ @Uh

@x
¼ 1

r
@u0
@h

þ z
@u1
@h

� �
þ @v0

@x
þ z

@v1
@x

(3)

The stress-strain relations for the composite shell are as the following (Eipakchi and Mahboubi
Nasrekani, 2020; Sadd 2009):

Figure 1. Geometry and schematic of composite cylindrical shell and honeycomb cell structure.
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(4b)

where A¼ kþ 2l, k, and l are Lame’s constants. According to Eqs. (4), the stress-strain relations
of the honeycomb core layer are defined based on the plane stress assumptions, and the stress-
strain relations of the isotropic inner and outer layers are defined based on the generalized three-
dimensional Hooke’s law. The kinetic energy is defined as the following:

T ¼ Rm

2

ð ðL
0

X3
i¼1

ðziþ1

zi

qi

�
@Ux

@t

�2

þ
�
@Uz

@t

�2

þ
�
@Uh

@t

�2
 !

1þ z
Rm

� �
:dz:dx:dh

T ¼ Rm

ð ð
C1

�
@u0
@t

�2

þ
�
@v0
@t

�2

þ
�
@w0

@t

�2
" #

þ C2

�
@u1
@t

�2

þ
�
@v1
@t

�2
" #(

þC3
@u0
@t

@u1
@t

þ @v0
@t

@v1
@t

� �
g:dx:dh

z1 ¼ � h3 þ h2
2

� �
; z2 ¼ � h2

2
; z3 ¼ h2

2
; z4 ¼ h2

2
þ h1; q1 ¼ qinner; q2 ¼ qc; q3 ¼ qouter

(5)
where C1, C2, and C3 are constant coefficients, and they are reported in the Appendix. The strain
energy is defined as the following (Rao 2007):

U ¼ Rm

2

ð2p
0

ðL
0

X3
i¼1

ðziþ1

zi

ðrxiex þ rh
ieh þ rz

iez þ sixzcxz þ sixhcxh þ sihzchzÞ 1þ z
Rm

� �
:dz:dx:dh

rj1 ¼ rjinner; rj2 ¼ rjc; rj3 ¼ rjouter ; j ¼ x, z, h

sk1 ¼ skinner; sk2 ¼ skcore; sk3 ¼ skouter ; k ¼ xz, hz, xh

(6)

The stress resultants are defined as the following:

NxMxf g ¼
X3
i¼1

ðziþ1

zi

1, zf gri
x

1þ z
Rm

� �
:dz; NhMhf g ¼

X3
i¼1

ðziþ1

zi

f1, zgri
h
:dz; Qxz ¼

X3
i¼1

ðziþ1

zi

jsi
xz

1þ z
Rm

� �
:dz

QxhMxhf g ¼
X3
i¼1

ðziþ1

zi

1, zf gsixh 1þ z
Rm

� �
:dz; Qxh0Mxh0f g ¼

X3
i¼1

ðziþ1

zi

f1, zgsixh:dz; Qhz ¼
X3
i¼1

ðziþ1

zi

jsi
hz

1þ z
Rm

� �
:dz;

Qhz0Mhz0f g ¼
X3
i¼1

ðziþ1

zi

jf1, zgsi
hz
:dz; (7)

where j is the shear correction factor and it is assumed j¼ 5/6 [36]. By applying the Hamilton
principle as d

Ð t2
t1
ðT � UÞdt ¼ 0 (Rao 2007) and using Eqs. (5)–(7), the equations of motion are

extracted as the following in terms of the stress resultants:

�2C1
@2u0
@t2

� C3
@2u1
@t2

þ @Nx

@x
þ 1
Rm

@Qxh0

@h
¼ 0 (8a)

6 H. EIPAKCHI AND F. MAHBOUBI NASREKANI



�2C2
@2u1
@t2

� C3
@2u0
@t2

þ @Mx

@x
� Qxz þ 1

Rm

@Mxh0

@h
¼ 0 (8b)

�2C1
@2v0
@t2

� C3
@2v1
@t2

þ Qhz0

Rm
þ 1
Rm

@Nh

@h
þ @Qxh

@x
¼ 0 (8c)

�2C2
@2v1
@t2

� C3
@2v0
@t2

þMhz0

Rm
� Qhz þ 1

Rm

@Mh

@h
þ @Mxh

@x
¼ 0 (8d)

�2C1
@2w0

@t2
þ @Qxz

@x
� Nh

Rm
þ 1
Rm

@Qhz0

@h
¼ 0 (8e)

The extracted BCs are as the following:ð
Nxdhþ Qxh0

Rm
dx

� �
du0 ¼ 0;

ð
MxdhþMxh0

Rm
dx

� �
du1 ¼ 0;

ð
Qxhdhþ Nh

Rm
dx

� �
dv0 ¼ 0ð

MxhdhþMh

Rm
dx

� �
dv1 ¼ 0;

ð
Qxzdhþ Qhz0

Rm
dx

� �
dw0 ¼ 0

(9)

To perform the modal analysis the following BCs can be applied:

Simple : w0 ¼ 0, v0 ¼ 0, u0 ¼ 0, Mx ¼ 0, Mxh ¼ 0 (10a)

Clamped : w0 ¼ 0, u0 ¼ 0, u1 ¼ 0, v0 ¼ 0, v1 ¼ 0 (10b)

Free : Nx ¼ 0, Mx ¼ 0, Qxh ¼ 0, Mxh ¼ 0, Qxz ¼ 0 (10c)

By substituting Eqs. (1)–(4) into Eqs. (8), the equations of motion as a function of displacements
are obtained as the following:

eq1 : �2C1
@2u0
@t2

� C3
@2u1
@t2

þ A1
@2u0
@h2

þ A2
@2u0
@x2

þ A3
@2u1
@h2

þ A4
@2u1
@x2

þ A5
@2v0
@x@h

þ A6
@2v1
@x@h

þ A7
@w0

@x
¼ 0

(11a)

eq2 : �2C2
@2u1
@t2

� C3
@2u0
@t2

þ A3
@2u0
@h2

þ A4
@2u0
@x2

þ A8
@2u1
@h2

þ A9
@2u1
@x2

þ A6
@2v0
@x@h

þ A10
@2v1
@x@h

þ A11
@w0

@x
þ A12u1 ¼ 0

(11b)

eq3 : �2C1
@2v0
@t2

� C3
@2v1
@t2

þ A5
@2u0
@x@h

þ A6
@2u1
@x@h

þ A13
@2v0
@h2

þ A14
@2v0
@x2

þ A15
@2v1
@h2

þ A16
@2v1
@x2

þ A17
@w0

@h
þ A18v0 � RmA18v1 ¼ 0

(11c)

eq4 : �2C2
@2v1
@t2

� C3
@2v0
@t2

þ A6
@2u0
@x@h

þ A10
@2u1
@x@h

þ A15
@2v0
@h2

þ A16
@2v0
@x2

þ A19
@2v1
@h2

þ A20
@2v1
@x2

þ A21
@w0

@h
� RmA18v0 þ R2

m
A18v1 ¼ 0

(11d)
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eq5 : �2C1
@2w0

@t2
� A18

@2w0

@h2
� A12

@2w0

@x2
� A7

@u0
@x

� A11
@u1
@x

� A17
@v0
@h

� A21
@v1
@h

� A13w0 ¼ 0

(11e)

where the coefficients A1,… , A21 are reported in the Appendix. Eqs. (11), contain a system of
five linear coupled, homogeneous partial differential equations with constant coefficients.

3. Analytical solution

According to the equations and BCs, the response of Eqs. (11), can be considered as the follow-
ing:

u0ðx, h, tÞ
u1ðx, h, tÞ
v0ðx, h, tÞ
v1ðx, h, tÞ
w0ðx, h, tÞ

8>>>><
>>>>:

9>>>>=
>>>>;

¼
a1
a2
a3
a4
a5

8>>><
>>>:

9>>>=
>>>;

expðbxþ ixtÞ

cos ðnahÞ
cos ðnahÞ
sin ðnahÞ
sin ðnahÞ
cos ðnahÞ

8>>>><
>>>>:

9>>>>=
>>>>;
; i ¼

ffiffiffiffiffiffiffi
�1

p
(12)

where x and b are the natural frequency and eigenvalue, respectively and fa1,a2,a3,a4,a5gT is the
eigenvector. a is a coefficient that depends on the circumferential shape of the shell. When the
cross-section of the shell is a full circle, a¼ 1, and when it has a sector shape, it depends on
the sector angle. By substituting Eq. (12), into the equations of motion (Eq. 11), a system of
algebraic equations is obtained as the following:

m11 m12 m13 m14 m15

m12 m22 m23 m24 m25

�m13 �m23 m33 m34 m35
�m14

�m15

�m24

�m25

m34

m35

m44

m45

m45

m55

2
66664

3
77775

a1
a2
a3
a4
a5

8>>>><
>>>>:

9>>>>=
>>>>;

¼

0
0
0
0
0

8>>>><
>>>>:

9>>>>=
>>>>;

(13a)

m11 ¼ �A1a2n2 þ A2b
2 þ 2C1x2;m12 ¼ �A3a2n2 þ A4b

2 þ C3x2;m13 ¼ A5ban; m14 ¼ A6ban
m15 ¼ A7b; m22 ¼ �A8a2n2 þ A9b

2 þ 2C2x2 þ A12;m23 ¼ A6ban;m24 ¼ A10ban; m25 ¼ A11b
m33 ¼ �A13a2n2 þ A14b

2 þ 2C1x2 þ A18;m34 ¼ �A15a2n2 þ A16b
2 þ C3x2 � A18Rm;m35 ¼ �A17an

m44 ¼ �A19a2n2 þ A18R2
m þ A20b

2 þ 2C2x2;m45 ¼ �A21an;m55 ¼ �A18a2n2 � A12b
2 þ 2C1x2 � A13

(13b)

Eq. (13), is a system of homogeneous algebraic equations and for the nontrivial solution, the
determinant of the coefficient matrix must be equated to zero which results in an algebraic equa-
tion of degree-ten with respect to b, and this equation is known as the dispersion equation. The
dispersion equation contains x as well. The roots of the dispersion equation are the eigenvalues
and there is an eigenvector fVg, for each eigenvalue which they are functions of n, and x. The
general form of the solution is obtained as the following:

u0ðx, h, tÞ
u1ðx, h, tÞ
v0ðx, h, tÞ
v1ðx, h, tÞ
w0ðx, h, tÞ

8>>>><
>>>>:

9>>>>=
>>>>;

¼

cos ðnahÞ
cos ðnahÞ
sin ðnahÞ
sin ðnahÞ
cos ðnahÞ

8>>>><
>>>>:

9>>>>=
>>>>;

expðixtÞ
X10
j¼1

djfVgj exp ðbjxÞ (14)

where dj are constant coefficients and they are determined from the BCs. By applying the BCs,
ten algebraic equations are obtained as the following:

MBC½ �10�10 d1 d2 � � � d10
� �T ¼ f0g10�1 (15)
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where the matrix of coefficient ([MBC]) contains the natural frequency (x). It should be men-
tioned that the matrix of coefficient contains the eigenvalues (the roots of the dispersion equa-
tion) as well, which can be substituted as a function of the natural frequency. For a nontrivial
solution, the determinant of the matrix of coefficients ([MBC]), equated to zero which results in a
complicated algebraic equation. This equation is solved using the bisection method and the roots
of this equation which are the natural frequencies are obtained.

4. Numerical solution

The natural frequencies of isotropic cylindrical shells are obtained using ANSYS FE software.
For this purpose, the PLANE182 element in the axisymmetric model is employed which is an
element with four nodes and two degrees of freedom at each node. The required mesh size is
obtained using trial and error to vanish the sensitivity of the results to the mesh
size variations.

5. Results and discussion

To investigate the effects of different parameters such as the honeycomb structure characteristics
and geometrical parameters on the frequency, a mathematical code has been provided in MAPLE
software based on the presented analytical solution. The dimensionless natural frequency X ¼
xðR2

m=hÞ
ffiffiffiffiffiffiffiffi
q=E

p
is defined where x is the natural frequency (rad/s). The honeycomb structure

parameters and geometrical properties of the auxetic composite shell have been reported in Table
1. All the reported results are based on the data in Table 1 except those are mentioned. The BCs
are indicated with two letters in this text. C, S, and F stand for clamped, simply support, and free
BCs, respectively. The first letter indicates the boundary condition at x¼ 0, and the second letter
determines the boundary condition at x¼ L.

To investigate the correctness of the presented method, Table 2 reports the dimensionless nat-
ural frequency of the isotropic cylindrical shell obtained by Viswanathan and Navaneethakrishnan
(2003), Goncalves and Ramos (1997), Arnold and Warburton (1949), Smith and Haft (1968), Au-
Yang (1978), and the presented method. Viswanathan and Navaneethakrishnan (2003) used the
Love theory to obtain the natural frequency and Au-Yang (1978) used an approximation method
based on the modal analysis and discretization to obtain the natural frequency. Goncalves and
Ramos (1997) determined the natural frequency using the Budiansky-Sanders theory and FE
method. Smith and Haft (1968) solved the equations of motion based on the Flugge theory ana-
lytically, and Arnold and Warburton (1949) obtained the natural frequency experimentally. It is
observed that the present method has better results in comparison with the other references with
respect to Arnold and Warburton (1949) which extracted the results experimentally. It should be

Table 1. Material and geometrical properties of composite shell.

Property (unit) Quantity

Length (m) L¼ 1
Middle radius (m) Rm¼0.16
Inner layer thickness (mm) h1¼1
Outer layer thickness (mm) h3¼1
Core layer thickness (mm) h2¼5
the length of the vertical cell rib to the length of the inclined cell rib ratio q/l¼ 2
Inclined angle (degree) u=-55
The thickness of the cell wall to the length of the inclined cell rib ratio p/l¼ 0.0138571
Young’s modulus (GPa) E¼ 200
Poisson’s ratio �¼ 0.3
Mass density (kg/m3) q¼ 7800
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mentioned, to obtain the natural frequency for isotropic cylindrical shells, the thickness of the
core layer (h2) is zero.

Figure 2 compares the dimensionless axisymmetric natural frequency of isotropic cylindrical
shells obtained by the FE method, Rao (2007), Eipakchi, Mahboubi Nasrekani, and Ahmadi
(2020), and the present method. It is seen that the present method is in good agreement with the
other references and FE method.

Figure 3 shows the variations of Poisson’s ratio of the honeycomb structure versus u for dif-
ferent values of q/l. It is seen that for negative values of u and q/l¼ 1,2 the Poisson ratios in
both directions are negative and for positive values of u and q/l¼ 1,2 the Poisson ratios in both
directions are positive. Of course, for q/l¼ 0.5 the behavior of the Poisson ratio does not follow a
specific rule.

Table 3 compares the axisymmetric dimensionless natural frequency of auxetic composite
cylindrical shells obtained by Eipakchi and Mahboubi Nasrekani (2020) and the present method.
Eipakchi and Mahboubi Nasrekani (2020) used the CPT to extract the equations of motion and
according to the CPT, the effect of shear deformations which is an important issue in the com-
posite structures is not noticed.

Figure 4a shows the effect of Rm/h on the natural frequency of different auxetic composite
shells with different thicknesses. In all cases, the thickness of the honeycomb core layer (h2)
is 60 percent of the total thickness (h). It is concluded that like the isotropic cylindrical

Table 2. Comparison of dimensionless natural frequency for isotropic cylindrical shells (C-C, E¼ 183 GPa, q¼ 7492 kg/m3,
L¼ 0.5112 m, Rm¼0.2162 m, h¼ 1.5mm).

n

Viswanathan and
Navaneethakrishnan

(2003)
Goncalves and
Ramos (1997)

Arnold and
Warburton (1949)

Smith and
Haft (1968)

Au-Yang
(1978)

Present
method

2 51.461 55.660 49.124 56.611 58.830 48.936
3 88.740 87.987 85.174 92.503 93.652 86.260
4 153.394 158.623 157.276 164.090 164.288 155.010
5 248.076 251.959 250.374 257.505 257.664 253.982
6 361.498 366.489 365.657 372.392 372.234 364.631

Figure 2. Comparison of dimensionless axisymmetric natural frequency of isotropic cylindrical shells versus L/Rm (S-S,
E¼ 5.096MPa, Rm/h¼ 16).
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shells, Rm/h does not have any remarkable effect on the natural frequency (Eipakchi,
Mahboubi Nasrekani, and Ahmadi 2020). By substituting n¼ 0, the results are obtained for
the axisymmetric condition. Also, it can be concluded that the asymmetric frequency may be
less than the axisymmetric natural frequency for some values of n. In other words, the axi-
symmetric frequency is not necessarily the minimum frequency. Besides, in the axisymmetric
cases, the difference between the frequencies is less than the difference between the frequen-
cies of asymmetric for the studied cases. Figure 4b shows the effect of Rm/h on the dimen-
sionless natural frequency. Despite the Figure 4a results, it is seen that by increasing Rm/h,
the dimensionless frequency increases.

Table 4 reports the effect of q/l on the dimensionless frequency and the mass of the core
layer of the auxetic composite shell. It is observed that for positive values of u, variations of u
and q/l do not have any significant effect on the dimensionless natural frequency and mass.
The maximum frequency is for the case when u¼ 15 and q/l¼ 2. The variations of the mass of
the honeycomb layer in the interval of u< 0 are more than the interval of u> 0. The max-
imum effect of u on the frequency and mass of the honeycomb layer is about 20% and 90%,
respectively. Also, the maximum effect of q/l on the frequency and mass of the honeycomb
layer is about 16% and 92%, respectively. Besides, by examining the frequency in terms of
Poisson’s ratio, it is observed that for the negative values of u, by decreasing the Poisson’s
ratio, the frequency decreases, and for the positive values of u, decreasing the Poisson ratio,
increases the frequency.

Table 5 reports the effect of p/l on the dimensionless frequency and mass of the auxetic com-
posite cylindrical shell. As a result, by increasing the thickness of the honeycomb cell wall, the
mass of the honeycomb layer increases, and the frequency decreases. The maximum variations of
frequency and mass due to the variations of p/l are 10% and 87%, respectively.

Table 6 shows the dimensionless frequency of auxetic composite shells under different bound-
ary conditions. It is seen that the maximum frequency is attained for C-C boundary conditions.
Note that for F-F and S-F boundary conditions, the first natural frequency is zero (rigid body
motion/rotation) and only the bending frequencies are reported in Table 6.

Figure 5 shows the first two mode shapes of composite cylindrical shells for w0 and u0. The
boundary conditions for both edges are the same.

Figure 6 shows the first two mode shapes of composite cylindrical shells for w0 and u0, for dif-
ferent boundary conditions at each edge as S-C, S-F, and C-F.

Table 7 reports the dimensionless first and second natural frequencies for auxetic composite
cylindrical shells for different values of n. It is seen by increasing n, the natural frequency
increases. Also, for the studied range, the asymmetric frequencies are less than their correspond-
ing axisymmetric frequency.

Figure 3. (a) Variations of �xh versus u. (b) Variations of �hx versus u.
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Table 3. Comparison of dimensionless axisymmetric natural frequency of auxetic composite cylindrical shells (S-S).

h1 (mm) h2 (mm) h3 (mm) h (mm)

Dimensionless axisymmetric natural frequency

Eipakchi [33] Present method

2 3 2 7 11.2341 11.6328
1.5 4 1.5 7 11.1095 11.5206
1 5 1 7 10.8696 11.3048
1.5 5 0.5 7 10.8648 11.3731
0.5 5 1.5 7 10.8630 10.9857

Figure 4. (a) Effect of Rm/h on natural frequency of auxetic composite shells (S-S). (b) Effect of Rm/h on dimensionless natural
frequency of auxetic composite shells (S-S).

Table 4. Effects of q/l on dimensionless frequency and mass of auxetic composite shell (C-C, n¼ 1).

u (Degree) q/l �xh X Mass of honeycomb layer (kg)

-55 0.5 1.25 – –
1 �2.22 3.714 7.857
2 �0.34 4.327 1.597

-25 0.5 �25.08 3.644 9.677
1 �3.36 4.345 1.557
2 �1.23 4.440 0.757

-15 0.5 �14.90 4.210 2.907
1 �4.84 4.399 1.137
2 �2.06 4.456 0.637

15 0.5 4.73 4.425 0.917
1 2.85 4.453 0.667
2 1.59 4.473 0.497

25 0.5 2.10 4.435 0.807
1 1.36 4.455 0.627
2 0.80 4.472 0.487

55 0.5 0.30 4.416 0.897
1 0.22 4.432 0.777
2 0.14 4.447 0.667

Table 5. Effect of p/l on dimensionless natural frequency and mass of auxetic composite cylindrical shell (C-C, n¼ 1).

p/l X Mass of honeycomb layer (kg)

0.005 4.459 0.578
0.01 4.383 1.157
0.02 4.242 2.315
0.03 4.113 3.473
0.04 3.996 4.630
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To investigate the effect of the thickness of the honeycomb layer on the asymmetric natural
frequency and the weight of the composite shell, Table 8 has been prepared. In all the cases the
shells have the same volume. It is seen that by increasing the honeycomb core layer, the weight
and the dimensionless asymmetric natural frequency of the auxetic composite shell decrease. In
the studied cases, it can be concluded that by increasing the thickness of the core layer from case
1 (mm) to case 5 (mm), the weight decreases by about 64%, and the dimensionless asymmetric
frequency decreases by about 3.5%, with respect to the case 1 (isotropic shell).

Table 6. Dimensionless frequency of auxetic composite cylindrical shell for different boundary conditions (n¼ 1).

S-F C-F F-F C-C S-S S-C

4.4136 4. 2481 4.4272 4.4349 4.2862 4.3067

Figure 5. (a) Mode shape of S-S boundary conditions (w0, n¼ 1). (b) Mode shape of S-S boundary conditions (u0, n¼ 1). (c)
Mode shape of C-C boundary conditions (w0, n¼ 1). (d) Mode shape of C-C boundary conditions (u0, n¼ 1). (e) Mode shape of F-
F boundary conditions (w0, n¼ 1). (f) Mode shape of F-F boundary conditions (u0, n¼ 1).
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Figure 6. (a) Mode shape of S-C boundary conditions (w0, n¼ 1). (b) Mode shape of S-C boundary conditions (u0, n¼ 1). (c).
Mode shape of S-F boundary conditions (w0, n¼ 1). (d) Mode shape of S-F boundary conditions (u0, n¼ 1). (e) Mode shape of C-
F boundary conditions (w0, n¼ 1). (f) Mode shape of C-F boundary conditions (u0, n¼ 1).

Table 7. First and second dimensionless natural frequencies (C-C).

n Mode 1 Mode 2

0 11.8250 20.5142
1 4.3272 8.6376
2 5.1366 11.2068
3 6.8077 11.4331
4 8.5834 16.2135
5 11.1187 23.0075

Table 8. Dimensionless asymmetric frequency for different auxetic composite and isotropic shells (C-C, n¼ 1).

h1 (mm) h2 (mm) h3 (mm) h (mm) X Ratio of weight with respect to isotropic case

Case 1 (Isotropic) 3 0 3 6 5.2728 100%
Case 2 (Composite) 2.5 1 2.5 6 5.2547 84%
Case 3 (Composite) 2 2 2 6 5.2269 68%
Case 4 (Composite) 1.5 3 1.5 6 5.1799 52%
Case 5 (Composite) 1 4 1 6 5.0863 36%
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6. Conclusion

An analytical method has been established to investigate asymmetric free vibrational behavior of
auxetic composite cylindrical shells with honeycomb core layer. The governing equations were
extracted based on the FSDT. Since the FE or experimental methods are time-consuming and com-
plicated to analyze the honeycomb structures, this method can be useful and suitable to study these
types of structures. By preparing the required inputs such as the material properties, geometry, and
honeycomb parameters for the provided code, the results can be obtained readily. The effect of dif-
ferent geometrical and honeycomb structure parameters and different boundary conditions was
studied using parametric analysis. Some of the conclusions can be listed as the following:

� For the negative values of inclined angle and q/l¼ 1,2, the Poisson ratios are negative and for
positive values of inclined angle and q/l¼ 1,2, the Poisson ratios are positive and the max-
imum negative value for the Poisson ratio occurs when q/l¼ 0.5.

� Rm/h does not have any significant effect on the natural frequency of auxetic composite shells with
honeycomb core layer while the dimensionless natural frequency increases as Rm/h increases.

� The axisymmetric frequency is not necessarily the minimum frequency and for some values of
n, the asymmetric frequency is less than the axisymmetric natural frequency.

� By considering the asymmetric conditions, the difference between frequencies increases.
� When the inclined angle is negative, the weight of the honeycomb structure strongly depends

on the honeycomb parameters (e.g. q/l, and u).
� The maximum effects of u and q/l on the frequency are 30% and 28%, respectively in the

studied range.
� For the negative values of the inclined angle, by decreasing Poisson’s ratio, the fre-

quency decreases.
� For the positive values of the inclined angle, decreasing the Poisson ratio increases

the frequency.
� The frequency of auxetic composite shell decreases as the thickness of the honeycomb cell

wall increases.
� The maximum effect of honeycomb cell wall thickness on the frequency of auxetic composite

shell is about 10%, in the studied range.
� For the studied cases, by increasing n, the natural frequency of asymmetric auxetic composite

shell increases.
� As was expected, the maximum natural frequency occurs for C-C boundary conditions.
� From the viewpoint of the natural frequency, using the auxetic composite shells with the

honeycomb core layer gives us this opportunity to use a light structure with almost the same
characteristics. For the studied range of input data, by employing the auxetic composite shells
the weight and asymmetric frequency decrease by about 64% and 3.5%, respectively with
respect to the isotropic shells.
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